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Lecture 1: Basic definitions, examples of groups, permutation group

Definition 1.1. A group G is a set of elements with a product operation (a map G×G→ G) with the
following axioms

1. Associativity: ∀ a, b, c ∈ G : a · (b · c) = (a · b) · c

2. Existence of an identity element: ∃e ∈ G: ∀a ∈ G, a · e = e · a = a

3. Existence of an inverse element: ∀a ∈ G, ∃ b def
= a−1 : a · a−1 = e.

Note: this definition in fact implies

1. Uniqueness of the identity element. Indeed, let e1 and e2 be two identity elements. Then one has

e1 · e2 =

{
e1 treating e2 as right identity,

e2 treating e1 as left identity
=⇒ e1 = e2.

2. Left inverse element is also the right one: a · a−1 = e =⇒ a−1 · a = e. Indeed

a−1 · a = a−1 · a · e = a−1 · a · a−1 ·
(
a−1

)−1
= a−1 · e ·

(
a−1

)−1
= a−1 ·

(
a−1

)−1
= e

3. Uniqueness of inverse element. Assume that both b and c are inverse to a. Then

b = b · e = b · (a · c) = (b · a) · c = c

Examples of groups:

1. Group of integer numbers Z under addition. Also groups of real R and complex C numbers.

2. Group of real n × n matrices with non-vanishing determinant: GL(n,R). Similar for complex
valued matrices: GL(n,C).

3. Cyclic group of n elements Cn: Cn = {e, ω, ω2, . . . , ωn−1}, where ωn = e. One way to ”visualize”
the cyclic group Cn is to think of it as a group of rotations in the plane of fractional angle 2π

n

rk = ωk =

(
cos 2πk

n
− sin 2πk

n

sin 2πk
n

cos 2πk
n

)
Equivalently Cn is the group of rotation symmetries of regular n-polygon.

4. Dihedral group Dn is the group of all symmetries of regular n-polygon. It consists of rotations rk
(the same as for the cyclic group) and reflections sk

rk =

(
cos 2πk

n
− sin 2πk

n

sin 2πk
n

cos 2πk
n

)
, sk =

(
cos 2πk

n
sin 2πk

n

sin 2πk
n
− cos 2πk

n

)
,

where sk is the reflection across the line that makes an angle πk
n

with x axis. Note that for n odd,
these axes are drawn from the center of a polygon to each vertex. For n being even there are n/2
axes drawn from the center to the vertices and n/2 axes drawn from the center to the middle of
opposite faces (see the picture of regular 7-polygon).
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Note that matrices rk and sk are orthogonal, det rk = 1 and det sk = −1. This is in an accordance
with the fact that rk preserves orientation while sk does not.

5. The tetrahedral group T , the symmetry group of the ideal tetrahedron (preserving orientation).
This group consists of 2π

3
rotations around the four axes OA, OB, OC and OD, where (A,B,C,D)

are the vertices of the tetrahedron and O is the ”center of mass” point, as well as rotations on
angle π about an edge linking the central points of opposite edges, e.g. AB and CD.

6. The symmetric group Sn (group of permutations of n−elements). By permutation we mean a
bijection (one-to-one map) of a set of n−elements into itself. The product operation in Sn is the
composition of permutations.

More on symmetric group Sn

1. It is convenient to represent permutations by their tables(
1 2 3 . . . n

σ(1) σ(2) σ(3) . . . σ(n)

)
(1.1)

2. One can equally shuffle the columns of a table of permutations. For example(
1 2 3 4
2 3 1 4

)
and

(
2 1 4 3
3 2 4 1

)
represent the same permutation. We will call (1.1) – the canonical permutation.

3. The product in permutation group is composition. We will use the following convention for
composition

τ · σ : i
σ7→ σ(i)

τ7→ τ (σ(i))
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4. It is clear that composition is a non-commutative operation. Consider the product of two compo-
sitions τ · σ and σ · τ from S4

τ =

(
1 2 3 4
4 3 1 2

)
and σ =

(
1 2 3 4
2 3 1 4

)
For τ · σ we have

τ (σ(1)) = τ(2) = 3

τ (σ(2)) = τ(3) = 1

τ (σ(3)) = τ(1) = 4

τ (σ(4)) = τ(4) = 2

=⇒ τ · σ =

(
1 2 3 4
3 1 4 2

)

On the other hand for σ · τ we have

σ (τ(1)) = σ(4) = 4

σ (τ(2)) = σ(3) = 1

σ (τ(3)) = σ(1) = 2

σ (τ(4)) = σ(2) = 3

=⇒ σ · τ =

(
1 2 3 4
4 1 2 3

)

5. Any permutation can be represented as a product on non-intersecting cycles. For example1(
1 2 3 4 5 6 7
3 1 4 2 5 7 6

)
= (1342)(5)(67)

Here by (i1, i2, . . . , in) we have denoted the cycle: i1 7→ i2, i2 7→ i3, . . . , in−1 7→ in, in 7→ i1,
It is clear that non-intersecting cycles commute. The cycle representation of a permutation is
convenient for computation of degree of permutation. Consider for example(

1 2 3 4 5 6 7
3 1 4 2 5 7 6

)2025

= (1342)2025(5)2025(67)2025 = (1342)4·506+1(5)2025(67)2·1012+1

It is clear that
(i1, i2, . . . , in)

n = (i1)(i2) . . . (in),

and hence finally we have(
1 2 3 4 5 6 7
3 1 4 2 5 7 6

)2025

=

(
1 2 3 4 5 6 7
3 1 4 2 5 7 6

)
Definition 1.2. The order of the element g ∈ G is the minimal number n = ord(g) ∈ N such that
gn = e. If such n does not exists then ord(g) =∞.

Proposition 1.1. If the permutation is equal to the product of independent cycles of lengths d1, . . . , dk
then it has order lcm(d1, . . . , dk) (least common multiple).

1Note that sometimes the cycles of length 1 are dropped

(1342)(5)(67) means the same as (1342)(67)

4



For example the order of permutation(
1 2 3 4 5 6 7
3 1 4 2 5 7 6

)
= (1342)(5)(67)

equals to lcm(4, 1, 2) = 4.

Definition 1.3. The order of a group G, denoted by |G|, is the cardinality of G as a set (the number of
elements in G). A group G is called a finite group if |G| <∞, and is called an infinite group otherwise.

Proposition 1.2. If |G| <∞, then any element g ∈ G has finite order: ord(g) ≤ |G|.

Proof. Consider |G| + 1 elements e, g, g2, . . . , g|G|. But the group has |G| elements. Thus there should
exist 0 ≤ i < j ≤ |G| such that gi = gj. It implies that gi−j = e.

Definition 1.4. Transposition is a permutation of length 2

(a, b) =

(
1 . . . a . . . b . . . n
1 . . . b . . . a . . . n

)
Exercise. Compute

(a, b) ·
(

1 2 3 . . . n
σ(1) σ(2) σ(3) . . . σ(n)

)
and

(
1 2 3 . . . n

σ(1) σ(2) σ(3) . . . σ(n)

)
· (a, b)

Proposition 1.3. Any transposition can be represented as a product of transpositions, as a product of
elementary transpositions of the form (i, i+ 1).

For example any cycle can be represented as

(i1, . . . , ik) = (i1, ik) · (i1, ik−1) . . . (i1, i2).

or
(i1, . . . , ik) = (i1, i2) · (i2, i3) . . . (ik−1, ik)

In fact, there are more ways to represent the same permutation

(i1, . . . , ik) = (i2, . . . , i1, ik) = (i2, i1) · (i2, ik) · (i1, ik−1) . . . (i3, i2),

etc. We note that transpositions do not commute and their number is not an invariant of a given
permutation. For example, we have

(123) = (13)(12) = (23)(13), (13) = (12)(13)(23) = (23)(13)(12), (1.2)

or in terms of elementary transpositions

(123) = (12)(23), (13) = (12)(23)(12) = (23)(12)(23). (1.3)

Definition 1.5. A set of elements {s1, s2, . . . } is called a set of generators of G if any element of G can
be represented as

g = s±ji
i1
· s±j2

i2
. . . s±jk

ik
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Examples

1. A cyclic group Cn is generated by ω.

2. A dihedral group Dn is generated by r1 and s1.

3. A symmetric group Sn is generated by elementary transpositions (i, i+ 1) for i = 1, . . . , n− 12.

From examples (1.2) and (1.3) we see that the number of transpositions for given permutation is am-
biguous. However, the following theorem suggests that the parity does.

Theorem 1.1. Let σ ∈ Sn admits the following decomposition

σ = σ1 . . . σk, (1.4)

where σj’s are some transpositions. Then the number

ϵ(σ)
def
= (−1)k

is completely defined by σ and does not depend on a particular expansion (1.4). Moreover,

ϵ(σ · τ) = ϵ(σ)ϵ(σ).

Proof. Assume that there is another representation

σ = σ′
1 . . . σ

′
k′ ,

such that k + k′ ∈ odd. Since (σ′
i)
2 = e, one can multiply the equality

σ1 . . . σk = σ′
1 . . . σ

′
k′ ,

by σ′
k′ . . . σ

′
1 from the right. We get

σ1 . . . σm = σ1 . . . σk · σ′
k′ . . . σ

′
1︸ ︷︷ ︸

σk+1...σm

= e for m ∈ odd.

We have to show that in the equality
e = σ1 . . . σm, (1.5)

m is necessary an even number. Thus we have a contradiction. In order to show that m is an even
number, we show that commutation relations between permutations allow one to reduce the number of
factors in (1.5) by the factor of 2.

Consider some 1 ≤ i ≤ n. Such that

e = σ1 . . . σp−1 · σp · σp+1 . . . σm,

with σp = (ij) and all σp+1, . . . , σm do not contain i. Then for σp there are four possibilities

1. σp−1 = (ij) =⇒ (ij) · (ij) = e

2One might wonder if this is the smallest set of generators. The answer is not. One can generate Sn by just two
elements (1, 2) and (1, 2, . . . , n).
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2. σp−1 = (ik) =⇒ (ik) · (ij) = (ij) · (jk)

3. σp−1 = (jk) =⇒ (jk) · (ij) = (ik) · (jk)

4. σp−1 = (kl) =⇒ (kl) · (ij) = (ij) · (kl)

In the case 1 we have reduce the number of factors by 2. In the cases 2, 3 and 4 we have not reduced
the number of factors, but have shifted first appearance of the index i to the left. Then we proceed and
either will meet a situation 1, or will end up at the extremal case

e = (ik) · τ1 . . . τm−1,

where none of τj’s have the index i in it. But such a permutation can not be identical. Thus we come
to a contradiction.

Definition 1.6. A permutation is called even (resp. odd) if ϵ(σ) = 1 (resp. ϵ(σ) = −1)

Definition 1.7. A subset H ⊂ G is called a subgroup, if ∀a, b ∈ H: a · b ∈ H and a−1 ∈ H.

Proposition 1.4. Even permutations in Sn form a subgroup. It is known as alternating group An.

Examples

1. A2 = {e}

2. A3 = {e, (123), (132)}. Let us denote ω = (123), then ω2 = (132) and ω3 = e. Thus we have an
isomorphism A3 = C3.

3. A4 = {e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

Sometimes it is required to find which permutations in Sn commute with given permutation. The
following statement helps.

Proposition 1.5. For any σ ∈ Sn one has

σ(i1, . . . , ik)σ
−1 = (σ(i1), . . . , σ(ik)), (1.6)

where σj are some transpositions.

Proof. Set τ = (i1, . . . , ik). It is enough to show that both hand sides of (1.6) act in the same way on
any j ∈ 1, . . . , n. For example let j = σ(i1). We have

στσ−1 (σ(i1)) = στσ−1σ(i1) = στ(i1) = σ(τ(i1)) = σ(i2).
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Probs:

1. Find all σ ∈ S5 such that σ2 = (1, 2, 3).

2. Show that any permutation σ ∈ Sn can be expressed as a product of

(a) transpositions (1, 2), (1, 3), . . . (1, n)

(b) elementary transpositions (1, 2), (2, 3), . . . (n− 1, n)

(c) two elements: (1, 2) and (1, 2, 3, . . . , n).

3. Find all permutations σ ∈ S6 which commute with

σ =

(
1 2 3 4 5 6
4 2 5 6 3 1

)
4. For any σ ∈ Sn one associates a n × n matrix R(σ) such that R(σ)ij = 1 if j = σ(i) and 0

otherwise. Find eigenvalues of R(σ). Express the answer in terms of a cyclic structure of σ.

5. Prove that A4 coincides with tetrahedral group T .

6. Find the number of even permutations in Sn.
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Lecture 2: Finite groups of low orders. Abelian groups. Group presenta-
tions.

Definition 2.1. Abstract group can be defined by its multiplication table (Cayley table)

g1 g2 . . . gn . . .
g1 g1 · g1 g1 · g2 . . . g1 · gn . . .
g2 g2 · g1 g2 · g2 . . . g2 · gn . . .
. . . . . . . . . . . . . . . . . .
gn gn · g1 gn · g2 . . . gn · gn . . .
. . . . . . . . . . . . . . . . . .

The size of this table (matrix) is |G| × |G|.

Proposition 2.1. No row or column of a Cayley table may contain the same element twice.

Proof. Let a, b and c be the elements of a group. Then in the row representing the element a, the column
corresponding to b contains the product a · b, and similarly the column corresponding to c contains the
product a · c. Suppose that the contents are the same, i.e. that a · b = a · c, but then b = c and hence
we come to a contradiction.

This corollary allows to classify all finite groups of lower orders.

Group of order 2
There is only one group of order 2, which is C2

e ω
e e ω
ω ω e

Group of order 3
There is only one group of order 3 as well, which is C3. Indeed, let ω ̸= e be an element of a group
of order 3. Then {e, ω, ω2} must be distinct, because otherwise: either ω2 = ω =⇒ ω = e, or
ω2 = e =⇒ ∃g ̸= ω : ω · g = g =⇒ ω = e

e ω ω2

e e ω ω2

ω ω ω2 e
ω2 ω2 e ω

Group of order 4
It is easy to construct all possible groups with four elements {e, g1, g2, g3}. Let us start filling the
multiplication table. First row and first column are obvious. Then one has to decide whether g1 · g1 = e
or g1 ·g1 = g2. In the first case the second row must contain g2 and g3. The only possibility is g1 ·g2 = g3,
because the other choice g1 · g2 = g2 =⇒ g1 = e. The second column is filled similarly (shown in red).
The rest of the table is filled by noticing g2 · g2 can be either e or g1, but the last case corresponds to
the second table with relabelling the indexes 1, 2, 3. For the second case we have either g1 · g2 = e, or
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g1 · g2 = g3. Again the first case is forbidden because g1 · g2 = e =⇒ g1 · g3 = g3 =⇒ g1 = e. Thus we
have g1 · g2 = g3 (similarly g2 · g1 = g3). Then automatically g2 · g2 = g1 · g1 · g2 = g1 · g3 = e

e g1 g2 g3
e e g1 g2 g3
g1 g1 e g3 g2
g2 g2 g3 e g1
g3 g3 g2 g1 e

or

e g1 g2 g3
e e g1 g2 g3
g1 g1 g2 g3 e
g2 g2 g3 e g1
g3 g3 e g1 g2

Thus there are two groups of order 4. The first group is the dihedral group D2 also known as Klein’s
four group and the second is cyclic group C4.

Definition 2.2. A group G is called Abelian if ∀a, b ∈ G : a · b = b · a.

Examples of Abelian groups:

• Cyclic groups Cn.

• Additive group of integers, denoted by Z. Additive group of integers modulo n, denoted by Zn.

• Multiplicative group of integers modulo n and coprime with n, denoted by Z∗
n.

Comment on Z∗
n. It is straightforward to show the group axioms for Z∗

n. Suppose one has to integers
a and b from the set {1, 2, . . . , n − 1} that are coprime with n (i.e. a, b ∈ Z∗

n), that is gcd(a, n) =
gcd(b, n) = 1. Then since gcd(a · b, n) = 1 we have a · b ∈ Z∗

n. To show that every a ∈ Z∗
n has an inverse,

we note that the equation a · x = 1(modn) has a solution because by Bézout’s lemma for a such that
gcd(a, a−1) = 1 there are integers x and y such that ax + ny = 1. The associativity axiom trivially
holds.

The order of the group Z∗
n is given by Euler’s totient function φ(n).

Definition 2.3. A map φ : G → H is called a homomorphism (of groups) or group morphism iff it
preserves multiplication, i.e. ∀a, b ∈ G,φ(a ·G b) = φ(a) ·H φ(b). A homomorphism that is bijective is
called isomorphism.

Proposition 2.2. A homomorphism maps identity to identity and inverses to inverses.

Proof. Let φ : G → H be a homomorphism. By definition of a morphism φ(eg) = φ(e)φ(g), and by
definition of identity eg = g, so, φ(eg) = φ(g). Combining these equalities, we conclude that φ(e) is the
identity in H. Now, for the inverses: e = φ(e) = φ(g−1g) = φ(g−1)φ(g), so, φ(g−1) = (φ(g))−1.

Proposition 2.3. Two groups G and H are called isomorphic (denoted as G ≃ H) if there exists an
isomorphism φ : G→ H.

Proposition 2.4. The group Zn is isomorphic to Cn.

Proposition 2.5. A group with n element (of order n) is isomorphic to Cn if and only if G has an
element of order n.

Proposition 2.6. The group Z∗
5 is isomorphic to C4 (also Z∗

p ≃ Cp−1 for p-prime).
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Proof. The group Z∗
5 as a set consists of 4 elements: {1, 2, 3, 4}. We already know that there are two

groups of order 2: C4 and D2. It remains to choose one. In order to do it, we note that 2 has order 4:
22 = 4, 23 = 8 = 3(mod 5), 24 = 16 = 1(mod 5). Thus by Corollary 4, Z∗

5 is isomorphic to C4.

Theorem 2.1 (Cayley). Every finite group of order n is isomorphic to some subgroup in the symmetric
group Sn.

Proof. See Cayley’s table.

Corollary. There are finitely many (up to isomorphism) groups of given order n.

Proof. It is clear that there are finitely many Cayley tables of size n × n. A super rough estimate is(
n!
n

)
that is the number of n different permutations out of all n!. In reality the number of groups of

given order is much less. For example there are 5 distinct groups of order 12 which is much less than(
12!
12

)
≈ 3.04584× 1095.

Definition 2.4. A direct product of two groups G and H is a set of pairs G×H = {(g, h)|g ∈ G, h ∈ H}
with the following multiplication (g1, h1) · (g2, h2) = (g1 · g2, h1 · h2).

3

Proposition 2.7. D2 ≃ C2 × C2, C6 ≃ C2 × C3, Z∗
8 ≃ C2 × C2.

Theorem 2.2 (Gauss). Z×
n is cyclic if and only if n = 1, 2, 4, pk or 2pk, where p is an odd prime.

Theorem 2.3. The groups Cm × Cn and Cmn are isomorphic if and only if m and n are coprime
numbers (gcd(m,n) = 1).

Proof. Let Cn be generated by ω and Cm be generated by ρ. If gcd(m,n) = 1 then the order of the
element (ω, ρ) is mn, so, Cm × Cn ≃ Cmn. And vica versa, if Cm × Cn admits an of order mn then
gcd(m,n) = 1.

An immediate generalization is as follows:

Theorem 2.4 (Chinese remainder theorem). Let n be a positive integer and n = pk11 · pk22 · ... · p
kN
N be

its (unique) decomposition into a product of primes. Then Cn = Cp1k1 × Cp2k2 × ... × CpN
kN . Or in,

additive notation, Zn = Zp1k1 ⊕ Zp2k2 ⊕ ...⊕ ZpN
kN .

Proof. Using Bezoult’s identity it is easily checked that the map [x]n 7−→ ([x]p1k1 , ..., [x]pNkN ) is an
isomorphism of groups. Here [x]k ≡ x mod k is a positive remainder of x wrt k.

Theorem 2.5 (Fundamental theorem of finite abelian groups). Any finite abelian group is isomorphic
to the product of finite cyclic groups G ≃ Ck1 × · · · × Ckn.

Proof. will be given later

In fact, there is a slight generalization of this result valid for ”sufficiently small” infinite abelian
groups. These groups are called finitely generated and are defined in terms of generators and relations.

3For abelian groups it is sometimes convenient to denote group multiplication by ”+”, not by ”·”. This is called
additive notation, as opposed to multiplicative one. In additive variant the direct product G × H can be conveniently
called direct sum and denoted G ⊕ H. This triggers no confusion, since every abelian group is a module over Z with
respect to action n · g = g + g + ...+ g︸ ︷︷ ︸

n times

. A direct product of two abelian groups (in additive notation) is then exactly the

direct sum of the corresponding Z-modules.
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Probs:

1. For abelian groups Z×
9 , Z×

10, Z×
11, Z×

40 and Z×
360 find a decomposition into a product of cyclic groups.

2. How many elements are there in Z×
40? Compute 1

3
· 1
7
· 1
9
in Z×

40.

3. How many elements are there in (Z371293)
×? List the orders of elements in this group.4

4. Show that the sets

U(1) =
{
z ∈ C : |z| = 1

}
,

O(2) =
{
A ∈ Mat2×2(R) : ATA = E2×2

}
SO(2) =

{
A ∈ Mat2×2(R) : ATA = E2×2, detA = 1

}
form groups wrt usual matrix multiplication. Show that SO(2) and U(1) are isomorphic. Show
that SO(2) and O(2) are not.

5. Let φ : G→ H be a homomorphism of finite groups. Show that ord(φ(g)) divides ord(g) for any
g ∈ G.

6. Denote a set of all homomorphisms from G to H by Hom(G,H). Describe the sets:

(a) Hom(G, 1) and Hom(1, H)

(b) Hom(Sn,Z3) and Hom(Sn,Z2)

(c) Hom(Z6,Z25) and Hom(Z6,Z15)

4Hint: what is the number of elements in (Zpk)×?
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Lecture 3: Generators and relations

Definition 3.1. Let R be a set. A free group generated by R is a group F = ⟨R⟩, which we now
describe. Elements of this group are words w consisting of letters in R:

w =
∏
r∈R

rm(r),

where multiplicity m(r) is an integer. For example, in ⟨r1, r2, r3, r4, r5⟩ there is a word

w = r1 r2r2︸︷︷︸
r22

r−1
3 r4r4r4r4︸ ︷︷ ︸

r44

r−1
5 r−1

5 r−1
5︸ ︷︷ ︸

r−3
5

... = r1r
2
2r

−1
3 r44r

−3
5 .

The only rule is as follows. If anywhere in a word a combination rjr
−1
j or r−1

j rj appears, it is replaced
by 1 (a trivial word and an identity element of F ). Multiplication in F is given by concatenation of
words:

w1 =
J∏

j=1

r
mj

j , w2 =
K∏
k=1

smk
k , ⇒ w1w2 =

J∏
j=1

r
mj

j

K∏
k=1

smk
k

Due to rr−1 = r−1r = 1 every element of F has a unique inverse:

w =
N∏
j=1

r
mj

j ⇒ w−1 =
N∏

j′=1

(rN−j′+1)
mN−j′+1

For example, in ⟨r1, r2, r3, r4, r5⟩ the inverse of w is

w−1 = (r1r
2
2r

−1
3 r44r

−3
5 )−1 = r35 r

−4
4 r3 r

−2
2 r−1

1 .

Definition 3.2. If a set R is finite R = {r1, r2, ..., rk}, then a free group Fk = ⟨R⟩ is called a free group
of rank k.

Since for all alphabets R of the same cardinality the groups freely generated by them are isomorphic,
a free group of rank k is unique (up to a isomoprhism). More generally, there is only one free group
generated by a set of a given cardinality.

Proposition 3.1.

• Free groups are infinite except for the trivial one F0 = {1}.

• A free group of rank 1 is abelian and isomorphic to Z.

• Free groups of rank k ≥ 2 are not abelian.

Clearly not every group is free. For example, no finite group (except for the trivial one) is free. That
leads us to the idea of imposing relations on words of F = ⟨R⟩.

Definition 3.3. A presentation of a group G is data G = ⟨R|S⟩, where R is a generating set and
S ⊂ ⟨R⟩ is a set of relations on the generators. The group G is thus constructed analogously to the free
group but with a larger amount of relations on generators (not only that r−1r = rr−1 = 1).

13



Examples

• A free group: F = ⟨R|∅⟩

• A finite cyclic group: Cn = ⟨ω |ωn ⟩ = {1, ω, ω2, . . . , ωn−1}.

• Z× Z = ⟨x, y |xyx−1y−1 ⟩ (multiplicative notation)

• A dihedral group: Dn = ⟨ r, s | rn, s2, (rs)2 ⟩

• A tetrahedral group T = A4 = ⟨ s, t | s2, t3, (st)3 ⟩

Definition 3.4. A group G is said to be finitely generated if these exists a presentation G = ⟨R|S⟩
with finite set of generators |R| < ∞. A group G is said to be finitely related if |S| < ∞. If a group
turns out to be both finitely generated and finitely related, then it is called finitely presented.

We stress that finitely presented group can be infinite, as well as infinitely generated and infinitely
related group can be finite. For example,

Z ≃ C∞ = ⟨ω⟩ = {1, q, q−1, q2, q−2, . . . },
1 = ⟨Z|Z⟩ = ⟨x1, x2, . . . |x1 = x2 = · · · = 1⟩

Proposition 3.2. Symmetric group is finitely presented.

Proof. Symmetric group is generated by elementary transpositions σi = (i, i + 1). One can convince
oneself that the presentation

Sn =
〈
σi, i ∈ {1, ..., n}

∣∣∣ σ2
i = 1, σiσj = σjσi︸ ︷︷ ︸

for j ̸= i± 1

, σiσi+1σi = σi+1σiσi+1

〉
is valid.

Dropping the first set of relations σ2
i = 1, one arrives at the new infinite group:

Definition 3.5. A braid group on n braids:

Bn =
〈
σi, i ∈ {1, ..., n}

∣∣∣ σiσj = σjσi︸ ︷︷ ︸
for j ̸= i± 1

, σiσi+1σi = σi+1σiσi+1

〉
Proposition 3.3. A braid group Bn is infinite and contains finite subgroups isomorphic to Sk for any
1 ≤ k ≤ n

The relation σi σi+1 σi = σi+1 σi σi+1 present in Sn and Bn is known in the literature as Yang-Baxter
equation. It plays an exceedingly important role in theory of classical and quantum integrable systems
ans is most conveniently presented by the picture (1)

14



Figure 1: Yang Baxter Equation

Definition 3.6 (Coxeter groups). Let M be an integer symmetric n × n matrix with mii = 1 and
mij = mji ≥ 2 for i ̸= j. mij is allowed to be equal to ∞. Then to this matrix one associates a Coxeter
group Cox(M) defined by presentation

Cox(M) =
〈
r1, r2, ..., rn

∣∣∣ (rirj)mij = 1
〉
.

Note that condition mii = 1 implies that every generator is an inversion: x2
i = 1. Condition mij = 2

implies that generators xi and xj commute. Indeed, (xixj)
2 = 1 ⇔ xixj = x−1

j x−1
i ⇔ xixj = xjxi.

The symmetricity condition mij = mji is equivalent to that (xixj)
m = 1 ⇔ (xjxi)

m = 1. In this way,
Coxeter groups can (and should) be thought of as of the reflection groups.

Coxeter groups are of great importance to classification of simple finite groups, ADE classification
of (semi)simple Lie algebras, elementary catastrophes, minimal models of CFT, etc. We will (probably)
return to this discussion late in this course.

Finite (and affine finite-type) Coxeter groups have been completely classified. Since Coxeter matrices
are symmetric, they can be thought of as the adjacency matrix of finite edge-labeled graph. These graphs
are called Coxeter-Dynkin graphs, and the classification is most conveniently presented in terms of them.

Theorem 3.1 (Classification of finite Coxeter groups). (Simple) Coxeter group is finite if and only if
the corresponding Dynkin graph is one of the following:

Figure 2: Finite Coxeter groups
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Examples

• Cox

([
1 2
2 1

])
= Z2 ⊕ Z2 ←→ A1 × A1

• Cox

([
1 3
3 1

])
= ⟨x, y |x2 = y2 = (xy)3 = 1⟩ ≃ S3 ←→ A2

• Cox

([
1 4
4 1

])
= ⟨x, y |x2 = y2 = (xy)4 = 1⟩ ≃ D4 ←→ B2 ≃ C2 ≃ I4

• Cox

1 2 0
2 1 2
0 2 1

 = ⟨x, y, z |x2 = y2 = z2 = 1, [x, y] = [y, z] = 1⟩ ←→ A2 × A1, non-simple

• Cox



1 3 2 2
3 1 3 3
2 3 1 2
2 3 2 1


 ←→ D4

Proposition 3.4. Let G1 and G2 be finitely presented. Then their direct product is finitely presented
aswell.

Proof. A direct product of groups G1 = ⟨R1|S1⟩ and G2 = ⟨R2|S2⟩ admits a following presentation:

G1 ×G2 =
〈
R1 ∪R2

∣∣∣ S1 ∪ S2 ∪ [R1,R2]
〉

where [R1,R2] is generated by all the group commutators r1 r2 r
−1
1 r−1

2 . In this way G1 and G2 commute
in G1 ×G2. Since sets R1,2, S1,2 and [R1,R2] are finite, G1 ×G2 is finitely presented.

Now we can formulate the classification theorem for ”sufficiently small” abelian groups

Theorem 3.2 (Classification of finitely generated abelian groups). Any finitely generated abelian group
A is isomorphic to Zr ⊕ Tors(A), where subgroup Tors(A) is finite abelian: Tors(A) ≃ Zk1 ⊕ ...⊕ Zkm.
A number r is called a rank of group A.

It is now easy to construct (possibly new, possibly infinite) groups by writing down presentations.

Definition 3.7. Let G1 = ⟨R1|S1⟩ and G2 = ⟨R2|S2⟩. A free product of G1 and G2 is a group G1 ∗G2

generated by R1 and R2 and with no additional relation between these elements:

G1 ∗G2 =
〈
R1 ∪R2

∣∣∣ S1 ∪ S2 〉
.

Example. Cox

([
1 0
0 1

])
= Z2 ∗ Z2

Proposition 3.5.

• If G and H are nontrivial, then G ∗H is infinite

• G ∗ 1 = 1 ∗G = G

• Fk ∗ Fl = Fl ∗ Fk = Fk+l

16



Example: modular group A very important case of a free product is modular group Γ = PSL(2,Z):

PSL(2,Z) =
{
(±A) ∈ Mat2×2(Z)

∣∣∣ det(±A) = 1
}
.

Turns out, PSL(2,Z) is generated by matrices

S = ±
(
0 −1
1 0

)
, and T = ±

(
1 1
0 1

)
.

since S2 = ±E2×2 and (ST )3 = ±E2×2, modular group admits a presentation

Γ =
〈
S, T

∣∣∣ S2 = 1, (ST )3 = 1
〉
≃ Z2 ∗ Z3.

Problems

1. What is this group: ⟨a, b | ab2 = b2a, a4 = b3⟩?

2. Let G be a finitely generated group with all generators having finite order. Is G finite?

3. Prove that An (n ≥ 3) can be generated by

(a) 3-cycles

(b) (123) and (12 . . . n)

4. Prove the presentations

a) Dn = ⟨ r, s | rn, s2, (rs)2 ⟩,
b) A4 = ⟨ s, t | s2, t3, (st)3 ⟩

to be correct.

5. Consider the following linear-fractional transformations of complex plane:

z 7→ w =
az + b

cz + d
,

where a, b, c, d ∈ Z and ad − bc = 1. Prove that these transformation form a group. Find the
identity, the laws of multiplication and inversion. Establish the isomorphism with Γ = PSL(2,Z).
What linear-fractional transformations correspond to generating matrices S and T?

6. Prove that any symmetric group Sn is a Coxeter group. Find the corresponding Coxeter matrix
and Dynkin graph.
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Lecture 4: Group action, Lagrange’s theorem, conjugacy classes. Point
groups.

In physics, groups usually appear through their action on some sets

Definition 4.1. If G is a group and X is a set, then a (left) group action ρ of G on X is a function
ρ : G×X → X, such that

• ∀g, h ∈ G, x ∈ X : ρ(g, ρ(h, x)) = ρ(g · h, x)

• ∀x ∈ X : ρ(e, x) = x.

In order to simplify notation we will usually write ρ(g, x) = gx

Definition 4.2. Let group G act on X

1. An orbit of an element x ∈ X is a set Gx ≡ Ox = {y ∈ X|∃g ∈ G, y = gx}

2. A stabilizer of an element x ∈ X is a set Gx ≡ StabG(x) = {g ∈ G|gx = x}.

The set of orbits is denoted by X/G.

Proposition 4.1. A stabilizer of any point x ∈ X is a subgroup of G.

Proposition 4.2. Two orbits are either identical or disjoint. Moreover, every element element x ∈ X
lies in some orbit. That is one has an equivalence relation by saying x ∼ y if x ∈ Gy.

Definition 4.3. The group G acts

• Transitively on X if ∀x, y ∈ X ∃g ∈ G : y = gx. In other words X = Gx for some x ∈ X.

• Freely on X if gx = x for some x ∈ X implies Gx = {e}.

• Faithful or effective if gx = x ∀x ∈ X implies g = e.

Proof. First of all x ∈ Gx, so every element is in some orbit. Second suppose that z ∈ Gx ∩ Gy then
z = g1x and z = g2y. This implies x = (g−1

1 · g2)y and hence x ∈ Gy. Thus Gx = Gy.

Theorem 4.1. Orbit-stabilizer theorem. Let G be a group acting on X. Then |G| = |Gx||Gx|, where
|Gx| is the length of the orbit Gx (cardinality as a set).

Proof. Denote m = |Gx|, n = |Gx|, then Gx = {g1x, . . . , gmx} with g1 = e and Gx = {h1, . . . , hn}.
Then any element g ∈ G admits the unique decomposition g = gi · hj. Indeed, since gx ∈ Gx one can
represent gx = gix (note that for given g, gi is unique). Then hj = g−1

i · g (indeed g−1
i · g ∈ Gx). It is

clear that we have constructed a bijection between G and Gx ×Gx.

Example. We can use the orbit-stabilizer theorem to count the dimension of automorphism group of
a cube (rotations preserving orientation). Let (1, 2, 3, 4, 5, 6, 7, 8) be the vertices of a cube
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8

1 4

3

5

7

6

It is clear that |G1| = 8 (the cube group acts transitively). On the other hand G1 = C3.
Another way of computing the same number. Let X be the set of faces of the cube, |X| = 6.

Obviously G acts transitively on X, i.e. the orbit of a given face is the set of all the other faces, which
is X. The stabilizer of a face is Z4. Thus the order of the group is 6× 4 = 24.

Yet another way. Let X be the set of edges, |X| = 12. The stabilizer of an edge is Z2. Thus again
12× 2 = 24.

Proposition 4.3. Burnside’s lemma. Let Xg denote the set of elements in X that are fixed by g, that
is Xg = {x ∈ X|gx = x}. Then

|X/G| = 1

|G|
∑
g∈G

|Xg|.

Proof. It is clear that ∑
g∈G

|Xg| =
∑
x∈X

|Gx|

Thus
1

|G|
∑
g∈G

|Xg| = 1

|G|
∑
x∈X

|Gx| =
1

|G|
∑
x∈X

|G|
|Gx|

=
∑
x∈X

1

|Gx|
= |X/G|.

Definition 4.4. A group G acts on itself by left multiplication (g, g′) 7→ g · g′ (correspondingly by right
multiplication (g, g′) 7→ g′ · g−1). Any subgroup H ∈ G acts on G as (h, g). The orbits of this action
denoted by Hg are called right cosets of H in G.

Theorem 4.2. Lagrange’s theorem. If H is a subgroup of G then

|G| = |H||G/H|

Proof. Since hg = g implies h = e and thus the stabilizer of any point is trivial Hg = {e}. It means
that any orbit consists exactly of |H| elements. Thus the size of the subgroup H should divide |G|. The
ratio |G|/|H| is the number of orbits.

Proposition 4.4. Let G be a finite group. The order of any element g divides G. In particular g|G| = e.

Proof. Let |g| = d then {e, g, g2, . . . gd} form a subgroup of G of order d. Thus d divides |G|.

Corollary. Any finite group of prime order p is isomorphic to Cp.

19



Remark 4.1. The reverse of Lagrange theorem is not true: given the factor of |G| there might be no
subgroup of that size. For example for G = A4 the order is 12, but it turns out that there is no subgroup
of order 6.

Proposition 4.5. Little Fermat’s theorem. If p is a simple number and a ∈ Z, gcd(1, p) = 1 then
ap−1 = 1mod p.

Proof. Take G = Z×
p then a can be replaced by its representative in Z×

p . Moreover, since gcd(1, p) = 1,
a ̸= e. Since |Z×

p | = p− 1, we have ap−1 = e in Z×
p and hence ap−1 = 1mod p.

Proposition 4.6. Euler’s theorem. If gcd(a, n) = 1 then aφ(n) − 1 divides n.

Definition 4.5. A group element g is conjugate to g′ if ∃h ∈ G g′ = hgh−1.

Proposition 4.7. A group acts on itself by conjugations, moreover conjugation provides an isomor-
phism.

Proof. We can check that the action is correctly defined

g1 · (g2 · g · g−1
2 ) · g−1

1 = (g1 · g2) · g · (g1 · g2)−1

and that conjugation is an isomorphism

g · x · y · g−1 = (g · x · g−1) · (g · y · g−1)

Definition 4.6. Orbits of conjugated action of a group on itself are called conjugacy classes.

Examples.

1. For abelian group each conjugacy class contains exactly one element.

2. If H is a subgroup of G then gHg−1 is also a subgroup of G

3. Two permutations in Sn are conjugated if they have the same cyclic structure. For example S3

has three classes: e, (1, 2), (1, 3), (2, 3) and (1, 2, 3), (1, 3, 2).

4. The conjugacy classes of Sn are in one-to-one correspondence with the partitions of n. Given a
conjugacy class (1)l2(2)l2 . . . (n)ln its order5 is |Cg| = n!∏

i i
li li!

. The length of the orbit, i.e. the

number of permutations that commute with given permutation is
∏

i i
lili!.

Definition 4.7. Centralizer of an element x ∈ G is a set Cx = {g ∈ G|gxg−1 = x}.

Corollary. Let G be a finite group and (x1, . . . xr) its conjugacy classes. Then

|G| =
r∑

i=1

|G|
|Cxi
|

5Indeed, we have n! choices to arrange 1, . . . , n. Place them into the parentheses pattern in this order to obtain an
element of the conjugacy class. For each r-cycle you divide by r as only the cyclic order matters. Then if there are nr

cycles of length r, you divide by nr!.
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Example. Conjugacy classes in D5. The order of the group is D5 = 10. It is equal to

D5 = {e, r, r2, r3, r4, s, sr, sr2, sr3, sr4}

Let us identify conjugacy classes of all elements. The identity commutes with everything and hence
|Ce| = 1. Now consider the reflection s. It is clear that {e, s} ≤ Cs ≤ D5. Then |Cs| must divide 10. It
is easy to see that |Cs| = 2 and thus |Cs| = 5. In fact any reflection is conjugated to every reflection:
Cs = {all reflections}.

The conjugacy class of r is at least {r, r4} (since we have the following property of the reflection
srs−1 = r4). It can not be more, since we already have 1 + 5 of classes, so we only have 4 elements and
the order must divide 10. Similarly for r2 we have Cr2 = {r2, r3}.

Point groups in three dimensions

An orbit-stabilizer counting formula can be used to describe all three-dimensional point groups. These
are defined as finite subgroups of 3-dimensional rotation group and appear as symmetries of different
3-dimensional figures: polyhedra (regular or not), simple molecules, etc.

Definition 4.8. A point group is a finite subgroup of SO(3,R).

Theorem 4.3 (Classification of 3-dimensional point groups). Point groups in three dimensions are:

• cyclic Cn,

• dihedral Dn

• tetrahedral T ≃ A4

• octahedral O ≃ S4

• icosahedral I ≃ A5

Proof. Let G ⊂ SO(3) be a point group. Since every element of SO(3) is a rotation (orientation-
preserving), by famous Euler’s theorem on Euclidean motions, it has exactly two antipodal fixed points
when acting on S2 ⊂ R3. We call them poles. Let P ⊂ S2 be a set of points that arise as fixed points
of no-identity element g ∈ G, g ̸= 1. Obviously, G acts on P . Indeed, if p ∈ P and is fixed by x ∈ G,
then g · p is fixed by gxg−1 ∈ G (stabilizers are conjugated).

Since every non-identity element of G fixed exactly two points, we det

|G| − 1 =
1

2

∑
p∈P

(
StabG(p)− 1

)
.

By orbit-stabilizer theorem,

| StabG(p)| =
|G|
|Op|

.

Combining these two formulas,

|G| − 1 =
1

2

∑
p∈P

(
|G|
|Op|

− 1

)
=

1

2

∑
O

(
|G| − |O|

)
.
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Divide by |G|:

2− 2

|G|
=

∑
O

(
1− 1

| StabG(p ∈ O)|

)
,

where p ∈ O can be taken to be any element of O, since stabilizers of points lying in one orbit are
conjugated, and thus are of the same size.

Denote by a1, . . . , ar the sizes of stabilizers of elements lying in distinct orbits O1, . . .Or. Then the
equation of interest is

2− 2

|G|
=

r∑
i=1

(
1− 1

ai

)
.

From the general grounds we know that ai divide |G| and ai ≥ 2. Since for non-trivial G’s l.h.s is
between 1 and 2 and every term in the r.h.s. sum is at least 1

2
, the number of terms r in this sum is at

most 3: r ≤ 3. So, there are essensially two cases:

Two orbits (r = 2) The equation above forces the stabilizer sizes to be equal: a1 = a2 = |G| = n. In
other words, both points of P are fixed by the whole group G ⊂ SO(3). So, we have a finite group of
rotations fixing exactly one line. Thus, G = Cn.

Three orbits (r = 3)

1. (a1, a2, a3) = (n, 2, 2), |G| = 2n, n ≥ 2. The orbit corresponding to a1 has size two and the
other two orbits have size n. Since the size of the orbit of a point and its antipode are equal,
the orbit of size two contains two antipodal points. Its stabilizer is a subgroup of order n acting
by orientation-preserving orthogonal transformations on the perpendicular plane. Thus, this is a
cyclic subgroup of order n. The element that flips the two antipodal points restricts to that plane
as a reflection in some axis in that plane. It follows that the group is a dihedral group of order
2n, with the usual action on that plane. G = Dn.

2. (a1, a2, a3) = (3, 3, 2), |G| = 12. A little work shows that this is a tetrahedral group T = A4.

3. (a1, a2, a3) = (4, 3, 2), |G| = 24. A little work shows that this is a octahedral group O = S4.

4. (a1, a2, a3) = (5, 3, 2), |G| = 60. A little work shows that this is an icosahedral group I = A5.

The classification thus is as follows: there are two infinite series of point groups: Cn (acts on pyramids)
and Dn (acts on dihedra) and three exceptional: T = A4 (acts on a tetrahedron), O = S4 (acts on a
cube and an ocrahedron) and I = A5 (acts on an icosahedron or a dodecahedron).

Probs:

1. Let G be the group of a cube preserving orientation. Prove an isomorphism G ∼ S4.

2. How many different necklaces can be made with 6 beads of n different colors?

3. (∗) Finish the ”little works” for exceptional symmetries in the classification of point groups in three
dimensions.
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Lecture 5: Normal subgroups, quotient groups, semidirect products.

Definition 5.1. Let G and H be groups. The map φ: G→ H is called a homomorphism of groups if
∀a, b ∈ G φ(ab) = φ(a)φ(b)

Definition 5.2. Kernel of the map φ : G→ H: ker(φ) = {g ∈ G|φ(g) = e}

Definition 5.3. Image of the map φ : G→ H: im(φ) = {h ∈ H|∃g ∈ Gφ(g) = h}

Proposition 5.1. Let φ : G → H be a group homomorphism. Then imφ ⊂ H and kerφ ⊂ G are
subgroups.

Proposition 5.2. φ(g1) = φ(g2) ⇔ g1 = g2 · kerφ.

Corollary. φ is injective iff kerφ = {1}.

Examples of morphisms, kernels and images

• [−]n : Z→ Zn defined by x 7→ [x]n = x mod n. Kernel is a subgroup nZ.

• ε : Sn → Z2, a sign homomorphism. Kernel is An-subgroup.

• det : GL(n,K)→ K×. Kernel is isomorphic to SL(n,K)

• Group G actions on set {1, ..., n} and in 1:1 correspondence with homomorphisms G→ Sn.

Definition 5.4. A subgroup N is called normal subgroup in G (denoted as N ◁G) if

∀g ∈ G : gNg−1 ∈ N.

Note that this definition does not mean g−1ng = n for all n ∈ N !

Proposition 5.3. N ◁G ⇔ left and right cosets coincide: gN = Ng.

Proof. Consider an element of the left conjugacy class gh ∈ gN . Then ghg−1g belongs to right conjugacy
class Ng since N is normal ghg−1 ∈ N

Proposition 5.4. N ◁G ⇔ N is a union of conjugacy classes.

Proof. Since N is normal, there is a G-action on N by conjugations: x 7→ xg = gxg−1 ∈ N . This action
divides N into a union of non-intersecting orbits, N = On1 ∪ ...∪Onr , which are precisely the conjugacy
classes of ni ∈ N .
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Examples of normal subgroups

• Consider the direct product of groups G1 × G2 = G. There are (at least) two normal subgroups
of G: G1 × 1◁G and 1×G2 ◁G.

• A3 ◁ S3 (also seen as a kernel of a sign homomorphism)

• ker(φ : G→ H)◁G

• translation subgroup in ISO(3) (all orientation-preserving motions of Euclidean 3-space)

• Cn ◁Dn (can be seen by considering generators r, s and relations rn = s2 = (rs)2 = 1)

There is a neat criterion for a group G to be isomorphic to a direct product of two of its subgroups.

Definition 5.5. We call subgroups A and B of group G complementing whenever A ∩ B = {1} and
A ·B = G.

Proposition 5.5. A and B are complementing if and only if for any g ∈ G there is a unique decompo-
sition g = ab with a ∈ A, b ∈ B.

Proposition 5.6. Let A and B be complementing subgroups of G. Then the following statements are
equivalent:

(1) A and B are both normal

(2) A and B commute

(3) G = A×B

Proof. (1) ⇒ (2) Let A and B be normal complementary. Then

∈A︷ ︸︸ ︷
a · b · a−1 · b−1︸ ︷︷ ︸

∈B

∈ A ∩B = {e} =⇒ aba−1b−1 =⇒ ab = ba,

and A commutes with B.
(2) ⇒ (3) Now let A and B be complementary and commuting. Consider a map µ : A × B → G

sending a pair (a, b) into the product ab ∈ G. Since A·B ∈ G, this map is surjective. Since A∩B = {1}, it
is injective, and thus µ is a bijection. Now, since A and B commute, µ

(
(a1, b1)·(a2, b2)

)
= µ(a1a2, b2b2) =

a1a2b1b2 = a1b1a2b2 = µ(a1, b1)µ(a2, b2), and thus µ is in fact an isomorphism of groups.
(3) ⇒ (1) is obvious.

Definition 5.6. If N ◁G, then cosets form a group called quotient group with the multiplication

g1N · g2N
def
= g1 · g2N.

Proof. One has to check that the multiplication provided above is correctly defined. That is for all
h1 ∈ N and h2 ∈ N there exists h ∈ N such that

g1h1g2h2 = g1g2h =⇒ g−1
2 h1g2 = hh−1

2 ,

which is provided since N is normal subgroup.
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Examples of quotients

• Subgroups of Z have the form nZ with integer n. Since Z is abelian, every subgroup is normal.
Left and right cosets (in additive notation) are [m1] = m1 + nZ, [m2] = m2 + nZ. Addition of
these sets is [m1] = [m2] = [m1 +m2], just the usual addition modulo n. Quotient group is thus
Z/nZ ≃ Zn

• Let G = V , an additive abelian group of a vector space over field K, and H = U ⊂ V be its vector
subspace. The quotient abelian group V/U is called quotient space. The elements of it are written
as v + U and can be thought of as subspaces parallel to U of dimension dimU . The addition is
defined by (v1 +U) + (v2 +U) = v1 + v2 +U . V/U can be equippen with the same multiplication
by scalars as V : λ · (v+U) = λ · V +U (check that this is indeed a correct K-action), making the
quotient V/U a K-vector space itself. If V was equipped with an non-degenerate inner product,
V/U is canonically identified with U⊥.

• Let G = G1 ×G2. Then G/G1 ≃ G2 and G/G2 ≃ G1

• ISO(3)/R3 ≃ SO(3)

• Sn/An ≃ Z2

• Dn/Cn ≃ Z2

Theorem 5.1 (First isomorphism theorem). Let φ : G→ H be a group homomorphism. Then we have
an isomorphism imφ ≃ G/ kerφ.

Proof. Isomorphism is constructed as follows. For every element in image h ∈ imφ we write h = φ(gh).
Map h to class gh · kerφ ∈ G/ kerφ, and check the correctness.

Corollary. If G is finite, then |G| = | imφ| · | kerφ| for any φ : G→ H.

Let N and K be complementary subgroups of G. We saw that if G = N ×K, then K ≃ G/N . One
might naively think that if K ≃ G/N , then G ≃ N × K, but this is far from true: N is normal by
construction, but K need not to be so, and certainly H and K need not commute, so, K = G/N does
not imply G = N ×K in general.

Definition 5.7 (Inner semidirect product). Let N and K be complementary subgroups of G. Let N
be normal: N ◁ G. We will require the map µ : N × K → G, (n, k) 7→ nk, which is a bijection by
construction, to be a homomorpshism of two groups. In other words, we should discover a group law ⋆
on the set N ×K, which would make µ an isomorphism of groups (N ×K, ⋆) and G.

µ
(
(n1, k1) ⋆ (n2, k2)

) !
= µ(n1, k1) · µ(n2, k2) = n1k1n2k2 = n1k1n2k

−1
1︸ ︷︷ ︸

∈N

· k1k2︸︷︷︸
∈K

So, if we define the group law on a set of pair N ×K by the formula

(n1, k1) ⋆ (n2, k2) = (n1 · k1n2k
−1
1 , k1k2),

we will arrive at a new group (N × K, ⋆), which we denote by N ⋊ K or K ⋉ N and call an inner
semidirect product
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Definition 5.8 (Outer semidirect product). Let N and K be any two groups. Let ϕ be a K-action on
N , that is, ϕ : K → Aut(N). Outer semidirect product N ⋊ϕ K is a set N ×K with a group law

(n1, k1) · (n2, k2) = (n1 ϕk(n2), k1k2)

By the very construction the following neat criterion holds:

Proposition 5.7. Let N ◁G and K ⊂ G be complementary subgroups. Then G ≃ N ⋊K.

Note that N and K need not commute and K need not to be normal!

Examples of semidirect products

• G = N ×K, trivial K-action on N ,

• Dn = Cn ⋊ Z2. This is most easily seen by Dn = ⟨ r, s | rn = s2 = 1, srs−1 = r−1 ⟩,

• ISO(3) = R3 ⋊ SO(3),

• GL(n,K) = SL(n,K)⋊K×

• Zm ⋊k Zn = ⟨x, y |xm = yn = 1, yxy−1 = xk ⟩, where (k, n) = 1 and kn = 1 mod m

Exact sequences and group extensions

There is a neat and general way to look at homomorphisms, quotients by kernels and semidirect products
in a unified way.

Definition 5.9. A sequence of groups and morphisms

. . .
fi−2−−→ Gi1

fi−1−−→ Gi
fi−−→ Gi+1

fi+1−−→ . . .

is called exact in object Gi if im fi−1 = ker fi. A sequence is called simply exact if it is exact in every
object.

Definition 5.10. A short exact sequence is

1 −→ N
ι−−→ G

π−−→ K −→ 1

Proposition 5.8. In short exact sequence (see above) N
ι−−→ G is injective and G

π−−→ K is surjective.
Moreover, K ≃ G/N .

Definition 5.11. A group G is called an extension of a group K by N if there is a short exact sequence
1→ N → G→ K → 1 or, equivalently, if K ≃ G/N . An extension is called split whenever additionally
G = N ⋊K.6 An extension is called trivial if additionally G = N ×K.

A general group extension need not to be split. For example,

1 −→ Z2 −→ Z4 −→ Z2 −→ 1

is not split. If it was, Z4 would be isomorphic to Z2 ⊕ Z2, and it is not.

6or, equivalently, when N
ι−−→ G

π−−→ K admits a section, which is a map s : K → G such that π ◦ s = idK .
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Theorem 5.2. Let H ⊂ G be a subgroup of index two. Let there be element g /∈ G of order two: g2 = 1.
Then G always splits over H with Z2-fiber: G = H ⋊ Z2.

Proof. Note that ⟨g⟩ ∩ H = {1}. Since H has index two, it is normal, and G = ⟨g⟩ · H. By our neat
criterion we immediately get G = H ⋊ Z2.

Problems

1. Express Sn as a non-trivial semidirect product.

2. Consider an infinite dihedral group D∞ = Z⋊ Z2. Find a presentation for D∞ and prove it to be
an (infinite) Coxeter group.

3. Describe all split metacyclic groups Zm ⋊k Zn. What k’s are allowed? Are these groups the same
or different with different k’s?

4. Prove D6 ≃ D3 × C2. Is D8 isomorphic to D4 × C2?

5. Prove that O(2) = SO(2)⋊ Z2. Is O(3) isomorphic to SO(3)× Z2?

6. (∗) Prove that

D2·2n = D2n ⋊ Z2 O(2n) = SO(2n)⋊ Z2

D2·(2n+1) = D2n+1 × Z2 O(2n+ 1) = SO(2n+ 1)× Z2
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Lecture 6: Derived subgroup, solvable groups, simple groups

Definition 6.1. Let G be a group. The commutator of g, h ∈ G is an element of G defined by

[g, h]
def
= ghg−1h−1 ∈ G.

We note that

• [x, y] = e implies that xy = yx.

• xy = [xy]yx. Thus [x, y] is a correcting term in commutation relation between x and y.

• [x, y]−1 = [y, x]

• g[x, y]g−1 = [gxg−1, gyg−1]

• Let φ be the homomorphism of groups G
φ→ H, then φ([x, y]) = [φ(x), φ(y)]

Definition 6.2. The derived subgroup (also called the commutator subgroup) of G, denoted by [G,G],
G′ or G(1) is a subgroup generated by all commutators [x, y] for x, y ∈ G.

Example. Let G = Sn then S ′
n = An.

Proof. For any two permutations σ, τ ∈ Sn : [σ, τ ] = στσ−1τ−1 is even and hence S ′
n ⊆ An. On the

other hand one can show that An is generated by 3-cycles. Indeed, it is clear that An is generated by
pairs of transpositions. But any pair of transpositions can be rewritten as

(ij)(ij) = e, (ij)(jk) = (ijk), (ij)(kl) = (ijk)(jkl).

Now we note that any 3-cycle can be represented as a commutator

(ijk) = (ij)(ik)(ij)(ik) = [(ij), (jk)]

and hence An ⊆ S ′
n. From both S ′

n ⊆ An and An ⊆ S ′
n we conclude that S ′

n = An.

Proposition 6.1. Let G be a group. Then

1. G′ ◁G

2. G/G′ is abelain

3. If N ◁G then G/N is abelian iff G′ ⊆ N

4. If H is a subgroup of G and G′ ⊆ H ⊆ G then H ◁G

Proof. It is clear that 3 and 4 imply 2 and 1 respectively.

3. We note that ∀g, h ∈ G we have (gN)(hN) = (hN)(gN) ⇐⇒ (gN)(hN)(gN)−1(hN)−1 =
(ghg−1h−1N) = ([g, h]N) = eN ⇐⇒ [g, h] ∈ N ⇐⇒ N contains all commutators ⇐⇒
G′ ⊆ N .
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4. If g ∈ G and h ∈ N then ghg−1 = ghg−1h−1h = [g, h]h. Now, since G′ ⊆ H, we have [g, h] ∈ H
=⇒ [g, h]h ∈ H =⇒ ghg−1 ∈ H =⇒ N ◁G.

Proposition 6.2.

A′
n =


e, n ≤ 3,

V4 = Z2 × Z2, n = 4,

An, n ≥ 5

Proof. • For n ≤ 3 An is abelian

• For n = 4, we have V4 ◁ A4. Indeed V4 = {e, (12)(34), (13)(24), (14)(23)} is survived by conjuga-
tions (no matter even or odd) and hence it is a normal subgroup in either S4 or A4. Moreover the
order |A4/V4| = 12/4 = 3 and hence A4/V4 = Z3, i.e. it is an abelian group. Then by proposition
6.1 we have A′

4 ⊆ V4. But A′
4 ̸= e since A4 is non-abelian. Then V4 consists of two conjugacy

classes e and {(12)(34), (13)(24), (14)(23)}, but any normal subgroup consists of entire conjugacy
classes. Thus A′

4 = V4.

• For n ≥ 5 consider the following permutation (ij)(kl). It belong to the subgroup A4 ⊂ An.
Since A′

4 = V4 we conclude that (ij)(kl) ∈ A′
n. But the elements (ij)(kl) (pairs of independent

transpositions) generate An. Indeed, we know that An is generated by pairs of transpositions.
Then for n ≥ 5 we can represent

(ij)(jk) = (ij)(lm)(jk)(lm) for l,m ≤ (i, j, k)

Thus A′
n = An.

Definition 6.3. Let G(k+1) =
(
G(k)

)′
, then a group G is called solvable if ∃k ∈ N : G(k) = e. In this

case
G ⊂ G(1) ⊂ G(2) ⊂ · · · ⊂ G(k) = e

and each G(i)/G(i+1) is abelian.

Proposition 6.3. Let G be a group and there exists a series of subgroups G ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gk = e,
such that Gi+1 ◁Gi and Gi/Gi+1 is abelian. Then 11‘ G is solvable.

Proof. It is enough to show that G(i) ⊆ Gi∀i because it will imply that G(k) ⊆ Gk = e and hence
G(k) = e. For i = 0 the statement holds G(0) = G. Let G(i) ⊆ Gi. We have to check that G(i+1) ⊆ Gi+1.
We know that Gi/Gi+1 is abelian and hence by proposition 6.1 we have G′

i ⊆ Gi+1 and hence G(i+1) =
(G(i))′ ⊆ G′

i ⊆ Gi+1

Example. 1. G = S3, G
′ = A3, G

(2) = e

2. G = S4, G
′ = A4, G

(2) = V4, G
(3) = e

3. Sn is not solvable.

Proposition 6.4. Let G be a group, H ◁G, H is solvable and G/H is solvable. Then G is solvable.
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Proof. We know that ∃k > 0 : (G/H)(k) = {eH}. It is convenient to use the following

[g1H, g2H] = (g1H)(g2H)(g1H)−1(g2H)−1 = [g1, g2]H.

Consider the projection π : G → G/H. Then the equation above implies that π(G(k)) = (G/H)(k) =
{eH} and hence G(k) ⊆ H (since π−1(eH) = H). From the other hand, we known that H is solvable,
i.e. ∃s ∈ N such that H(s) = e =⇒ (G(k))(s) = G(k+s) ⊆ H(s) = {e} =⇒ G(k+s) = e and hence G is
solvable.

Definition 6.4. A simple group is a group whose only normal subgroups are the trivial group and the
group itself.

Theorem 6.1. Let G be a finite group. Then ∃ a composition G ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk = {e} such
that Hi+1 ◁Hi and Hi+1/Hi are all simple.

Proof. We prove the statement by induction in |G|.

• |G| = 1 =⇒ G = {e}

• Let |G| > 1 and let H ◁ G of the maximal order, but |H| < |G|. Then G/H is simple. Indeed
suppose that N ◁ G/H and 1 < |N | < |G/H|. Consider the homomorphism map π : G → G/H
then π−1(N) ◁ G (preimage of a normal subgroup in G/H is a normal subgroup in G). Clearly
|H| < |π−1(N)| < |G|. But it contradict the assumption that the order of H is maximal.

Take H1 = H. Then |H1| < |G| and by induction assumption ∃ H1 ⊂ H2 ⊂ · · · ⊂ Hk = {e} such
that Hi+1 ◁Hi and Hi/Hi+1 is simple. Thus we obtained

G ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk = {e}

Proposition 6.5. Jordan-Hölder theorem. Any two composition series of a given group are equivalent
in a sense they have the same composition length and the same composition factors (that is simple
quotient groups {G/H1, H1/H2, . . . , Hk−1/Hk}), up to permutation and isomorphism.

Proposition 6.6. Abelian group G is simple iff G = Zp, where p is prime.

Proposition 6.7. An is simple ∀n ≥ 5.

Proof. Any N ◁ An has to be a union of An conjugacy classes. Note that given σ ∈ An its conjugacy
classes in Sn and An may not be the same CSn(σ) ̸= CAn(σ). However, if either σ has

1. 1 cycle of even length

2. 2 cycles of the same odd length

then
CSn(σ) = CAn(σ) = {τ ∈ Sn|τ and σ have the same cyclic structure}.

It is clear that CAn(σ) ⊆ CSn(σ) (for CAn(σ) we conjugate with even permutations, while for CSn(σ) we
conjugate by all). It is enough to prove that if τ = γσγ−1 in Sn, then there exists even permutation β
such that τ = βσβ−1.

Consider τ = γσγ−1. If γ is even, then everything is proved. If γ is odd, then
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1. In the case 1, we take α = (i1, . . . , i2n) i.e. α be exactly that cycle of even length.

2. In the case 2, we have two cycles of the same odd length (i1, . . . , iq)(j1, . . . , jq) with q ∈ 2Z + 1
take α = (i1j1) . . . (iqjq)

In both cases α is odd permutation and ασ = σα. Thus γα ∈ An and hence τ = (γα)σ(γα)−1, i.e. σ
and τ are conjugated in An.

Now, let σ ∈ N ◁ An and σ ̸= e. The order of σ has the form ord(σ) = pk where p is a prime
number. Then τ = σk ∈ N and ord(τ) = p. Thus τ = product of cycles of length p.

1. p ≥ 5 =⇒ τ = (i1, . . . , ip)τ1 where either τ1 = e or it is a product of cycles of length p. Then
τ ′ = (i1i2i3)τ(i1i2i3)

−1 = (i2i3i1i4 . . . ip)τ1 ∈ N =⇒ τ ′τ−1 = (i1i2i4) ∈ N . It implies that all
(xyz) lie in An. Indeed, in this case there are at least two cycles of length 1 (since p ≥ 5, we have
p− 3 ≥ 2) and hence CSn((xyz)) = CAn((xyz)). But An is generated by 3 cycles. Thus N = An.

2. p = 3. If τ = (i1i2i3) then N = An. If τ = (i1i2i3)(j1j2j3)τ1. Then τ ′ = (i1j1)(i2j2)τ(i1j1)(i2j2) =
(i1i2j3)(j1j2i3)τ1 ∈ N and hence τ ′τ−1 = (i1j1)(i2j2). Thus we have a permutation with even cycle
and hence all permutations (i1j1)(i2j2) ∈ An. But An is generated by pairs of independent cycles
(see the proof of proposition 6.2). Hence N = An.

3. p = 2. Hence τ = (i1i2)(i3i4)τ1. Take τ ′ = (i1i2i3)τ(i1i2i3)
−1 = (i2i3)(i1i4)τ1 ∈ N . Thus

τ ′τ−1 = (i1i3)(i2i4) ∈ N . Again N = An.

Problems

1. Describe the derived group D′
n

2. Show that a set GL(n,Fq), consisting of n × n invertible matrices with entries in Fq (a field of q
elements, q is prime) form a finite group. Find the order of this group. Is this group simple?

3. A set SL(n,Fq) is a set of n × n matrices of determinant one with entries in Fq. Show that this
set form a subgroup of GL(n,Fq). Find the order of this subgroup. Is this subgroup normal? If
so, what is the quotient group?

4. Describe a center of SL(2,Fq). A quotient by this center is by definition PSL(2,Fq).
Turns out, PSL(2,Fq) is simple except q = 2 and 3. Establish isomorphisms of PSL(2,F2) and
PSL(2,F3) with known non-simple groups of little order.

5. (∗) Describe a center of SL(n,Fq). A quotient by this center is by definition PSL(n,Fq). Find the
order of PSL(n,Fq).
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Lecture 7: Sylow theorems

Definition 7.1. Center of G
Z(G) = {z ∈ G|zg = gz ∀g ∈ G}.

Proposition 7.1. A center of a group is abelian normal subgroup Z(G)◁G.

Proof. Indeed

1. Z(G) contains the identity element e

2. If x ∈ Z(G) and y ∈ Z(G) then so is xy. Indeed ∀g ∈ G

gxyg−1 = gxg−1gyg−1 = xy

3. ∀x, y ∈ Z(G) one has xy = yx. Indeed

xy = y(xy)y−1 = yx

Corollary. Let G be a finite group, (x1, . . . xr) its conjugacy classes and let first q of them are one
dimensional. Then Z(G) = {x1, . . . , xq} and

|G| = |Z(G)|+
r∑

i=q+1

|G|
|Cxi
|
,

where Cxi
is the cetralizer of the element xi, i.e. the set Cx = {g ∈ G|gxg−1 = x}.

Definition 7.2. A group G is called p−group if |G| = pn.

Proposition 7.2. Every finite p-group G (group of order pn where p is a simple number) has a non-
trivial center Z(G) ̸= e

Proof. If G is abelian then Z(G) = G. In the opposite case the center Z(G) = {x1, . . . , xq} is smaller
than G, i.e. q < r = |G|. Centralizers of all elements must divide pn and hence their sizes are

|G|
|Cxi
|
= pni with ni > 0

by orbit-stabilizer theorem. But in this case the equality

|G| = |Z(G)|+
r∑

q+1

pni

implies that Z(G) must be divisible by p, i.e. Z(G) = pk with k > 0.

Corollary. If G/Z(G) is cyclic then G is abelian.
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Proof. If G/Z(G) is abelian cyclic then there exists g ∈ G such that G/Z(G) = Z(G), gZ(G), . . . Now
∀x, y ∈ G one has

x = giz, y = gjw, z, w ∈ Z(G)

but then
xy = gizgjw = gi+jzw = gjwgiz = yz.

Proposition 7.3. Any p-group is solvable.

Proof. It can be proven by induction in k (|G| = pk). For k = 0 the statement is obvious. For k > 0,
Z(G) ̸= e and Z(G) ◁ G =⇒ |G/Z(G)| = pl < pk. By induction assumption G/Z(G) is solvable.
Moreover, Z(G) is abelian and hence solvable. The by proposition 6.4 G is solvable.

Proposition 7.4. Any group of order p2 is abelian. Moreover it is either Zp2 or Zp × Zp.

Proof. Assume that G is non-abelian. On the other hand, by proposition |Z(G)| is divisible by p, i.e.
either |Z(G)| = 1, |Z(G)| = p or |Z(G)| = p2.

• If |Z(G)| = 1. It contradicts Proposition 7.2.

• If |Z(G)| = p. Then we can consider the quotient group G/Z(G) (since Z(G) is always normal).
Then the order of the quotient group is |G/Z(G)| = p and thus G/Z(G) = Zp. But this fact
contradicts Proposition 7.4.

• If |Z(G)| = p2 then Z(G) = G and thus G is abelian.

Since G is abelian, it is either Zp2 or Zp × Zp.

Remark 7.1. Note that a group of order p3 is not necessarily abelian. For example |D4| = 23, but D4 is
non-abelian. More general example is the group generated by the matrices1 a b

0 1 c
0 0 1


over the field of p elements Fp.

Definition 7.3. Let G be a finite group and p is a prime number such that |G| = pkm, k ≥ 0 and
gcd(m, p) = 1. Then a subgroup H ⊆ G such that |H| = pk is called a Sylow p−subgroup.

Remark 7.2. Consider G = S4 and p = 2. Since |S4| = 24 = 23 · 3 one expects to have Sylow subgroups
of order 8. For example the dihedral group D4.

Theorem 7.1. (Sylow first theorem). For any G and any prime p such that |G| = pkm, gcd(p,m) = 1
a Sylow subgroup exists.

Proof. Let us prove the statement by induction. If |G| = 1 then the statement of the theorem is
obvious. Then assume that theorem holds up to some order |G| < d. The take any G with |G| = d and
let d = pkm. Then there are 3 possible cases
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1. If G is abelian, then by fundamental theorem of finite abelian groups G = Zk1 × . . .Zkn . Then
each ki = pl1s, where s divides m and gcd(p, S) = 1, but then Zki = Zpli × Zs. Thus G has a
subgroup Zpl1 × . . .Zpln . The order of this group is exactly pk.

2. If G is non-abelian and there exists a conjugacy class C(g) with |C(g)| = n (since G is non-abelian,
at least one conjugacy class should consists of more that 1 element) such that gcd(n, p) = 1. But
then by Lagrange theorem

|G|︸︷︷︸
pk·m

= |C(g)|︸ ︷︷ ︸
n

·|Cg|,

where Cg is the centralizer of g (a subgroup that survives g by conjugations). From this formula
it follows that the order of the centralizer |Cg| divides pk, that is |Cg| = pk · r where r = m

n
. The

order of Cg = pk · r < d and thus by induction assumption there is Sylow subgroup H ⊆ Cg ⊆ G.

3. If G is non-abelian and all conjugacy classes C(gi) that are not in the center (that is |C(gi)| > 1)
have orders that divide p (in the opposite case we return to the previous item). Then

|G| = |Z(G)|+
∑
i

|C(gi)| = |Z(G)|+ p · s.

Thus |Z(G)| = pl · r with l ≥ 1 and gcd(r, p) = 1. Thus by induction assumption there exists
Sylow subgroup H1 ⊆ Z(G) with |H1| = pl. Moreover, since H1 ≤ Z(G) it is a normal subgroup
H1 ◁ G (it is clear that any subgroup of the center Z(G) is normal in G) one can consider a
quotient group G/H1 such that |G/H1| = pk−l · m. Thus by induction assumption there exists
Sylow subgroup H2 ≤ G/H1 such that |H2| = pk−l.

Consider a projection π : G → G/H1 and let H = π−1(H2) a subgroup in G. The order of H is
the order of H2 times the order of H1: |H| = |H1| · |H2| = pk. Thus H is a Sylow p−subgroup.

Corollary. If p divides |G| then there exists element g ∈ G of order p.

Proof. Using theorem 7.1 we know that there exists a subgroup H such that |H| = pk with k ≥ 1. Pick
some g ∈ H, then g generates Zpl with l ≤ k. Taking g′ = gp

l−1
provides an element of order p.

Theorem 7.2. (Sylow second theorem).

1. Any p−subgroup is contained in Sylow p−subgroup.

2. Given H ⊆ G a Sylow p-subgroup, any other Sylow p?subgroup H ′ is conjugate to H; i.e. there
exists g ∈ G such that H ′ = gHg−1.

Proof. 1. Let H ⊆ G be a Sylow p-subgroup and H1 ⊆ G some p−subgroup. Consider the action of
H1 on the set of left cosets G/H (H is not normal). From orbit/stabilizer theorem we know that
the number of elements of any non-trivial orbit (an orbit with more that 1 element) is divisible
by p, but |G/H| = m and gcd(m, p) = 1. Thus these exists at least one trivial orbit (of length
1), because otherwise the cardinality of the whole set G/H would be divisible by p. Trivial orbit
means that ∃g ∈ G : h1gH = gH ∀h1 ∈ H1. Thus g−1h1g ∈ H∀h1 ∈ H1 =⇒ H1 ⊆ gHg−1, but
g−1Hg is also Sylow p−subgroup.
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2. Assume that H1 is also Sylow p−subgroup. Thus H1 ⊆ g−1Hg, but |H1| = |H| = pk =⇒ H1 =
g−1Hg.

Corollary. Let H ⊆ G be a Sylow p−subgroup. Then H ◁G iff H is unique Sylow p−subgroup.

Theorem 7.3. (Sylow third theorem). The number np of Sylow p−subgroups of G, |G| = pkm

1. Divides m.

2. np = 1 mod p

Proof. Consider an action of G on the set of all Sylow p−subgroups (g,H) 7→ gHg−1. From the second
Sylow theorem 7.2, we know that this action is transitive. By orbit/stabilizer theorem, we have

np =
|G|

|NG(H)|
,

where NG(H) is the normalizer of H in G. But H ⊆ NG(H)
Lagrange theorem

=⇒ |NG(H)| = pkr. Hence

np =
|G|

|NG(H)|
=

pkm

pkr
=⇒ m

np

= r.

Consider an action of a given Sylow p−subgroup H0 on a set of all Sylow p−subgroups. Clearly
it has at least one fixed point H0. Let us show that this is the only fixed point. Indeed, let H ̸=
H0 : h0Hh−1

0 = H ∀h0 ∈ H0. Then H0 ⊆ NG(H). But H ⊆ NG(H) as well. Hence we have a group
NG(H) and two Sylow p−subgroups in it. Thus by Sylows second theorem 7.2 these two subgroups are
conjugated in NG(H). But H ◁ NG(H) =⇒ H0 = H. Thus the set of Sylow p−subgroups splits as
a set into 1 one dimensional and some number of non-trivial orbits under the action of H0. But the
length of any non-trivial orbit divides p. Thus

np = 1 + ps =⇒ np = 1 mod p.

Probs:

1. How many groups are there of order
a) |G| = 77? b) |G| = 21?

2. Let p and q be primes. Prove that there are no simple groups of order pq.

3. Prove that there are no simple groups of order 56.

4. Prove that there are no simple groups of order 250000.

5. Let G be a group generated by the matrices1 a b
0 1 c
0 0 1


over the field F2. Find it out if G = D4, G = Q8 (the quaternion group), or some new group of
order 8?
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Lecture 8: Representations: introduction

Definition 8.1 (Representation). Let G be a finite group and V be a complex vector space of complex
dimension dimC V = n. A linear action G × V → V is called a (complex linear n-dimensional)
representation of G in V . In other words, a representation of G in V is a homomorphism ρ : G→ GL(V ).

Definition 8.2 (Kernel). A kernel of a representation is a kernel of ρ: ker ρ = {g ∈ G | ρ(g) = idV }.
We call a representation ρ : G→ GL(V ) faithful if ρ is injective, that is, ker ρ = {1}.

If V is equipped with a preferrable basis e1, ..., en, then GL(V ) ≃ GL(n,C), and so any representation
ρ of G in V defines a homomorphism ρ : G→ GL(n,C). That is, any group element g ∈ G is mapped
to a square invertible complex-valued n × n matrix ρ(g) ∈ GL(n,C) in a way that preserves group
structure: g1g2 7−→ ρ(g1)ρ(g2).

We will often abuse the notations by calling a vector space V itself a representation of G whenever
the linear action G × V → V is clear from the context. The right and pedantic way is to call ρ (or,
equivalently a pair (V, ρ)) a representation. We will sometimes also omit the ρ sign in ρ(g)v and simply
write gv whenever the action is clear from the context.

Definition 8.3 (Morphism). Let G be a fixed group and (V1, ρ1), (V2, ρ2) be two representations of G. A
morphism of representations is a linear map φ : V1 → V2 which commutes with G-action: φ◦ρ1 = ρ2◦φ.
In other words, the square

V1 V2

V1 V2

φ

ρ1 ρ2

φ

commutes. Sometimes such a map φ : V1 → V2 is called G-equivariant

Definition 8.4 (Isomorphism). Let G be a group and V1, V2 be two representations of G. A inversible
G-equivariant map φ : V1 → V2 is called an isomorphism of representations V1 and V2. Representations
are called isomorphic or equivalent if there is an isomorphism between them.

In terms of matrices an isomorphism is a square matrix φ such that ρ1(g) = φρ2(g)φ
−1. In other

words, equivalent representations are really the same representation written in different bases.

Examples

1. Any group G admits a 1-dimensional representation C, in which every element of G acts trivially:
ρ(g) = 1, ∀g ∈ G. This representation is called a trivial representation. Trivial representation is
never faithful for non-trivial groups.

2. Consider dihedral group Dn = ⟨ r, s | rn = s2 = 1, srs−1 = r−1 ⟩. In the first lecture we actually
described a 2-dimensional representation C2 of it:

r 7−→ R =

(
cos 2π

n
− sin 2π

n

sin 2π
n

cos 2π
n

)
, s 7−→ S =

(
−1 0
0 1

)
.

It can be easily verified that this map is indeed a representation, that is, Rn = S2 = E, SRS−1 =
R−1. This representation is faithful (check!)
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3. Consider integral quaternion group Q8 = {±1,±i,±j,±k}. It is easily checked that this group
admits two-dimensional representation C2 by Pauli matrices:

±1 7−→ ±
(
1 0
0 1

)
, ±i 7−→ ±

(
0 −i
−i 0

)
, ±j 7−→ ±

(
0 −1
1 0

)
, ±k 7−→ ±

(
−i 0
0 i

)
This representation is faithful.

4. (Defining representation)
Matrix groups GL(n,F), SL(n,F), U(n,F), SU(n,F), O(n,F), SO(n,F), Sp(n,F), etc are defined
by their n-dimensional representations in Fn.

5. (Permutation representation)
Let G be a finite group. Let X be a set on which G acts from the left, |X| = n. Choose a basis
in Cn enumerated by elements of X: {ex}x∈X . Then permutation representation of G in Cn is
defined by an action ρ(g)ex = egx.

For example, consider a natural action of S3 on X = {1, 2, 3}. Matrices of σ ∈ S3 in a permutation
representation C3 (in a usual basis) are just permutation matrices: σ 7−→ ρ(σ)ij = δi,σ(j). For
instance,

(12) 7−→

0 1 0
1 0 0
0 0 1

 , (123) 7−→

0 0 1
1 0 0
0 1 0

 .

Permutation representation is faithful if and only if the initial G-action on X is effective (i.e., such
that every g ∈ G moves at least one point in X).

6. (Regular representation)
A particular case of permutation representation for which G acts on itself by left shifts: X = G
is called a regular representation. So, if |G| = n, we enumerate basis vectors of Cn by elements of
G, {eh}h∈G, and consider the following linear action: ρ(g)eh = egh.

Definition 8.5 (Subrepresentation). Let V be a group representation of G. A vector subspace U ⊂ V
is said to be G-invariant if G(U) ⊂ U , i.e.,

∀g ∈ G, ∀u ∈ U g(u) ∈ U.

Such a G-invariant vector subspace U is called a subrepresentation of V .

Remark 8.1. A subrepresentation U ⊂ V can be identified with an image of an injective morphism (of
representations) ι : U ↪→ V .

Remark 8.2. It is clear that {0} and V itself are always G-invariant. These two subspaces are thus
called trivial subrepresentations of V .

Definition 8.6 ((Ir)reducible). A group representation G is called reducible if it admits a non-trivial
subrepresentation. If all the subrepresentations of V are trivial, then V is called irreducible.

37



Example. Consider a natural permutation representation of S3 in C3. It admits two non-trivial
subrepresentations:

U1 =
{
x1e1 + x2e2 + x3e3

∣∣∣ x1 = x2 = x3

}
, dimU1 = 1 (8.1)

U2 =
{
x1e1 + x2e2 + x3e3

∣∣∣ x1 + x2 + x3 = 0
}
, dimU2 = 2.

Bases of them are U1 = span (e1+e2+e3) and U2 = span (e1−e2, e2−e3). We see that the representation
space C3 decomposes into a direct sum of G-invariant subspaces U1 and U2. In the basis {f1, f2, f3} =
{e1 + e2 + e3, e1 − e2, e2 − e3} the matrices of S3 take the block-diagonal form:

σ 7−→

1 0 0
0 a b
0 c d

 = (1)⊕
(
a b
c d

)

This is a particular case of a so-called direct sum of representations. The coordinate-free definition is
as follows:

Definition 8.7 (Direct sum). Let V1 and V2 be representations of a group G. A direct sum of these
representations is a vector space V1 ⊕ V2 equipped with a G-action

g(v1 ⊕ v2) = g(v1)⊕ g(v2).

This action is sometimes denoted by ρ1 ⊕ ρ2.

Remark 8.3. If we picked a basis in V1 ⊕ V2 compatible with the direct sum structure (meaning
V1 = span(e1, ..., en), V2 = span(en+1, ..., en+m) with dimV1 = n, dimV2 = m), then the G-action is
represented by block-diagonal matrices

(ρ1 ⊕ ρ2)(g)

(
v1
v2

)
=

(
A1 0
0 A2

)(
v1
v2

)
.

Definition 8.8 (Completely reducible). If a representation V is decomposed into a direct sum of (two
or more) irreducible representations V = V1 ⊕ V2 ⊕ ...⊕ Vr, then V is said to be completely reducible or
semisimple.

Proposition 8.1. A representation V is a direct sum of V1 and V2 if and only if V1 and V2 are both
G-invariant, V1 ∩ V2 = {0} and V = V1 + V2 as vector spaces.

Remark 8.4. Let V1 and V2 be subrepresentations of V (G-invariant vector subspaces). Then V1 + V2 is
G-invariant too. V1 ∩ V2 is not G-invariant in general.

Let us consider a more general situation: let U be a subrepresentation of V . Let dimV = n,
dimU = k < n. Choose a basis (e1, ..., ek) of U and complete it to a basis of V by adding another n− k
linearly-independent vectors ek+1, ..., en. In this basis the group G acts via the block-upper-triangular
matrices:

g 7−→ ρ(g) =

(
A B
0 D

)
. ρ(g)

(
u
0

)
=

(
Au
0

)
, ρ(g)

(
u
v

)
=

(
Au+Bv

Dv

)
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ρ is a representation whenever ρ(gg′) = ρ(g)ρ(g′). In terms of matrices:(
A B
0 D

)(
A′ B′

0 D′

)
=

(
AA′ AB′ +BD′

0 DD′

)
We thus see that (1, 1) and (2, 2) blocks of the above r.h.s. behave as G-representations. The matrix
A is a matrix in a restriction representation on an invariant subspace U . The matrix D is a matrix in
quotient representation V/U .

Restriction and quotient representations can, of course, be defined without any need of choosing a
U -compatible basis.

Definition 8.9 (Restriction). Let U be an invariant subspace in the G-representation (V, ρ). A re-
striction of ρ on U is a G-representation (U, ρ|U), where ρ|U : G → GL(U) is just a restriction of
ρ : G→ GL(V ) onto U .

Definition 8.10 (Quotient). Let U be an invariant subspace in the G-representation (V, ρ). A quotient
representation of V by U is a G-representation (V/U, ρ|V/U), where V/U = {v+U |v ∈ V } is a quotient
vector-space, and G-action is defined by formula g(v + U) = gv + U .

Exercise. Check that definitions of restiction and quotient representations are indeed correct provided
U ⊂ V is G-invariant.

Remark 8.5. If V is a representation of G and U is a subrepresentation, then there is a natural short
exact sequence of representations:

0
0−−→ U

ι−−→ V
π−−→ V/U

0−−→ 0.

A natural question arises: given a G-invariant subspace U inside a representation V , it is always
possible to find another G-invariant U ′ such that V = U ⊕ U ′? In other words, is any reducible
representation of G completely reducible? Turns out, in general, the answer is no.

Example. Consider a two-dimensional Z-representation C2:

n 7−→
(
1 n
0 1

)
; n+m 7−→

(
1 n
0 1

)(
1 m
0 1

)
=

(
1 n+m
0 1

)
A subspace U = span

(
1
0

)
is the only Z-invariant subspace of C2.

But if the group G is finite (or, more generally, topologically compact), then it is true that every
reducible representation is completely reducible.

Lemma 8.1. Let G be a finite group. Let V be its representation and U ⊂ V a subrepresentation. Then
there exists a complementary G-invariant subspace U ′, so, V = U ⊕ U ′ as representations.

Proof. Denote

S =
1

|G|
∑
g∈G

A(g)B(g−1), where g 7−→
(
A(g) B(g)
0 D(g)

)
(8.2)

A clever triangular change of basis via the g-independent matrix

(
1 S
0 1

)
does the trick.

Theorem 8.1 (Maschke). Every finite-dimensional representation of finite group is completely reducible.

Proof. Easily follows from the above lemma by induction.
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Probs:

1. Pick an appropriate basis in natural permutation representation of S3 (see Example 5) and write
down matrices in the two-dimensional U2 of (8.1). Show that U2 is irreducible.

2. Describe all one-dimensional representations of Zn.

3. Prove that in every one-dimensional representation of G its commutant G′ = [G,G] acts trivially.

4. Describe all one-dimensional representations of Sn and An.

5. Check the definitions of restriction and quotient representation to be correct.

6. Show that a clever triangular change (8.2) of basis in the proof of Maschke lemma indeed does
the trick: (

1 S
0 1

)(
A(g) B(g)
0 D(g)

)(
1 −S
0 1

)
=

(
A(g) 0
0 D(g)

)
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