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It is shown that ordinary baryons can be understood as solitons in current algebra effective 
lagrangians. The formation of color flux tubes can also be seen in current algebra, under certain 
conditions. 

The idea that in some sense the ordinary proton and neutron might be solitons in 
a non-linear sigma model has a long history. The first suggestion was made by 

Skyrme more than twenty years ago [1]. Finkelstein and Rubinstein showed that 
such objects could in principle be fermions [2], in a paper  that probably represented 
the first use of what would now be called 0 vacua in quantum field theory. A gauge 
invariant version was attempted by Faddeev [3]. Some relevant miracles are known 

to occur in two space-time dimensions [4]; there also exists a different mechanism by 
which solitons can be fermions [4]. 

It  is known that in the large-N limit of quantum chromodynamics [5] meson 
interactions are governed by the tree approximation to an effective local field theory 
of mesons. Several years ago, it was pointed out [6] that baryons behave as if they 
were solitons in the effective large-N meson field theory. However, it was not clear in 
exactly what sense the baryons actually a r e  solitons. 

The first relevant papers mainly motivated by attempts to understand implications 
of QCD current algebra were recent papers by Balachandran et al. [7] and by Boguta 

[81. 
We will always denote the number  of colors as N and the number  of light flavors 

as n. For definiteness we first consider the usual c a s e .  = 3. Nothing changes for 
. > 3. Some modifications for . < 3 are pointed out later. Except where stated 
otherwise, we discuss standard current algebra with global S U ( . ) ×  S U ( . )  sponta- 
neously broken to diagonal SU( . ) ,  presumably as a result of an underlying SU(N)  
gauge interaction. 
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434 E. Witten / Current algebra, baryons and quark confinement 

Standard current algebra can be described by a field U(x) which (for each 
space-time point x)  is a point in the SU(3) manifold. Ignoring quark bare masses, 
this field is governed by an effective action of the form 

I = - ~6FZfd4xTr O~UO~U 1 + N F  + higher order terms. (1) 

Here F is the Wess-Zumino term [9] which cannot be written as the integral of a 
manifestly SU(3)x  SU(3) invariant density, and F~--- 190 Mev. In quantum field 
theory the coefficient of F must a priori be an integer [10], and indeed we will see 
that the quantization of the soliton excitations of (1) is inconsistent (they obey 
neither bose nor fermi statistics) unless N is an integer. 

Any finite energy configuration U(x, y, z) must approach a constant at spatial 
infinity. This being so, any such configuration represents an element in the third 
homotopy group ~r3(SU(3)). Since ~r3(SU(3))= Z, there are soliton excitations, and 
they obey an additive conservation law. Actually, higher-order terms in (1) are 
needed to stabilize the soliton solutions and prevent them from shrinking to zero 
size. We will see that such higher-order terms (which could be measured in principle 
by studying meson processes) must be present in the large-N limit of QCD and are 
related to the bag radius. Our remarks will not depend on the details of the 
higher-order terms. 

A technical remark is in order. To study solitons, it is convenient to work with a 
euclidean space-time M of topology S 3 × S 1. Here S 3 represents the spatial variables, 
and S 1 is a compactified euclidean time coordinate. A given non-linear sigma model 
field U(x) defines a mapping of M into SU(3). We may think of M as the boundary 
of a five-dimensional manifold Q with topology S 3 × D, D being a two-dimensional 
disc. Using the fact that 7q(SU(3))=rr4(SU(3))=0, it can be shown that the 
mapping of M into SU(3) defined by U(x) can be extended to a mapping from Q 
into SU(3). Then as in ref. [10] the functional F is defined by ]7 = fQ~0, where ¢0 is the 
fifth-rank antisymmetric tensor on the SU(3) manifold defined in ref. [10]. By 
analogy with the discussion in ref. [10],/" is well-defined modulo 2~r. (It is essential 
here that because ~r2(SU(3)) = 0, the five-dimensional homology classes in H 5 (SU(3)) 
that can be represented by cycles with topology S 3 × S 2 are precisely those that can 
be represented by cycles with topology S 5. There are closed five-surfaces S in SU(3) 
such that fs~0 is an odd multiple of ~r, but they do not arise if space-time has 
topology S 3 × S ~ and Q is taken to be S 3 × D.) 

Now let us discuss the quantum numbers of the current algebra soliton. First, let 
us calculate its baryon number (which was first demonstrated to be non-zero in ref. 
[7], where, however, different assumptions were made from those we will follow). In 
previous work [10] it was shown that the baryon-number current has an anomalous 
piece, related to the N F term in eq. (1). If the baryon number of a quark is l / N ,  so 
that an ordinary baryon made from N quarks has baryon number 1, then the 
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anomalous piece in the baryon number  current B~ was shown to be 

435 

~"~"~ T r ( U  ' O.U)(U-' O.U)(U-' 8~U). 
B~, = 241r 2 

(2) 

So the baryon number  of a configuration is 

B=fd3xB0 = l  fd3x 'JkTr(U 'O,U)(U 'ay)(u-'aku). 
247r 2 

(3) 

The right-hand side of eq. (24) can be recognized as the properly normalized integral 
expression for the winding number in 7r3(SU(3)). In a soliton field the right-hand 
side of (3) equals one, so the soliton has baryon number  one; it is a baryon. (In ref. 
[7] the baryon number  of the soliton was computed using methods of Goldstone and 
Wilczek [11]. The result that the soliton has baryon number  one would emerge in 
this framework if the elementary fermions are taken to be quarks.) 

Now let us determine whether the soliton is a boson or a fermion. To this end, we 
compare the amplitude for two processes. In one process, a soliton sits at rest for a 
long time T. The amplitude is exp(-iMT), M being the soliton energy. In the 
second process, the soliton is adiabatically rotated through a 27r angle in the course 
of a long time T. The usual term in the lagrangian Lo=~F~TrO,UO~U -l 
does not distinguish between the two processes, because the only piece in L 0 that 
contains time derivatives is quadratic in time derivatives, and the integral 
f dtTr(OU/Ot)(OU-l/ot) vanishes in the limit of an adiabatic process. However, 
the anomalous term I" is linear in time derivatives, and distinguishes between a 
soliton that sits at rest and a soliton that is adiabatically rotated. For a soliton at 
rest, F = 0. For a soliton that is adiabatically rotated through a 27r angle, a slightly 
laborious calculation explained at the end of this paper  shows that F = 7r. So for a 
soliton that is adiabatically rotated by a 2¢r angle, the amplitude is not e x p ( -  iMT) 
but exp( - iMT)exp(iNTr) = ( - 1)Nexp( -- iMT). 

The factor ( -  t) N means that for odd N the soliton is a fermion; for even N it is a 
boson. This is uncannily reminiscent of the fact that an ordinary baryon contains N 
quarks and is a boson or a fermion depending on whether N is even or odd. 

These results are unchanged if there are more than three light flavors of quarks. 
How do they hold up if there are only two light flavors? The field U(x) is then an 
element of SU(2). Because ~r 3 (SU(2)) = Z, there are still solitons. The baryon-number  
current has the same anomalous piece, and the soliton still has baryon number one. 
But in SU(2) current algebra, there is no F term, so how can we see that the soliton 
can be a fermion? 

The answer was given long ago [2]. Although ~r4(SU(3)) = 0, ~r4(SU(2)) = Z 2. With 
suitably compactified space-time, there are thus two topological classes of maps 
from space-time to SU(2). In the SU(2) non-linear sigma model, there are hence two 
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"0-vacua": fields that represent the non-trivial class in 7r4(SU(2)) may be weighted 
with a sign + 1 or - 1. An explicit field U(x, y, z, t) which goes to 1 at space-time 
infinity and represents the non-trivial class in ~r4(SU(2)) can (fig. 1) be described as 
follows (a variant of this description figures in recent work by Goldstone [12]). Start 
at t-: ,  - m  with a constant, U = 1; moving forward in time, gradually create a 
soliton-anti-soliton pair and separate them; rotate the soliton through a 2~r angle 
without touching the anti-soliton; bring together the soliton and anti-soliton and 
annihilate them. Weighting this field with a factor of - 1 ,  while a configuration 
without the 2~r rotation of the soliton is homotopically trivial and gets a factor + 1, 
corresponds to quantizing the soliton as a fermion. Thus, internally to SU(2) x SU(2) 
current algebra, one sees that the soliton can be a fermion. In SU(3) × SU(3) current 
algebra one finds the stronger result that the soliton must be a fermion if and only if 
N is odd. 

Our results so far are consistent with the idea that quantization of the current 
algebra soliton describes ordinary nucleons. However, we have not established this. 
Perhaps there are ordinary baryons and exotic, topologically excited solitonic 
baryons. However, certain results will now be described which seem to directly show 
that the ordinary nucleons are the ground state of the soliton. 

For  simplicity, we will focus now on the case of only two flavors. Soliton states 
can be labeled by their spin and isospin quantum numbers, which we will call J and 
I, respectively. We will determine semiclassically what values of I and J are expected 
for solitons. A semiclassical description of current algebra solitons will be accurate 
quantitatively only in the limit of large N. (Since F 2 is proportional to N, N enters 
the effective lagrangian (1) as an overall multiplicative factor. Hence, N plays the 
role usually played by 1/h.)  So we will check the results we find for solitons by 
comparing to the expected quantum numbers of baryons in the large-N limit. 

Let us first determine the expected baryon quantum numbers. We make the usual 
assumption that the multi-quark wave function is symmetric in space and antisym- 
metric in color, and hence must have complete symmetry in spin and isospin. The 

1 l . spin-isospin group is SU(2) x SU(2) - 0(4). A quark transforms as (3, ~), this is the 

Fig. 1. A soliton-antisoliton pair is created from the vacuum; the soliton is rotated by a 2v  angle; the 
pair is then annihilated. This represents the non-trivial homotopy class in 7r4(SU(2)). 
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vector representation of 0(4). We may represent a quark as ~i, where i = 1. . .  4 is a 
combined spin-isospin index labeling the 0(4) four-vector. 

We must form symmetric combinations of N vectors q~i. As is well known, there is 
a quadratic invariant if2 _ 4 2 - Ei= ~ i -  One can also form symmetric traceless tensors of 
any rank A~)i.p =(q~i,~2. . .q~i-  trace terms); this transforms as ( lp ,  ½p) under 
SU(2) x SU(2). The general symmetric expression that we can make from N quarks 
is (tb2)kA (u-zk) where 0 ~< k ~< ½N. So the values of I and J that are possible are the 

\ ' r  ! i l . . . i N _ 2  k , 

following: 

N even, I = J =  0 ,1 ,2 ,3  . . . . .  

N o d d ,  I = J - - ½ , ~ , ~ ,  7 . . . . .  (4) 

For  instance, in nature we have N = 3. The first two terms in the sequence indicated 
above are the nucleon, of I = J = ½, and the delta, of I = J = I .  If  the number of 
colors were five or more, we would expect to see more terms in this series. Moreover, 
simple considerations involving color magnetic forces suggest that, as for N = 3, the 

mass of the baryons in this sequence is always an increasing function of I or J.  
Now let us compare to what is expected in the soliton picture. (This question has 

been treated previously in ref. [7].) We do not know the effective action of which the 
soliton is a minimum, because we do not know what non-minimal terms must be 
added to eq. (1). We will make the simple assumption that the soliton field has the 

maximum possible symmetry. The soliton field cannot be invariant under I or J (or 
any component  thereof), but it can be invariant under a diagonal subgroup I + J. 
This corresponds to an ansatz U ( x )  = exp[ iF(r)]T,  x, where F ( r )  = 0 at r = 0 and 
F ( r ) ~ r  as r ~ oo. 

Quantization of such a soliton is very similar to quantization of an isotropic rigid 
rotor. The hamiltonian of an isotropic rotor is invariant under an SU(2)x  SU(2) 

group consisting of the rotations of body fixed and space fixed coordinates, 
respectively. We will refer to these symmetries as I and J, respectively. A given 
configuration of the rotor is invariant under a diagonal subgroup of SU(2) x SU(2). 
This is just analogous to our solitons, assuming the classical soliton solution is 
invariant under I + J. 

The quantization of the isotropic rigid rotor is well known. If the rotor is 
quantized as a boson, it has I = J = 0, 1,2 . . . . .  If  it is quantized as a fermion, it has 
I = J = ~  3 , ~, ~ . . . . .  The agreement of these results with eq. (4) is hardly likely to be 
fortuitous. 

In the case of three or more flavors, it may still be shown that the quantization of 
collective coordinates gives the expected flavor quantum numbers of baryons. The 
analysis is more complicated; the Wess-Zumino interaction plays a crucial role. 

So far, we have assumed that the color gauge group is SU(N).  Now let us discuss 
what would happen if the color group were O(N)  or Sp(N).  (By Sp(N)  we will 
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mean the group of N x N unitary matrices of quaternions; thus Sp(1) = SU(2).) We 
will see that also for these gauge groups, the topological properties of the current 
algebra theory correctly reproduce properties of the underlying gauge theory, 

In an O( N)  gauge theory, we assume that we have n multiplets of left-handed 
(Weyl) spinors in the fundamental N-dimensional representation of O(N).  There is 
no distinction between quarks and antiquarks, because this representation is real. (If 
n is even, the theory is equivalent to a theory of ½n Dirac multiplets.) The anomaly 
free flavor symmetry group is SU(n). Simple considerations based on the most 
attractive channel idea suggest that the flavor symmetry will be spontaneously 
broken down to O(n), which is the maximal subgroup of SU(n) that permits all 
fermions to acquire mass. In this case the current algebra theory is based on a field 
that takes values in the quotient space SU(n)/O(n). 

In an Sp(N)  gauge theory, we assume the fermion multiplets to be in the 
fundamental 2N-dimensional representation of Sp(N). Since this representation is 
pseudoreal, there is again no distinction between quarks and antiquarks. In this 
theory the number of fermion multiplets must be even; otherwise, the Sp(N) gauge 
theory is inconsistent because of a non-perturbative anomaly [2] involving ~r 4 (Sp(N)). 
If there are 2n multiplets, the flavor symmetry is SU(2n). Simple arguments suggest 
that the SU(2n) flavor group is spontaneously broken to Sp(n), so that the current 
algebra theory is based on the quotient space Su(2n)/Sp(n). This corresponds to 
symmetry breaking in the most attractive channel; Sp(n) is the largest unbroken 
symmetry that lets all quarks get mass. 

In O(N),  since there is no distinction between quarks and antiquarks, there is also 
no distinction between baryons and anti-baryons. A baryon can be formed from an 
antisymmetric combination of N quarks; B = ei,i>..iNqi'qi2.., qiN. But in O(N),  a 
product of two epsilon symbols can be rewritten as a sum of products of N 
Kronecker deltas: 

Eili2...iNEjlJ2...jN = (~ilJl~j2J2... ~iNJN ~- permutations). 

This means that in an O(N)  gauge theory, two baryons can annihilate into N 
mesons. 

On the other hand, in an Sp(N) gauge theory there are no baryons at all. The 
group Sp(N) can be defined as the subgroup of SU(2N) that leaves fixed an 
antisymmetric second rank tensor Yij- A meson made from two quarks of the same 
chirality can be described by the two quark operator Yijqiq j. In Sp(N) the epsilon 
symbol can be written as a sum of products of N y's:  

~i|,2...i2N = ( ~1,2"~13,4. " .'Yi2N li2N ~- permutations). 

So in an Sp(N) gauge theory, a single would-be baryon can decay to N mesons. 
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Now let us discuss the physical phenomena that are related to the topological 
properties of our current algebra spaces S U ( n ) / O ( n )  and S U ( n ) / S p ( n ) .  We recall 
from ref. (10) that the existence in QCD current algebra with at least three flavors of 
the Wess-Zumino interaction, with its a priori quantization law, is closely related to 
the fact that ~rs(SU(n)) = Z, n >/3. The analogue is that 

~ r s ( S U ( n ) / O ( n ) )  = Z ,  n >1 3, 

~ r s ( S U ( 2 n ) / S p ( n ) )  = Z ,  n >~ 2. (5) 

So also the O( N)  and Sp(N) gauge theories possess at the current algebra level an 
interaction like the Wess-Zumino term, provided the number of flavors is large 
enough. Built into the current algebra theories is the fact that in the underlying 
theory there is a parameter (the number of colors) which a priori must be an integer. 

Now we come to the question of the existence of solitons. These are classified by 
the third homotopy group of the configuration space, and we have 

r r 3 ( S U ( n ) / O ( n ) )  = Z 2, n >~ 4,  

~ r 3 ( S U ( 2 n ) / S p ( n ) )  = 0, any n. (6) 

Thus, in the case of an O(N)  gauge theory with at least four flavors, the current 
algebra theory admits solitons, but the number of solitons is conserved only modulo 
two. This agrees with the fact that in the O(N)  gauge theory there are baryons which 
can annihilate in pairs. In current algebra corresponding to Sp(N) gauge theory 
there are no solitons, just as the Sp(N) gauge theory has no baryons. 

For O(N)  gauge theories with less than four light flavors we have 

vr 3 ( S U ( 3 ) / 0 ( 3 ) )  = Z4, 

7r 3 ( S U ( 2 ) / 0 ( 2 ) )  = Z.  (7) 

Thus, the spectrum of current algebra solitons seems richer than the expected 
spectrum of baryons in the underlying gauge theory. The following remark seems 

TABLE 1 
Some homotopy groups of certain homogeneous spaces 

SU(n) SU(n ) /O( n ) SU(2n )/Sp( n ) 

~2 0 Zz, n />3 0 
~r 3 Z, all n Z2, n~>4 0 
~r 5 Z,n~>3 Z,n>~3 Z,n~>3 
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appropriate in this connection. It is only in the multi-color, large-N limit that a 
semiclassical description of current algebra solitons becomes accurate. Actually, 
large-N gauge theories are described by weakly interacting theories of mesons, but it 
is not only Goldstone bosons that enter; one has an infinite meson spectrum. 
Corresponding to the rich meson spectrum is an unknown and perhaps topologically 
complicated configuration space P of the large-N theory. Plausibly, baryons can 
always be realized as solitons in the large-N theory, even if all or almost all quark 
flavors are heavy. Perhaps 7r3(P ) is always Z, Z 2, or O for SU(N),  O(N),  and Sp(N) 
gauge theories. The Goldstone boson space is only a small subspace of P and would 
not necessarily reflect the topology of P properly. Our results suggest that as the 
number of flavors increases, the Goldstone boson space becomes an increasingly 
good topological approximation to P. In this view, the extra solitons suggested by eq. 
(7) for O(N)  gauge theories with two or three flavors become unstable when 
SU(2)/O(2) or SU(3)/O(3) is embedded in P. 

One further physical question will be addressed here. Is color confinement implicit 
in current algebra? 

Do current algebra theories in which the field U labels a point in SU(n), 
SU(n)/O(n), or SU(2n)/SP(n) admit flux tubes? By a flux tube we mean a 
configuration U(x, y, z) which is independent of z and possesses a non-trivial 
topology in the x-y plane. To ensure that the energy per unit length is finite, U must 
approach a constant as x, y ~ o¢. The proper topological classification involves 
therefore the second homotopy group of the space in which U takes its values. In 
fact, we have 

= O, 

rt2(SU(2n ) /Sp(  n )) = O. (8) 

Thus, current algebra theories corresponding to underlying SU(N)  and Sp(N) gauge 
theories do not admit flux tubes. The theories based on underlying O(N)  gauge 
groups do admit flux tubes, but two such flux tubes can annihilate. 

These facts have the following natural interpretation. Our current algebra theories 
correspond to underlying gauge theories with quarks in the fundamental representa- 
tion of SU(N),  O(N),  or Sp(N). SU(N)  or Sp(N) gauge theories with dynamical 
quarks cannot support flux tubes because arbitrary external sources can be screened 
by sources in the fundamental representation of the group. For O(N)  gauge theories 
it is different. An external source in the spinor representation of O(N)  cannot be 
screened by charges in the fundamental representation. But two spinors make a 
tensor, which can be screened. So the O(N)  gauge theory with dynamical quarks 
supports only one type of color flux tube: the response to an external source in the 
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spinor representation of O(N) .  It is very plausible that this color flux tube should be 

identified with the excitation that appears in current algebra because ~r2(SU(n)/ 

O(n))  = Z 2. 

The following fact supports this identification. The interaction between two 
sources in the spinor representation of O ( N )  is, in perturbation theory, N times as 
big as the interaction between two quarks. Defining the large-N limit in such a way 
that the interaction between two quarks is of order one, the interaction between two 
spinor charges is therefore of order N. This strongly suggests that the energy per unit 
length in the flux tube connecting two spinor charges is of order N. This is consistent 
with our current algebra identification; the whole current algebra effective lagrangian 

is of order N (since F~ - N) ,  so the energy per unit length of a current algebra flux 
tube is certainly of order N. 

In conclusion, it still remains for us to establish the contention made earlier that 
the value of the Wess-Zumino functional F for a process consisting of a 2~r rotation 

of a soliton is F = ~r. 
First of all, the soliton field can be chosen to be of the form 

V(x')=( w(xi)o °l)' (9) 

where the SU(2) matrix W is chosen to be invariant under a combined isospin 
rotation plus rotation of the spatial coordinate x~. This being so, a 2~r rotation of V 
in space is equivalent to a 2~r rotation of V in isospin. Introducing a periodic time 
coordinate t which runs from 0 to 2~r, the desired field in which a soliton is rotated 
by a 2~r angle can be chosen to be 

(eitj2 ) t e  ij2) 
U ( x  i, t )  = e-i , /2 V ( x i )  ei,/2 . 

1 1 

(10) 

Note that U ( x  i, t )  is periodic in t with period 27r even though the individual 
exponentials exp(_+ ½it) have period 4~r. Because of the special form of V, we can 
equivalently write U in the much more convenient form 

U(xi, t)= 
1 ) (, ) 

e - i t  V ( x i )  e it . (11) 
eit e - i t  

This field U ( x  i, t )  describes a soliton that is rotated by a 2~r angle as t ranges from 0 
to 27r. We wish to evaluate F ( U ) .  
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To this end we introduce a fifth parameter  p ( O ~ < p ~ l )  so as to form a 
five-manifold of which space-time is the boundary; this five-manifold will have the 
topology of three-space times a disc. A convenient choice is to write 

~f(Xi, t, p) =A  1(1, p)U(x i ,  t ) A ( t ,  P),  (12) 

where 

A(t,o)= 

1 0 0 

0 pe it 

0 - ¢1 - -  p 2 pe -it 

(13) 

Note that at P = 0, A( t ,  P) is independent of t. So we can think of 0 and t as polar 
coordinates for the plane, p being the radius and t the usual angular variable. Also 

U(xi, t, 1)= U(x  i, t)  so the product of three space with the unit circle in the O-t 
plane can be identified with the original space-time. According to eq. (14) of ref. 
(10), what we must calculate is 

r(v) i f o ' d P f o 2 ~ d t f d S x d  jktm 
2407r 2 

× [ T r / ) - '  OiU/) ' O f J ( J - l a k ( Y ( J - ' O t ( J ( J - ~ o , f J ] ,  (14) 

where i , j ,  k, l, and m may be p, t, x~, x 2, or x 3. The integral can be done without 
undue difficulty (the fact that W is invariant under spatial rotations plus isospin is 

very useful), and one finds F ( U )  --- 7r. 
This calculation can also be used to fill in a gap in the discussion of ref. (10). In 

that paper, the following remark was made. Let A ( x ,  y, z, t) be a mapping from 
space-time into SU(2) that is in the non-trivial homotopy class in rr4(SU(2)). Embed 
A in SU(3) in the trivial form 

0 0 1  1 

Then F(A)  = ~. In fact, as we have noted above, the non-trivial homotopy class in 
~r4(SU(2)) differs from the trivial class by a 2qr rotation of a soliton (which may be 
one member  of a soliton-antisolition pair). The fact that F = 7r for a 2~r rotation of 
soliton means that F = ~r for the non-trivial homotopy class in ~r4(SU(2)). 

The following important  fact deserves to be demonstrated explicitly. As before, let 
A be a mapping of space-time into SU(2) and let A be its embedding in SU(3). Then 
F(A)  depends only on the homotopy class of A in ~r4(SU(2)). In fact, suppose d is 
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I 11 

Fig. 2. A demonstration that F is a homotopy invariant for SU(2) mappings. 

homotopic to A': Let us prove that F ( A ) =  F(A'). To compute F(A) we realize 
space-time as the boundary of a disc, extend A to be defined over that disc, and 
evaluate an appropriate integral (fig. 2a). To evaluate F(A')  we again must extend ~i' 
to a disc. This can be done in a very convenient way (fig. 2b). Since .,~ is homotopic 

to A', we first deform A' into A via matrices of the form ( X ~  ] (matrices that are 
\ O I  1] 

really SU(2) matrices embedded in SU(3)) and then we extend i[ over a disc as 
before. The integral contribution to F (4 ' )  from part 1 of fig. 2b vanishes because the 
fifth rank antisymmetric tensor that enters in defining F vanishes when restricted to 
any SU(2) subgroup of SU(3). The integral in part II of fig. 2b is the same as the 

integral in fig. 2a, so F(A) = F(JI'). 
The fact that F is a homotopy invariant for SU(2) mappings also means that F can 

be used to prove that rr4(SU(2)) is non-trivial. Since F obviously is 0 for the trivial 
homotopy class in ~r4(SU(2)), while F = ~r for a process containing a 2~r rotation of a 
soliton, the latter process must represent a non-trivial element in ~r4(SU(2) ). What 
cannot be proved so easily is that this is the only non-trivial element. 

I would like to thank A.P. Balachandran and V.P. Nair for interesting me in 

current algebra solitons. 

Note added in proof 

Many physicists have asked how the soliton quantum numbers can be calculated if 
there are three flavors. Following is a sketch of how this question can be answered. 

We assume that for SU(3) × SU(3) current algebra, the soliton solution is simply 
an SU(2) solution embedded in SU(3). Such a solution is invariant under combined 
spin-isospin transformations; and it is also invariant under hypercharge rotations. 
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There are now seven collective coordinates instead of three. They parametrize the 
coset space X = SU(3)/U(1), where U(1) refers to right multiplication by hyper- 
charge. Thus a point in X is an dement U of SU(3) defined up to multiplication 
on the right by a hypercharge transformation. The space X has flavor SU(3) 
symmetry (left multiplication of U by an SU(3) matrix) and rotation SU(2) symme- 
try (right multiplication of U by an SU(3) matrix that commutes with hypercharge). 

The crUcial novelty of the three-flavor problem is that even when restricted to the 
space of collective coordinates, the Wess-Zumino term does not vanish. As usual, the 
quantization of collective coordinates involves the quantum mechanics of a particle 
moving on the manifold X, but in this case, the effect of the Wess-Zumino term is 
that the particle is moving under the influence of a simulated "magnetic field" on 
the X manifold. Moreover, this magnetic field is of the Dirac monopole type; it has 
string singularities which are unobservable if the Wess-Zumino coupling is properly 
quantized. 

The wave functions of the collective coordinates are "monopole harmonics" on 
the X manifold with quantum numbers that depend on the "magnetic charge." For 
charge three (three colors) the lowest monopole harmonic is an SU(3) octet of spin 
½, and the next one is an SU(3) decuplet of spin 3. 
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