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An attempt is made to resolve certain discrepancies between instantons, the quark 
model and the 1IN expansion. It is argued that the most attractive resolution of these 
discrepancies is the possibility that quantum corrections cause the instanton gas to dis- 
appear in QCD. A two-dimensional model is described in which it can be seen explicitly 
that such a disappearance takes place. (This model has been investigated independently 
by D'Adda, Di Vecchia, and Lilscher.) 

1. Introduction 

Instantons were originally introduced in physics by Polyakov [1 ], who described 

an interesting field-theory model in which instantons are responsible for some rather 
surprising effects, and by Belavin, Polyakov, Schwartz and Tyupkin [2], who intro- 

duced the first instanton solution of four-dimensional gauge theories. 
In the last few years instantons have been associated with some of the most inte- 

resting developments in strong interaction theory. They have led to a resolution [3] 
of the long-standing U(1) problem [4], and also pointed to the existence in QCD 
[5,6] of vacuum tunneling and of a previously unrecognized parameter, the vacuum 

angle 0 (for a review see ref. [7]). 
At the same time, instanton physics, as it now stands, is, in some ways, in conflict 

with some of the most successful ideas about the strong interactions. 
For instance, our present field theoretic understanding is that the B mass (in the 

chiral limit, rnTr = 0) is an instanton effect. (In discussing the U(1) problem in this 
paper I will consider the limit of chiral SU(2), m u = rn d = 0, and I will refer to the 
missing isosinglet Goldstone boson as the "rf ' . )  However, in the naive quark model, 
which is known for its successes, there is a simple and natural explanation [8] of 
what splits the r/from the 7r: in the r/, which is an isosinglet, the quark-antiquark 
pair can annihilate into gluons; this annihilation channel is absent for the isovector 
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7r. From the point of view of the quark model, it is very hard to imagine why quark- 
antiquark annihilation, a simple tree-approximation process, can proceed only with 
the help of an instanton. 

To make this point more quantitative, let us consider QCD with N colors and an 
SU(N) gauge group [9], and ask how the ~ mass depends on N. According to the 
quark model, where the r~ mass is determined by quark-antiquark annihilation into 
gluons, an effect which [9] is of order 1/N,m 2 ~ 1IN. However, in the instanton 
picture, m~ should vanish like e -eN, c being some constant, because instanton effects 
vanish exponentially for large N. (The reason for this is that instanton effects are of 
order e - l /gz , and for large N, g2 is of order 1/N 9, so e -l/g2 is of order e - N .  This 
point will be discussed more fully below.) In this paper I hope to convince the tea- 

2 is in fact of order 1 IN, and that the quark model picture, according der that mn 
to which this mass comes from annihilation into gluons, is perfectly correct. 

If  one believes that an instanton gas of some kind (dilute or dense) plays a signi- 
ficant role in the strong interactions, then there is a more general conflict between 
instantons and other successful physical ideas. It is very attractive to believe [9] that 
QCD has a smooth limit for large SU(N) gauge group and that the SU(3) theory is 
close to that limit. This is likely to be a key element in any field theoretic deriva,-- 
tion of the quark-model spectroscopy. It is the only field theoretic basis for the gene- 
ral success of Regge pole phenomenology. It also accounts for the narrowness of 
resonances, and it is the only sufficiently general explanation of Zweig's rule (for a 
recent review, see ref. [10]). Moreover, the 1/N expansion is certainly one of the 
most promising suggestions that has been made concerning a possible non-perturba- 
tire approach to the strong interactions. In particular, 1IN is the only expansion 
parameter that is known to exist in this theory. 

But instantons are in direct conflict with the large N expansion, because, as noted 
above, instanton effects vanish exponentially for large N. Insofar as an instanton gas 
plays a significant role in the strong interactions, the large N expansion must be 
bad. It is necessary to choose between the two. 

(Perhaps I should clarify why I claim that instanton effects vanish exponentially 
with N. This can be expected on general grounds. Green functions, in QCD and in the 
model discussed later in this paper, can be calculated to any finite order in 1IN by 
summing Feynman diagrams; therefore, instantons, or anything else not included 
in the Feynman diagrams, must be smaller than any power of 1/N. This point will be 
discussed again in sect. 5. The same conclusion can be reached by considering expli- 
cit instanton calculations. A one-loop calculation [ 11 ] shows that the effects of 
instantons of size p are proportional to (( l /g -2) exp [--87T2/g -2 ] )N where ~-2 is an 
effective coupling constant for scale p, normalized so as to be independent of N. For 
weak coupling, where (1/~ -2) exp [-87r2/~ -2 ] is much less than one, this vanishes 
exponentially with N. One might try to avoid this conclusion by arguing that for 
large instantons (1/~ -2) exp[-87r2/g-2], or whatever function replaces it when higher- 
order corrections are taken into account, becomes greater than one. Then one rea- 
ches the disastrous conclusion that instanton effects grow exponentially with N. 
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And it is hard to imagine that (1/g 2) exp [--8"/r2/g-2 ], or the function that replaces 
it when one includes higher-order effects, becomes exactly equal to one but not lar- 
ger. Although it might be mathematically possible, it is not very plausible that an 
instanton gas could have for large N a smooth limit other then zero. This is why I 
say that the instanton gas disappears in the large N limit.) 

The purpose of  this paper is to attempt to resolve the conflicts between the quark 
model and the 1IN expansion, on the one side, and instanton physics, on the other 
side. 

2. Quantized topological charge and the instanton gas 

Not in every theory that possesses a Euclidean space topological charge is it rea- 
sonable to think about an instanton gas. To illustrate this point, let us consider 
U(1) gauge theories in two dimensions. As we know, these theories come in two 
sorts, theories with unbroken gauge symmetry and Higgs theories. For example: 

L = Dud~*Du~ MZck*(~ _ _  1 2 - -  - ~ F ~ v  , (1) 

L =Dudp*Dudp_ X(c~*(~_a2)2 I 2 - g F u v  . (2) 

(A technical remark should perhaps be inserted here. The particle spectrum of 
model (2) is the characteristic Higgs spectrum, a real physical Higgs scalar and a mas- 
sive gauge meson. On the other hand, because in one space dimension the Coulomb 
potential is confining, the particle spectrum in (1) is the characteristic spectrum of a 
confining theory, with neutral 4~4~* bound states. Because of  the spectrum, we will 
refer to (2) as a Higgs theory, despite the fact that, as is known, because of  instan- 
tons, some of its behavior is anomalous for a Higgs theory. In an appendix it will be 
argued that there is in fact a phase transition separating (1) from (2), and the theory 
(2), which is on the negative M 2 side of  this phase transition, will be referred to 
here as a Higgs theory.) 

Both (1) and (2) possesses the topological charge 

ef 
Q = - ~  d2xeUVFuv. 

However, in the second theory, the Higgs theory, Q is quantized and (in finite-action 
field configurations) it takes only integer values. In the first theory, the one with 
unbroken U(1) symmetry, Q is not quantized. 

To see that Q is not quantized in the theory (1) with unbroken U(1) symmetry, 
note that in this model, because the mass term has the right sign, 4) has no vacuum 
expectation value, and the q~ field should be taken to vanish as Ixl ~ oo. Therefore, 
the first two terms in the Lagrangian vanish as Jxl ~ oo; the only dangerous term is 
the last term, and finite action requires only that Fur ~ 0 as Ixl ~ oo. This condi- 
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tion permits a rescaling A u ~ cAu, with c arbitrary, and under this rescaling 
Q ~ cQ, so Q is not quantized. 

On the other hand, in the Higgs theory, 0 does not vanish at infinity, but rather 
approaches ae i°(x), for some phase factor e i°(x). In this case, the term fd2xDuO*DuO 
in the action will converge only i fA u = - ( l / e )  Ouo at infinity. Only then will DuO 
vanish at infinity. This condition does not permit a rescaling of Au, and in fact, it is 
fairly well-known that in the Higgs theory, Q is quantized to take integer values. 

One may also add charged fermions, with or without mass terms, to the Lagran- 
gians (1) and (2). In this case also, Q is quantized in (2) but not in (1). 

Now, let us ask: under what Conditions is it reasonable to think about an "instan- 
ton gas"? 

If the topological charge is quantized, it is reasonable to think in terms of a gas 
of lumps or instantons each carrying the minimum topological charge -+ 1. However, 
if the charge is not quantized, we should envisage a smooth distribution of topolo- 
gical charge rather than a gas of  discrete objects. In fact, although in the Higgs 
model (2) there is an instanton gas which plays an important role, the model (1) 
with unbroken gauge symmetry and unquantized topological charge is quite diffe- 
rent; no one would try to describe this model in terms of a gas of  instantons or other 
semiclassical objects. 

Does QCD resemble more the second of these models, or the first? 
At the classical level [2], QCD has a quantized topological charge, and thus seems 

to resemble more the Higgs theory (2). It is this that has motivated attempts to des- 
cribe QCD in terms of an instanton gas. However, in this paper it will be claimed 
that because of  quantum effects, the quantization of the topological charge, and 
with it the instanton gas, is an illusion in QCD; at the quantum level, QCD resembles 
more the theory (1) with unbroken gauge symmetry.  As we will see, this will make 
possible a resolution of the conflicts noted in sect. 1 between instantons and the rest 
of physics. 

It may be helpful to discuss further the similarities and differences between the 
two types of  theories (1) and (2). 

Certain aspects of instanton physics, which depend only on the existence of a 
topological charge and of the axial anomaly, are common to the two types of theory. 
These include: 

Common properties (3) 

(i) The existence of a vacuum angle 0 ; 
(ii) the physics depends on 0 if there are no massless fermions but not if there 

are massless fermions; 
(iii) the resolution of the U(1) problem: there is no observable axial U(1) sym- 

metry and no massless Goldstone boson; 
(iv) the axial U(1) symmetry is broken down to a discrete k-fold symmetry,  k 

being the number of Fermi flavors (more generally, k is the strength of the anomaly). 
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Because these properties are valid in both types of theory, we can expect that they 
will be valid in QCD regardless of which type of theory QCD turns out to be at the 
quantum level. They were discovered through the study of instantons, and their 
discovery has certainly been a significant advance in our understanding of the 
strong interactions. 

It is fairly well-known that these properties are valid in theories like (2), but the 
fact that they are valid also in theories like ( I )  with unquantized topological charge 
and no instantons perhaps should be explained here. As discussed by Coleman [12], 
in theories like (1), 0 corresponds to a background electric field, of strength 0e/27r. 
(In both (1) and (2), 0 can be interpreted as coming from a fractional electric charge 
at spatial infinity.) The Schwinger model is an example of a theory of type (1) 
with unquantized topological charge, and this example illustrates [ 12,13] that in 
these theories, exactly as in the Higgs theories which have instantons, the physics 
depends on 0 if and only if all charged fermions have bare masses, and there is 
no observable U(1) symmetry. Finally, the last point, the existence of a discrete 
chiral symmetry, will be discussed in sect. 4. 

There also are some general properties that distinguish between theories of the 
two types, (1) and (2). 

For instance, in theories of type (2) with quantized topological charge and an 
instanton gas, the 0 dependence of the physics and the r~ mass are non-perturbatively 
small; they cannot be seen in perturbation theory, because they are instanton effects. 
In models like (2) with an adjustable coupling constant, these effects are, for weak 
coupling, of order e -1/e2 , the exponential of minus the one-instanton action. In 
QCD, it would not be quite right to say that such effects are of order e -l/g2, 
because the coupling constant g is, in view of the renormalization group, not really 
a free parameter. But QCD does have a free "coupling constant", the N of SU(N), 
and we can say that, based on the quantized charge-instanton gas picture, these effects 
should be of order e - N  for large N. 

Thus, in theories of the second type, the 0 dependence and the r~ mass are expo- 
nentially small and are invisible in perturbation theory. This is not so in theories of 
type (1). For instance, it is clear from the work of Coleman that in (1) a non-zero 0, 
corresponding to a background electric field, influences the spectrum even in the 
leading, perturbative approximation. From Coleman's work, it is clear that the 0 
dependence in this theory can be seen at the level of Feynman diagrams (for non- 
zero 0, there are extra diagrams that must be included, corresponding to interaction 
with the background field). 

As for the r/mass, it too can be seen in Feynman diagrams in models of type (1). 
For instance, the massless Schwinger model is the simplest model with unquantized 
topological charge and a U(1) problem that has to be solved. In this case, it is known 
[13] that the "massive photon" can be interpreted as the r/; the 77 mass can be seen 
at the one-loop level (it comes from the one-loop vacuum polarization) and equals 

Additional contrasts between (1) and (2) involve the behavior when coupled to 
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massless fermions. (The following comments are somewhat technical, and on first 
reading one might prefer to skip them.) In (2) the breaking by instantons of  the axial 
U(1) symmetry can be represented [3,5] by an effective interaction that is very 
roughly ( f f f )k ,  k being the number of  Fermi flavors. This arises from the following. 
The instanton number is quantized, the minimum instanton number being -+ 1. A 
one-instanton configuration violates chirality by 2k units. ( f f f )k  is the lowest- 
dimension operator that changes the chirality by 2k, and so it is the effective Lagran- 
gian. 

In contrast, the U(1) breaking in theories like (1) with unquantized topological 
charge can in no sense be described by an effective Lagrangian ( f f f )k .  

An important consequence is that (2), but not (1), has a phase transition as a func- 
tion of  k. When k becomes large, the operator (~ff)k has large dimension, and even- 
tually it becomes an irrelevant operator in the infrared. At that point, (2) has a phase 
transition. (In two dimensions, the transition is approximately at k = 2, since ( ~ b )  2 
has canonical dimension two.) 

More heuristically, the transition occurs because massless fermions in a back- 
ground instanton field have zero-energy modes which tend to suppress the instanton 
gas. When the number of fermion flavors and hence of  zero modes is too large, there 
is a phase transition to a phase in which the instanton gas is suppressed. 

On the other hand, it will be argued in sect. 4 that (1) has no phase transition as a 
function of  k. One might have guessed this from the fact that the ( ~ k )  k interaction 
plays no role in this theory, or from an intuitive feeling that it would be much harder 
for the fermions to suppress a continuous distribution of topological charge than 
to suppress a gas of discrete objects, instantons. 

The theory of this transition has been worked out in detail by Callan, Dashen and 
Gross [14], and by Raby and Ukawa [15]. In particular, the former authors showed 
that the phase transition can be interpreted in terms of the Z k chiral symmetry that 
is present despite the anomaly. For small k, the Zk symmetry is spontaneously broken; 
for large k, above the transition, it is restored. 

In contrast, it will be argued in sect. 4 that in (1) the Z k symmetry is spontaneous- 
ly broken for all k. 

It seems reasonable to expect that in theories like (2) there will always be a phase 
transition as a function of  k, at the point at which the effective Lagrangian becomes 
an irrelevant operator. There is no reason to expect such a transition in models like 
(1) (and in (1) itself it will be argued that such a transition does not occur). 

|n summary, we can make a list of  properties of instanton physics that discri- 
minate between theories of  the two types (1) and (2). 

Properties that depend on quantized topological charge and an instanton gas (4) 

(i) The r/mass,  the 0 dependence o f  the physics,  and the breaking o f  the U(1 )  
• - 1 e 2 - N  • • symmetry  are exponent ia l ly  small,  o f  order e ! or e according to the theory,  

(ii) they cannot  be seen by summing  Feynman  diagrams, not  even the infinite 
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number of Feynman diagrams of the 1/N expansion, because they are instanton 
effects; 

(iii) the breaking of the U(1) symmetry can be described by an effective Lagran- 
gian ( f ~ ) k ;  

(iv) there is a phase transition as a function of k; the number of Fermi flavors. 
(The last of these points may not be completely general.) These properties are valid 
in, and only in, theories of the second type (2). 

At the classical level, Yang-Mills theory appears to be a theory of this type, with 
quantized topological charge, and therefore one might expect these properties to be 
valid in Yang-MiUs theory. However, in this paper it will be argued that the predic- 
tions in list (4) are not valid in Yang-Mills theory at the quantum level, although 
those in list (3) are valid. 

It is easy to see why the predictions in the second list (4) are more dangerous than 
those in the first list (3). Suppose, as a thought experiment, that in the Higgs theory 
(2), the one-loop corrections to the effective potential, or some other quantum 
effects, were to restore the U(1) symmetry, that is, to give an effective scalar field 
potential of the unbroken symmetry type. Then (2) would actually be, at the quantum 
level, a theory like (1); the instanton gas would evaporate; and the predictions in 
list (4) would be completely wrong. 

Of course, we do not believe that this happens in the two-dimensional Abelian 
Higgs model. But I will claim that an analogous phenomenon does occur in four- 
dimensional QCD. 

In sects. 3 and 4 I will demonstrate that such a thing is possible by consideration 
of a two-dimensional model. (Possible analogies between this model and QCD have 
also been studied recently by D'Adda, DiVecchia, and Ltischer [16]). The model is, 
like QCD, asymptotically free, and, at the classical level, it has no mass parameter. 
It possesses a global SU(N) symmetry, and there are instantons for all N. At the clas- 
sical level the topological charge is quantized. 

Moreover, the model is soluble in the 1/N expansion. When one solves it, one 
finds that the quantization of the topological charge disappears. The predictions 
in the second list above, which in perturbation theory seem quite reliable, are actu- 
ally wrong. The r/mass and the 0 dependence of the physics are present in the lea- 
ding 1IN approximation. 

As stressed above, the r/mass, the 0 dependence, and the breaking of chiral U(1) 
down to a discrete symmetry, are, according to canonical lore, instanton effects. It 
should be impossible to see these effects by summing Feynman diagrams. However, 
in the model that we will discuss, we will be able to see these archetypal instanton 
effects by summing the bubble diagrams of the 1/N expansion. 

Finally, in sects. 5 and 6 it will be argued that such a phenomenon occurs in four- 
dimensional QCD. 
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3. A two-dimensional model 

The model that will be discussed here was introduced by Eichenherr [17], Golo 
and Perelomov [18], and Cremmer and Scherk [19]. The 1/N expansion in this 
model has been discussed, independently of  the present work, by D'Adda, Di Vecchia 
and Luscher [16], and some of  the results that will be described here, including 
some of  the most interesting ones, have been presented by these authors (especially, 
the "dynamically generated" long-range force). 

The model involves N complex fields n i, i = 1 ..... N, satisfying a constraint n; n i 
= 1. In addition, we impose a local U(1) invariance hi(X) -+ eia(x)ni(x), for arbitrary 
space-time dependent a(x). A Lagrangian with this invariance is 

L = a . n ; a . n  i + (S) 

Using the constraint n.n = 1, one can check that this Lagrangian is indeed invariant 
tinder n'(x  ) -+ e'a(X)n'(x ). 

The local U(1) invariance can be made more obvious by introducing an Abelian 
gauge field A u and writing 

L = (a u - i A u ) n ; ( ~  u + i A u ) n  i . (6) 

We introduce no kinetic energy for Au,  which is therefore just a dummy field. To 
see that (6) is equivalent to (5), we write the Lagrangian in (6) explicitly as 

* i . * ~ i + A2t, lil,~i ~ # n i ~ n  -- l~A#(n i ~lzn ) 

* i Because nin = l, this is 

* i • **-;" i a~ni~#n -- l'A~(n i ~#n ) + A~ . 

Since there are no derivatives o f A  u in the Lagrangian, A u can be eliminated expli- 
citly by using its equations of motion, and one arrives at (5). 

This theory has the obvious symmetry group SU(N), corresponding to rotations 
of the n i. It will be referred to here as the SU(N) sigma model, in contrast to the 
usual 0 (N)  sigma model. (Some authors have termed it the CP N-  1 sigma model.) 

For N = 2, the symmetry group SU(2) coincides with 0(3), and there is a very 
nice way to rewrite this as an 0(3) invariant theory. We introduce the vector b = 
n*on (~ are the usual two by two Pauli matrices). In terms of  b, the constraint 
n~.n i = 1 becomes b 2 = 1, and the Lagrangian (5) becomes 

L = (0ub) 2 . (7) 

This is just the Lagrangian for the usual 0(3) non-linear sigma model. The fact the 
SU(N) sigma model coincides at N = 2 with the 0(3)  sigma model, which has been 
exactly solved [20], will provide some useful checks on our results below. 

If one chooses, one can include a kinetic energy term for the gauge field in (6). 
This would not alter the main arguments and conclusions in this paper. The gauge 
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field kinetic energy is omitted here because the theory is more beautiful in this case; 
for instance, only in this case is the theory scale invariant at the classical level. 

(One might feel that the absence of  a gauge field kinetic energy in (6), or the 
phase invariance in (5), could be associated with some pathology, but this is not so. 
The phase invariance in (5) means only that the parametrization in terms of  the N 
fields n i is redundant, the phase degree of  freedom being superfluous. One can give 
a non-redundant parametrization - this is done in eq. (7) for the case N = 2 - and this 
makes it obvious that there is no pathology. However, the redundant parametriza- 
tion in (5) and (6) is the most useful one for actually solving the model.) 

Noting that a gauge field kinetic energy, if present, would have the form (1/e 2) 
Fu~, we see that omitting it can be regarded as taking a limit e 2 ~ ~,  just as the con- 

* i straint nin = 1 can be regarded as a limit X ~ ,,o of  a coupling ~t(ni*n i - 1) 2 . 
There is one more formal property of  the model that we must discuss: the fact 

that classically, the theory has instantons. 
In fact, the topological charge is 

2 * Q= ~il f d xa~(n  i etlv~vn i) , (8) 

Q, being the integral of  a total divergence, is obviously a topological charge. To see 
that Q, classically, takes only integer values, let us note the following. Finite action 
in (6) requires that D~n i = (at~ + iA~)  n i vanishes as Ixl ~ ~ since the action is 
ID, nil 2 . This, in turn,  requires n i = nio ei°(x) as Ixl ~ ~ ,  where n/o is some constant 
and e i°(x) is a phase factor, because D~n i = 0 means that n i must be constant up to 
an overall phase factor. Q, being the integral of  a total divergence, can be written as 

• i a surface integral, and using the fact that noin o must equal one, we find 

1 , ~  ao 
Q = ~ - ~ d x  u 

where the integral is over a large circle at space-time infinity. The integral :~ dx u 
(ao/ax ~) is just Ao, the change in o on going around a big circle, so Q = (1/2fr) Ao. 

If  o were a single-valued function, Ao would vanish. But o is defined only by the 
relation n i = nio ei°, which actually determines cr only up to an additive multiple of  
27r. It is perfectly possible that, when we go around a big circle, o will change by an 
integer multiple of  27r. This, on the other hand, is the only possible change in o. 
Thus, we conclude that Q, classically, takes integer values. 

In fact, for any SU(N) group, instanton solutions exist for arbitrary integer values 
of Q. These solutions have been worked out in detail by Golo and Perelomov, and 
are very reminiscent of  the instanton solutions of  four-dimensional QCD. 

Above we saw that the SU(N) sigma model for N = 2 is equivalent to the 0(3)  
non-linear sigma model. It was precisely in the 0(3)  sigma model that Polyakov and 
Belavin [21] found instantons, and the topological charge Q defined above is, as one 
might guess, equivalent for SU(2) to the topological charge found for 0(3)  by those 
authors. 
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Polyakov and Belavin showed that the instantons of  the 0(3)  o model become 
unstable when 0(3) is mnbedded in a larger O(N) group. This is related to the fact 
that the topological charge they found exists only in the case of  0(3). By contrast, 
in the SU(N) model, because Q exists for every group and an object with non-zero 
Q is always topologically stable, the instantons of  one group remain stable after 
embedding in a larger group• This resembles the situation in four-dimensional QCD. 

The importance of  the SU(N) model is that it is a generalization of  the Polyakov- 
Belavin 0(3)  model which, classically, has instantons for all N and which can be 
solved for large N, to see what role the instantons play• 

Like the 0(3) sigma model and four-dimensional QCD, the SU(N) model has an 
inequality between the action and the topological charge. With the action defined 
as in (5), this inequality is I~> 27r IQI. To derive it, let 

c .  i= a.n i - d ( n ; a j ) .  

Then 

[cui +- ieuvCvil 2 >1 O, 

which gives 

• * i [~ni [  2 + (n;Ouni) 2 ~ + le~vO~(niOvn ) .  

After integration over x,  this gives 1/> 27r I Q 1. 
However, so far we have omitted the coupling constant. In defining the quantum 

theory, we wish to include the coupling constant as a multiplicative factor in front 
of the action; we will take this coupling constant to be N/g 2, where the factor of N 
is needed so as to have a smooth limit for large N. With the action normalized in the 
form appropriate for the quantum theory, our inequality can be stated as 

27rN 
I f > ~ - - l Q I .  (9) 

Now we must turn to actually solving this theory in the 1IN expansion. We will 
see that because of  quantum corrections, the instanton gas disappears. We will also 
see that the 0 dependence of the physics is present in the leading large N approxi- 
mation, despite the fact that if it could be understood in terms of instantons, the 
0 dependence would be of  order e -N  (since in (9) we see that the action in sectors 
of non-zero Q is of  order N). 

The 1IN expansion for this theory can be treated by standard methods. The con- 
straint n~.n i = 1 can be incorporated by introducing a Lagrange multiplier field X 
with a term in the Lagrangian X(n;n i - 1). Since we wish to discuss the 0 depen- 
dence, we must include also a term proportional to the topological charge density. 
We could simply add a term 

0 
27ri au(ni euuavn ) 



E. Witten / Instantons 295 

to the Lagrangian to represent the 0 dependence. However, it is equivalent to write 
(0/2n) euv3uAv, where Av is the auxiliary gauge field that appears in (6) (the two 
forms for introducing 0 are equivalent because after eliminating 0 by means of  its 
equations of  motion, they yield the same result). 

In sum, we are led to consider the following version of  the action: 

l=  f d 2 x I ~  (3u - iAu)n~.(3u + iAu)n i  

o 
- k(n~.n i - 1) +-~-~euv3uA . (10) 

We will solve this theory by means of  a (Minkowski space) path integral, 

Z = f d n  dn*dk dAue il . (11) 

We first rescale n and n* and carry out the Gaussian integration over them, yielding 

+ i f d 2 x k + ~ f d 2 x % v 3 u A v ] .  (12) 

The integration over k and A u cannot be done exactly, so we must consider a sta- 
tionary phase approximation. Lorentz invariance suggests that we look for a station- 
ary point with Au = 0, k = constant. 

To actually determine the stationary point, we vary with respect to the constant 
value of  X. The resulting equation is 

2 Fd2k 1 = 0 .  (13) 
i + g J~-~2 k 2 _ (g2 X/N) + ie 

(The same equation arises in the non-linear sigma model.) The integral in (13) is 
ultraviolet divergent, so one must introduce a cutoff  A. The integral can be done 
explicitly, and the answer turns out to be 

g2~ 
- A 2 e -47r/g2 . (14) 

N 

(The "g" in this equation is an unrenormalized coupling constant. If  one wishes, the 
right-hand side of  (14) can be rewritten in terms of  a scale parameter / /and a renor- 
malized coupling constant gR as//2 exp(-4n/g~) . )  

For our purposes, the important feature of  (14) is that the stationary point value 
of X is non-zero and positive. Looking back to the original Lagrangian (10), one sees 
that a positive vacuum expectation value of  X is a mass of  the n and n* particles, 
which we will call M. 
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We must now go on to consider fluctuations of X and A~, around their vacuum 
expectation values. One can easily check that, as in the 1IN expansion in similar 
models [22], terms in the expansion of  the effective action (12) around the stationary 
point which are cubic or higher order in X and Au are suppressed by powers of  
1/x/N. The stationary point has, of course, been chosen so that the linear terms va- 
nish, so that we need only consider the quadratic terms in an expansion of  (12) aroun 
around the stationary point. 

It turns out that the term quadratic in X is unimportant for the questions of  
interest in this paper. (It leads to a weak, short-range interaction among the n and 
n* particles, which has no qualitative effect on the discussion.) Therefore, we will 
simply replace Xg2/N in (12) by its vacuum expectation value, the physical mass 
squared M 2 of the n and n* particles. 

Also, the X-Au mixing term turns out to vanish. Therefore, we need only con- 
sider the terms quadratic in Au. 

It is well-known that the expansion of  functional determinants like the one in 
(12) can be understood in terms of Feynman diagrams. In this case, the relevant dia- 
grams (fig. 1) are the one-loop vacuum polarization due to a massive charged scalar 
(the mass coming from the vacuum expectation value of  X). 

Although these diagrams can, of course, be calculated explicitly, the main points 
can be understood without calculation. By gauge invariance the answer is (-guy k2 
+ kukv) times some f (k  2). There is an overall factor of  N because there are N par- 
ticles n ~ in the diagrams of  fig. 1, and f (k  2) is non-singular at k 2 = 0 because these 
particles have mass. Thus, the answer has the form 

N(-guvk 2 + kukv)(C + O(k2)),  (15) 

where c is a constant. The infrared behavior and particle structure are determined 
by the small k behavior, and for the questions we wish to discuss we may ignore the 
O(k 2) corrections. So, only the numerical value o f c  has to be computed. It turns 
out c = 1/127rM 2, M being the n and n* mass. 

Now we realize that (-guy k2 + kukv) is simply the usual gauge field kinetic energy 
-l(OuA v - 0w4u) 2 written in momentum space. So, the one-loop corrections have 
generated a kinetic energy for Au, even though Au was first introduced as a dummy 
field. 

k 

/z 

Fig. 1. The one-loop vacuum polarization due to a massive, charged scalar. 
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In summary, there are two important quantum effects in the large N limit. A mass 
is generated for the scalar particles, and a kinetic energy is generated for the gauge 
field. 

Although we could proceed with a further systematic analysis of  the exact formu- 
la (12), it is much simpler at this point to write an effective Lagrangian which inclu- 
des the two important quantum effects and which describes well the physics for 
large N. The effective Lagrangian is 

'/~eff = (~/.t -- iAu) n; (~u + iAu) ni - M2n~ "hi 

N 0 
48nM 2 F~v +-~e~v~vAv .  (16) 

However, it is useful to rescale the gauge field so as to give the standard normaliza- 
tion to the kinetic energy. After a rescaling 

N 
~ A g  ~ A ~  , 

we have 

.t?eff = - i A v M ~ - ~ - J n i ( O  . * i A v M V - - N - ) n  

M2n~.n i - 1 2 

0 11/1/1/1/~ 
+ - - M  (17) 

The first thing to note about (17) is that the n and n* particles have, effectively, 
charges x/127r/N M (recall that in two space-time dimensions the electric charge 
has dimensions of  mass). They are thus weakly charged for large N, and superficially 
one would think that for large N the gauge coupling would be a small effect. 

But here we encounter a surprise. In one space dimension the Coulomb poten- 
tial is a linear potential. Even if the coefficient is small, a linear potential has a dra- 
matic effect - it confines the charges. 

Referring henceforth to the n and n* particles of  this theory as "quarks" and 
"antiquarks," we see that between a quark at x and an antiquark at y there is a linear 
potential, 

V(x, y)  = (127rM2/N)lx - yl . 

This "dynamically generated" confining potential is certainly a surprising result. 
However, for the purposes of  this paper, we are more interested in the following 
questions: what role, if any, do instantons play in this theory? And can the 0 
dependence of  the physics be seen in the 1IN expansion, or is it of  order e -N ,  as 
instanton lore indicates? 
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What is the role played by instantons? The effective field theory (17) has no 
instantons. It is a theory of unbroken U(1) gauge symmetry, and like other such 
theories, (17) has no instantons. In fact, apart from the fact that (17) has N 
charged scalar fields instead of one, (17) coincides with the model (1) discussed in 
sect. 2 as an archetype of a model with unbroken U(1) symmetry and no instan- 
tons. 

Although the instantons have disappeared, it is easy to see that the physics is 0 
dependent; the 0 dependence corresponds, as in (1), to a possible background elec- 
tric field. Moreover, in contradiction to instanton lore, the 0 dependence is present 
in perturbation theory in 1IN. This can be seen by analogy with Coleman's argu- 
ment that in (1), the 0 dependence is present in perturbation theory in e. 

The situation is particularly simple in the gauge A 1 = 0. As Coleman showed, 
in the two-particle (quark-antiquark) sector, one can incorporate the 0 dependence 
by using a modified photon propagator 

(, 0 ) 
D(x, t ;y ,  t ' ) = f ( t -  t') x -Yl  +~-~n(x-Y) • (18) 

The 0-dependent term corresponds to the effects of an electric field of strength 
0/27r times the electric charge e = 121rM2/N. Obviously, since the effective photon 
propagator is 0 dependent, all physical quantities will have a non-trivial 0 depen- 
dence in perturbation theory. 

It is especially interesting to consider the mass spectrum. The finite-energy states 
will be electrically neutral bound states of an n "quark" and an n* "antiquark." 
Since the n and n* transform as N and .N under SU(N), the bound states will trans- 
form according to the singlet and adjoint representations of SU(N). 

For large N, these bound states become non-relativistic and can be described by 
a Schr6dinger equation. In this Schr6dinger equation we must use a 0-dependent 
potential 

25 V(x, y ) -  N Ix - yl + (x - y , (19) 

where the 0 dependence corresponds to the 0 dependence in (18), and represents 
the interaction between the dipole moment of the quark-antiquark pair and the 
background electric field. 

The non-relativistic Hamiltonian for the quark-antiquark system, including the 
quark masses, is then 

( d2 dd~_~) 127rM2 ( dx 2 0 )) H=2M+2M1 + - - N  I x - y l + ~ ( x - y  . (20) 

The N dependence of the bound-state masses can easily be found by a rescaling. Let 
X = N1/3Mx, Y = N1/aMy. Then, H = 2114 + N-2/3MH ', where 

l a b i a l (  o 
2dX 2 2dY ~ + I X -  YI+ ( X -  Y . (21) 
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This makes it clear that the mass of the kth bound state has the form 
Mk = )14(2 + N-a/3fe(O)) where the fk(O) are non-trivial functions of  0 that could be 
found by solving the Schr/Sdinger equation (21). 

In particular, the 0 dependence of  the masses appears in order N - 2 / 3  , while the 0 
dependence of the mass splittings is present in leading order. 

The Schr6dinger equation (21) is a good approximation to all of the states in which 
the motion is non-relativistic. For large N, the number of such states is of order N 2/3. 

In short, the 0 dependence of this theory can be calculated in perturbation theory 
in l/N, without considering instantons. It is very unlikely that any method of calcu- 
lation based on instantons would give the correct answer for the 0 dependence, 
since the actual 0 dependence comes from a certain sum of Feynman diagrams, the 
Feynman diagrams of  the 1/N expansion. 

More generally, the instanton gas in this theory has disappeared. The effective 
action (17) was derived without considering instantons, by summing the bubble 
diagrams of the 1IN expansion, and (17), as mentioned above, is a theory of  a type 
that has no instantons. 

Some suggestions as to why the instanton gas in this model has disappeared will 
be made in sect. 6, along with some suggestions as to why this might happen in four- 
dimensional QCD. 

Before concluding this section, I should mention an interesting check on the vali- 
dity of  the 1IN expansion in this model. This check suggests that the 1IN expansion 
is qualitatively correct not just for large N but also for the smallest physical value 
N = 2 .  

If there were no confinement, the physical states would transform as N and ~- 
under SU(N). However, the 1IN expansion predicts confinement, as a result of  
which the physical particles are singlets or in the adjoint representation. 

For SU(2), without confinement, the spectrum would consist of  doublets, gi th 
confinement, the possible states are singlets and triplets. However, as noted above, 
the SU(2) model is equivalent to the 0(3)  sigma model, and thus the exact spec- 
trum is known [20]. It consists of  one triplet; there are no doublets. This indicates 
that the confinement, found above for large N, persists down to N = 2. 

Perhaps the absence of singlets at N = 2, and the fact that there is only one trip- 
let, require comment. For large N the confining potential is shallow and the num- 
ber of stable states large, of  order N a/3. Moreover, the adjoint and singlet states are 
degenerate in this limit. As N is reduced, the potential becomes steeper, the number 
of stable states becomes less, and the degeneracy is lifted. It is perfectly plausible 
that by the time we reach N = 2, the singlets have all become unstable, and only 
one triplet remains. 

We will see in sect. 4 that also with massless fermions included, the 1IN expan- 
sion seems to be qualitatively correct down to N = 2. 

We also will see that in the presence of  massless fermions, the confinement me- 
chanism found in this section disappears. This is one reason for doubting that this 
mechanism is relevant to four dimensions. It is only the mechanism for the dis- 
appearance of  the instanton gas that I will argue is relevant to four dimensions. 
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4. Incorporating fermions 

4.1. Some general properties o f  fermions 

In sect. 3 we have seen that the SU(N) sigma model, although apparently a 
model like (2) with instantons, is actually, at the quantum level, a model similar 
to (1). Before discussing the coupling of the SU(N) sigma model to fermions, it is 
useful to first discuss the general properties of models like (1)when coupled to 
massless fermions. 

Thus, let us include in (1) a charged Fermi field: 

A? = (~u - ieAu) qo* (~u + ieAu) ~0 - M2 ~* ¢ 

1 2 - aF~v + ~ ( i ~  - ke  ~ )  ~ - m ~ t~ 

+ ~ e u V a u A  v . (22) 

We have included a fermion of charge ke. In principle we would like to study the 
behavior as a function of the number of  Fermi flavors. However, in two space-time 
dimensions it is exactly equivalent to introduce one Fermi flavor of  charge ke or 
k flavors each of charge e; the equivalence of the two can easily be seen by bosoni- 
zation. It is slightly more convenient to discuss (22). 

We wish to see that (22) has the following properties: 
(i) The physics depends on 0 if and only if m :~ 0; if m = 0, the resolution of the 

U(1) problem (that is, the absence of a physical U(1) symmetry)  can be seen in per- 
turbation theory in e; 

(ii) There is then a residual k-fold chiral symmetry,  which is spontaneously bro- 
ken for any k. Later we will see the same properties in the SU(N) sigma model. 

Except for the comments about the discrete chiral symmetry,  the discussion that 
follows is not novel. It is included for completeness. 

The easiest way to analyze (22) is by bosonization of fermions. We introduce, 
in the standard way [23], a new canonical boson field o satisfying 

~i~ ~ = ½(~uo) 2 , 

1 

~qJ = cos x / ~  o .  (23) 

With these substitutions, and after one integration by parts, we can write a Lagran- 
gian equivalent to (22). 
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1 2 ½ 0 ~ o )  2 m - r~F;~, + - c o s  x / ~  o 

Ice ' v + @  °eu ~uAv +Oe (24) 

The first point  that we must check is now that the physics depends on 0 if and 

only if m 4: 0. 
In fact, i f m  = 0, 0 can be eliminated explicit ly by the substitution o -> o - O/2kx/Tr. 

Thus, for m = 0, the physics is 0 independent.  
But for m 4= 0, 0 cannot be eliminated. In this case, as discussed by Coleman and 

reveiwed in sect. 3, the Feynman diagrams will be explicitly 0 dependent,  so the phy- 
sics will depend on 0. 

Next, we must see that for m = 0, the U(1) problem is solved; there is no observ- 
able U(1) symmetry and of  course, this being two space-time dimensions, no Gold- 

stone bosom 
The Lagrangian (22) has for m = 0 a naive chiral symmetry ~ -~ e i~'rs 4. But it is 

known that at the quantum level, the chiral current has an anomalous divergence, 

3u(}TUTsqj ) = Ice euV3uAv. 
7r 

In terms of  a, chiral symmetry is o ~ o + / 3 / @ ,  and the chiral current is (1/X/n) 

3#0, 
The term (ke/X/rr) o euV3uAv is present in (24) because of  the axial anomaly. 

Without this term the free field equation 3u(3ua) = 0 would tell us that the chiral 
current (1/X/n) Ouo was conserved. With this term present, the equation of motion 

for a is 

[ 1  \ ke 
~ u t ~ u o ) = - - ~  euV~uAv . 

The right-hand side of  this equation is the anomalous divergence of the axial current. 
Note that the anomaly becomes a canonical equation when (22) is rewritten in terms 

of (24). 
Without the term (ke/X/n) oeUVOuAv in (24) the o particle would be massless. It 

is easy to see, however, that this term gives o a mass. In fact, by diagonalizing the o z , 
F z, and o-A u mixing terms in (24) to find the o and A u propagators, one finds that 
o acquires a mass ke/X/Tr. Thus, the mixing, which is a manifestation of the axial ano- 
maly, gives a mass to the would-be massless o particle. This is an analogue to the ac- 
quisition of a mass by the would-be massless r / in  four dimensions. 

At the same time, there is no physical chiral symmetry in (24). Indeed, the fact 
that the o particle has a mass means that there is no physical chiral symmetry.  For we 
have noted that chiral symmetry is o --> o + c, and the Green functions of a massive 
field are not  invariant under any such symmetry.  

These two facts, the absence of  a physical U(1) symmetry and the absence of  a 
massless particle (which, in two dimensions, could not in any case have been a Gold- 
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stone boson), represent the resolution of the U(1) problem. 
Some additional comments about the resolution of this problem are appropriate. 

In models of  this kind, the mass of  the ~ can be regarded as coming from the mixing 
of an isoscalar ~ k  state with the A t field. In fact, we have noted that the mass 
comes from a mixing with A t ,  and a, in turn, as we see from its definition 
~ o  = x/rne~v~Tvt~, is a ~ composite field. 

It is also useful to think about the r/directly in the ff representation, before boson- 
ization. In this language the r~ mass comes from the one-loop vacuum polarization of  
the ff field. In fact, the photon propagator with the one-loop vacuum polarization 
included contains in this model, as in the Schwinger model, a massive particle pole at 
a mass ke/x/rr. 

This massive particle, the "r/," can also be considered as a ff~ state with the mass 
coming from the lowest-order annihilation diagram. The r/appears, via diagrams of 
the sort shown in fig. 2, as a massive pole in the two-point function of ~7~¢ .  But 
the diagrams of fig. 2 describe the propagation of  a quark-antiquark pair with repea- 
ted pair annihilation and recreation via the Coulomb force. 

In the absence of annihilation diagrams, only the first diagram of fig. 2 would 
contribute. This diagram is known from the theory of the Schwinger model to have 
a pole at p2 = 0. The pole is shifted by the annihilation diagrams to a non-zero mass, 
ke/x/zr. 

In particular, suppose that one includes in this model several flavors of  fermions, 
so that there is a non-trivial flavor symmetry.  Then in the flavor non-singlet channel 
(the two-point function of non-singlet currents) only the first diagram of fig. 2 con- 
tributes, and there is a massless pole, but the singlet channel has an extra contribu- 
tion from annihilation diagrams and has no massless pole. 

Thus in models of this type, the simple quark model picture of  ref. [8], according 
to which the r7 mass comes from the annihilation diagrams which are possible in and 
only in the singlet channel, is perfectly valid. I have belabored here this point, which 

+ 

- [ -  • • • • 

Fig. 2. The quark-antiquark annihilation diagrams which give a mass to the rl in two-dimensional 
models which do not have instantons. In the diagrams, X represents an insertion of a current 

operator. 
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comes essentially from ref. [13], because we will see below that, in contradiction to 
instanton lore, the SU(N) sigma model behaves in the same way. 

To conclude this discussion, we must see that there is, despite the anomaly, a 
discrete k-fold chiral symmetry in (22) or (24), and that it is spontaneously broken. 

In general, it is not easy to decide by studying the particle structure and opera- 
tor matrix elements in a theory whether a discrete symmetry exists and is sponta- 
neously broken, or whether it does not exist. When a continuous symmetry is spon- 
taneously broken, there is a Goldstone boson, but there is, in general, no such uni- 
versal signal for a spontaneously broken discrete symmetry. 

However, in one space dimension, a spontaneously broken discrete symmetry 
always leaves a trace: the existence of  solitons. In other words, when a discrete sym- 
metry is spontaneously broken, there are always solitons, finite-energy states inter- 
polating between two different vacua. 

We wish to show that (22) or (24) has a k-fold discrete chiral symmetry, qJ 
e27ri~'s/k~or o ~ o + (1/k)v/Tr. We will do this by looking for soliton states, that is, 
states in which the vacuum expectation value of  the o field (or of f ~ )  is different 
at x = - ' ~  from its value at x = +,,o. 

First, we must discuss what are the physical states in (22). At this point, we 
encounter a rather surprising, and dramatic, effect of  the massless fermions. Without 
massless fermions, (22) is a confining theory, and has no physical ¢ or q~* particles, 
but only neutral bound states. With massless fermions, however, the confinement 
is lost, and there are free q~ and ~b* particles. 

The reason for this is that the o-A u mixing which gives the ~7 a mass also, as we 
have said, modifies the A u propagator from having a pole at p2 = 0 to having a pole 
at p2 = k2e2/n. Thus, the Coulomb force, which corresponds to a pole at p2 = 0, 
has disappeared, being replaced by a Yukawa force. With only Yukawa forces 
between them, the q~ and ~* particles are unconfined. 

Perhaps surprisingly, it turns out that the unconfined q5 and ~b* particles are the 
solitons corresponding to a spontaneously broken discrete chiral symmetry. 

To see this, we write down Gauss' law, the equation of  motion of  the gauge field. 
From (24), we see that Gauss' law is 

d ke do 
- - E +  - J o  , (25) 

where E = F o l  = 0oA1 - 0IAo is the electric field, andJo  = i~ D04~ is the charge 
density of  the q~ field. 

Integrating this equation from x = -co to x = +~, we find 

ke 
E ( ~ )  - E ( - ~ )  + ~ ( o ( ~ )  - o ( - ~ ) ) =  eQ, (26) 

where Q = f dx Jo(x) is the particle number of the q5 field. 
However, E(o°) = E ( - ° ° )  = 0 for all states. For, as just mentioned, the A u - o 
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mixing has screened the Coulomb potential and given the photon a mass; with a 
massive photon and screened Coulomb potential, the electric field must vanish at 
infinity. 

Setting E(oo) = E ( - ° ° )  = 0 in (26), we get 

o(oo) - o(-oo) : ~k ~ Q. (27) 

This equation tells us that all states of non-zero Q are solitons in the sense of  interpo- 
lating between two values of  the o field. 

The ¢ and ~b* particles have Q = +1, and these are the minimum non-zero values 
of  Q. Thus, the minimum change in o in passing from x = _oo to x = +oo is x/~/k. 
This tells us that we are dealing with a spontaneously broken discrete symmetry, 
o ~ o + ~/-~/k. 

The last point that must be established is that in theories of this kind, unlike theo- 
ries with instantons, the discrete chiral symmetry is spontaneously broken even 
when k is large. In fact, as k increases, the photon mass becomes larger and larger; the 
Coulomb force is more and more strongly screened. As a result, the interactions 
become weaker and weaker, and perturbation theory becomes better and better. 
But perturbation theory, as we have seen, indicates that the discrete symmetry is 
spontaneously broken. 

For most purposes, it is not necessary or useful to regard the 4~ and qS* particles 
in this theory as solitons. However, if one wants to know whether models like this 
have a discrete chiral symmetry of the sort discussed in ref. [6], the answer is that 
they do; the symmetry is spontaneously broken, and ~b and ~b* are solitons. 

4.2. A simple coupling to fermions 

We will consider two ways of coupling the SU(N) sigma model to massless fer- 
talons. In this section we consider a simple model that illustrates the main points, 
and in the next section we consider a supersymmetric model. 

The simplest way to include massless fermions is to introduce an SU(N) singlet 
fermion ~ of  charge k. The Lagrangian, including all auxiliary fields, is 

£? = ( a u - i A u ) n ~ ( ~ u  +iAu)n i -X(n~ .n  i 1) 

0 v + f( i~ - k4)  ~ +-}-~e u OuAv. (28) 

The model has a naive chiral symmetry, ff ~ e/0rs 4,  but the corresponding chiral 
current has, as in the model in subsect. 4.1. an anomalous divergence, 

3u (~,,,/u 7 s qJ) = k__ euVbuA v = k 3u(n 7 euvOvni) " 
7r 

Because of this anomaly and the fact that f d2xeUVOuAv is not necessarily zero, the 
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U(1) problem will be resolved; there will be no physical U(1) symmetry and no mass- 
less particle. 

However, we want to see whether instanton reasoning describes these effects 
correctly. 

According to instanton lore, the resolution of the U(1) problem is an instanton 
effect, because f d2xeUV~uA v is non-zero only for instantons. In particular, the reso- 
lution of this problem should be invisible in Feynman diagrams, and in the I[N 
expansion. 

We will, on the contrary, see that the resolution of the U(1)problem, together 
with all its characteristic features (the rt mass, the absence of a continuous chiral 
symmetry, the existence of a spontaneously broken discrete chiral symmetry) can be 
seen by summing the bubble diagrams of the 1 IN expansion. 

Also, we will see that it is not the instanton picture, but the quark-model picture 
of the r/that is valid in this model: its mass comes from one-photon annihilation dia- 
grams. (There is a kinematical difference between one and three dimensions. 
In one dimension, one-photon annihilation is possible for a pseudoscalar, while in 
three dimensions, two photons are required. Thus, a simple quark model.in one 
dimension would predict that the ~ mass comes from one-photon annihilation. As 
is known, there are no true photon degrees of freedom in one space dimension; by 
"one-photon annihilation" I mean annihilation diagrams involving one gauge field 
line that are available only for flavor singlet states.) 

Actually, it is very easy to verify these statements. We can write down by 
inspection an effective Lagrangian for (28) that is analogous to (17). The steps that 
led to (17), integration over n and n* and approximate evaluation of the resulting 
functional determinant, can be carried out in the same way for (28) and are unaffec- 
ted by the presence of the term in the action involving the fermions. Therefore, the 
effective Lagrangian for (28), analogous to (17), is the sum of (28) plus the fermion 
action ~iO~: 

12u i 

_ MZn~.n i 1 2 - -  7 ~ f ~ v  

+ - - F  

OMl + euV3uAv • (29) 
2~V N 

(The reason for the factor MX/rf2~/N in the f41 qJ term is that A u was rescaled by 
this factor in arriving at (17).) 

We already know the main properties of (29), because (29) coincides with the 
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model (22) discussed above, apart from the inessential fact of having N scalar fields 
instead of  one. Moreover, perturbation theory in 1IN in (29)just corresponds to 
perturbation theory in e 2 in (22). 

Thus we immediately know the following about (29): the physics is 0 indepen- 
dent; there is no continuous U(1) symmetry, and only a k-fold discrete symmetry 
which is spontaneously broken for any k; and the simple quark-model picture of  the 
7, based on annihilation diagrams, is correct. 

Furthermore, these effects are visible in perturbation theory in I/N, and in par- 
2 was e2/lr in (22), and here e is~/121rk2M2/N. ticular m~ = 12 k2M2/N, since m e 

These conclusions depend in no way on the use of an effective Lagrangian (29), 
which is here introduced only to minimize labor. One reaches the same conclusions, 
with only slightly more work, by calculating the exact Green functions in an expan- 
sion in I/N, starting with exact formulas like (12). 

4.3. Supersymmetric coupling to fermions 

The simple model of subsect. 4.2 shows all of  the essential properties of  the 
SU(N) sigma model when coupled to massless fermions. However, there is 
another coupling to massless fermions that is interesting to study for its elegance 
and also because of various special checks that are possible on the calculation. This 
is the supersymmetric form of the SU(N) sigma model, which was introduced by 
Cremmer and Scherk [19], 

This model contains, in addition to n i, an N-component Dirac Fermi field 
~i, i = 1 ... N, which is constrained to satisfy Zin~. ffi = 0. One way to write the 
supersymmetric Lagrangian is the following: 

N , o 

./~ = ~ -  [ (a~ - iA~) n i (3~ + iAu) n' + -~i(i~ - .~) ~i 

- !(o2 + zr 2 ) - X , ' ~ ( o  + iTr"t'5)~ 
2 

- X ( n T n  - 1 )  

+ xn~. ~)i + ~inix] . (30) 

• * i 
Here X and X- are Lagrange multiplier fields that enforce the constraint n i ~ = O, 

X is a Lagrange multiplier that enforces n~.n i = 1, o and lr are auxiliary fields which 
can, if one wishes, be eliminated, leading to four Fermi interactions, and A u is an 
auxiliary gauge field. 

The conserved supersymmetry current is 

Ju = Dan7 7c~/u ~i . (31) 

The corresponding supercharge is a complex Dirac spinor Qa which satisfies, in per- 



E. Igitten r Instantons 307 

turbation theory, the algebra 

( a s ,  ao  } = {as,  Q# } = o ,  

( a s ,  Qo } = 3;~ocPu • (32) 

We will see, though, that because of certain non-perturbative effects, to be discussed, 
this algebra is modified. 

This model has a naive chiral symmetry 

~ ~ eia'y5 ~ , (o+irr)~e-2ia(o+iTr) .  

The chiral current, however, has an anomaly proportional to the instanton density 
au(n; euvOvnZ), or eUVauAv . In contrast to what one might expect from instanton 
lore, we will see that the U(1) problem is resolved within the 1IN expansion. 

Specifically, we will find in the 1IN expansion that a acquires a non-zero vacuum 
expectation value. This explicitly breaks the U(1) symmetry;  there is, nonetheless, 
no massless particle. The rr, which is the would-be Goldstone boson, turns out, far 
from being massless, to be degenerate with the o. 

After rescaling n and ~ and integrating over them, one obtains from (30) the fol- 
lowing effective action for the integrations over the other fields: 

/eft = - N  Tr ln ( - (0  u + iAu) 2 - X) 

+ N Tr ln(i~ - 41 - ~ (o + iTrTs)) 

/N 2 _ iN2g 2 f d 2 x  (o2+  zr2) + ~ - f d  xX 

+ terms involving X and X* (33) 

The terms involving X and X* have been omitted because the arguments to follow 
do not depend on them. 

We now must find a stationary point around which to expand (33), in order to do 
the integrations over the auxiliary fields. As in sect. 3, the stationary point value of  
X turns out to be non-zero, and in fact it is the same value found in sect. 3 (except 
that X is normalized differently here). Likewise, exactly as discussed by Gross and 
Neveu for the SU(N) Thirring model, (33) must be expanded around a non-zero 
value of o (or rr). Making an arbitrary choice that rr has zero vacuum expectation 
value, one finds the stationary point 

X = ½o 2 = A 2 exp( -4r r /g2) ,  

7r = 0 .  (34) 

From the vacuum expectation values of  X and o, the bosons n i get a mass squared 
X, and the fermions ffi get a mass squared ½02. The equality indicated in (34) is not 
an accident but is a consequence of supersymmetry.  We will designate as M 2 the 
physical Fermi-Bose mass A 2 exp(-4n/g2) .  
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One might fear that because of the vacuum expectation value of  o, the 7r will be 
massless. To investigate this and other questions, it is necessary to expand (33) in 
powers of  o, n, and A u around the stationary point.  As usual in the 1IN expansion, 
only the quadratic terms in this expansion are important ,  the others being suppressed by 

, , 2 powers of  1/x/N. The quadratic terms in (33) turn out to be the o 2 n2 and A u terms 

and a 7r-A u mixing term. 
The term quadratic in n turns out to be, in momentum space, 

X k2F(k2 ) (35) 
87r 

where 

1 1 
F(k 2 £ ) 

J d a M 2 _ ( a _ c ~  2 ) k  2" 
o 

Because (35), which would ordinarily be the inverse of the ~r propagator,  vanishes at 
k 2 = O, it seems at first sight that we have a massless 7r, and no resolution of the U(1) 

problem. 
Before jumping to this conclusion, we must consider the AuTr mixing term, which 

is a manifestation of  the anomaly. It turns out to be 

NxQ 4~ F(k2 ) %vkv , (36) 

while the term quadratic in A u is 

N F(k2 ) (_guvk2 + kukv). (37) 
47r 

Inverting the combined system (35) - (37) ,  we find for the 7r propagator 

87r 1 1 
Or(k) 7r(-k)) - N k 2 - 4M 2 F ( k 2 )  ' (38) 

Thus, the pole has moved from k 2 = 0 to k 2 = 4M 2 . The 7r has acquired a mass 2M, 

twice the n@ mass. 
If one considers the o field, one finds with much less effort (since no considera- 

tion of  mixing diagrams is required) the same formula 

(o(k) o(-k)) = 87r 1 1 (39) 
~ -  k 2 _ 4M 2 F ( k 2 )  ' 

This identi ty of  the o and 7r propagators is, of  course, not  an accident, but a conse- 

quence of  supersymmetry.  
Indeed, if one calculates the X propagator one finds the same formula as (38) and 

(39), except for a Dirac numerator.  In particular, there is a singularity at k 2 = 4M 2 . 
(The relevant calculations have already been done by Alvarez [24], in connection 
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with a related model.)  What is happening is that the two bosons, o and n, and the two 
fermions, X and X*, are combining into a supersymmetry multiplet ,  with a common 
mass 2M. 

Thus, instanton lore cannot possibly be right in claiming that the n mass should 
be exponential ly small as N -~ o% because supersymmetry requires that the n is dege- 
nerate with the o, X, and X*, and all analyses would agree that they have masses of  
order one for N - *  ~ .  

(The reason that the "r/" or n mass squared is of  order one in this model, but  of  
order 1IN in (22), is that this model  has N Fermi fields, and therefore the coeffi- 
cient of the anomaly is N times as large.) 

In short, we have established that the U(1) problem is resolved in leading order 
of the 1/N expansion. For o has acquired a vacuum expectat ion value without 
there being a massless particle. 

A further very interesting consequence of  the n-A u mixing is that it screens the 
gauge field Au, just as in (22). When one diagonalizes the joint  n-A u kinetic energy, 
one finds that the A u propagator,  like the lr propagator,  has no singularity at 
k 2 = 0, which would correspond to a Coulomb potential ,  but,  like the n, it couples 
to the singularity at k 2 = 4M 2. The mixing screens the long-range Coulomb poten- 
tial, leaving only weak Yukawa-like forces. 

In consequence, this is not a model with confinement.  In contrast to the SU(N) 
sigma model without fermions, the supersymmetric model  has free, unconfined 
n and qJ particles and antiparticles. We will discuss later a check on this conclu- 
sion that comes from known exact results at N = 2. 

We still must establish that this model has, in leading order in l/N, a discrete 
chiral symmetry.  This is a subgroup of  the naive U(1) chiral symmetry.  It is not  
explicitly broken by the anomaly, but  we will see that it is spontaneously broken. 
Because there are N flavors, the discrete symmetry is ~ ~ eni3's/N~. 

As in the discussion of  (22), the spontaneously broken symmetry manifests 
itself in the appearance of  solitons, that is, states in which n(x = +oo) does not  
equal n(x = _oo). The states with this soliton property are the ordinary (uncon- 
fined !) n and ~ particles. (However, the change in 7r from x = _ o o  t o  x = +oo in one 
of  these states will turn out to be small, of  order l/N, which is why it is not necess- 
ary or useful, for most purposes, to think of  these states as solitons.) 

To see this, we will repeat the argument that we gave in connection with (22). 
Let us collect from (30), (36), and (37), the terms in the effective Lagrangian that 
involve the gauge field. We will take the non-relativistic limit, and so set F ( k  2) 
equal t o  1 / M  2 , which is its value at k 2 = 0 .  The non-relativistic limit of  the effec- 
tive Lagrangian turns out to be 

N Aueuu~vrr NN/2 + AuJU (40) 
L e f t -  167rM 2 F~v + 4nM 

where 



310 E. Witten / Instantons 

is the electric current of the elementary fields. 
From (40) one derives a kind of Gauss' law: 

N dE NX/2 dTr 
+ _ j o  . (41) 

4nM 2 dx 4nM dx 

Integrating from x = _oo to x = +oo and realizing that because of the screening of 

the gauge field, the electric field E vanishes as x -+ _+0% we find 

4nM 
rr(oo) - 7r(-oo) = N ~ 2  Q . (42) 

where Q = f d x J  ° is the total charge. Thus, the n and ~ particles, and any other par- 
ticles that may have non-zero Q, are solitons, in the sense of interpolating between 

different values of the 7r field. 
Recalling that the vacuum expectation value of o is related to the physical mass 

M by M 2 = 1o 2 , we see that (42) can be rewritten 

rr(oo) - zr(-oo) 27r 
- Q .  ( 4 3 )  

o N 

On the other hand, o(~)  = cr(-~) up to and including terms of order l /N ,  because 
o does not appear in (41). And finally, for the particular states we are considering, 
because of the arbitrary choice of stationary point in (34), 7r(~o) and ~r(-',~) are of 

order 1IN. 
For states with Q = 1, which is the minimum possible value of Q, we can sum- 

marize our results: 

7r(oo) - 7 r ( - o o )  2rr 

o N '  

a(o~) : o ( _ o o ) :  o ,  

7r(oo), zr(-oo) ~ 1/iV. 

These results can be interpreted as the first non-trivial term in an expansion in 

powers of 1IN of an exact formula 

(44) 

(a (~)  + izr(oo)) = e27ri/N(o(--oo) + iTr(--oo)) . 

(Because of our choice (34), we are dealing not with all solutions of this equation, 
but only with the ones near zr = 0.) This equation indicates that we are dealing 
with an N-fold discrete symmetry, which has been spontaneously broken. 

Thus, the 1IN expansion exhibits in leading order the absence of a physical con- 
tinuous chiral symmetry and the presence of a spontaneously broken discrete one. 

Before leaving this model, it is interesting to note that a check can be made on 
the results stated above, and on the qualitative validity even for small N of the 
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1IN expansion, by comparing to known results for N = 2. 
What happens for N = 2 is known because the SU(2) model coincides with the 

0(3) version of the O(N) supersymmetric sigma model [25]. 
The 0(3) supersymmetric sigma model is known [26] to have two somewhat 

unusual properties: the physical states are all solitons (they are states that inter- 
polate between the vacua of a spontaneously broken discrete chiral symmetry), 
and they are doublets or spinors of the 0(3) symmetry. (That the soliton states 
are isospinors was explained in ref. [26] for the (fff)2 model only, but the dis- 
cussion carries over in the same way for the O(N) supersymmetric o model.) 

These known results about the SU(2) or 0(3) model are precisely what one 
obtains by extrapolating to N = 2 the results given above for large N. In fact, we 
found that the n and ~ particles in this model are not confined; they transform as 
the N of SU(N), and for N = 2, they are the doublets of ref. [26]. Also, we found in 
eq. (43) that these states, which all have non-zero Q, are solitons; this again agrees 
with the conclusions of ref. [26]. 

In sect. 3 we found that the n particles are confined in the absence of massless 
fermions. Extrapolating to N = 2, we predicted from this that there are no doublets 
in the spectrum, since the doublets are charged and confined. As noted in sect. 3, 
this agrees with the known result at N = 2, that the spectrum consists of a triplet. 
But in the supersymmetric model, which has no confinement, a similar extrapola- 
tion predicts that there will be doublets in the spectrum, and this, again, agrees 
with the known result at N = 2. This is an indication that the large N expansion is 
qualitatively correct even at the smallest physical value of N, N = 2. 

There is another non-perturbative check on the claim surrounding equation 
(43) that the n and ff particles of this model are solitons. This involves a purely 
algebraic argument. 

The supersymmetry algebra (32) that is valid in ordinary perturbation theory 
leads to a paradox when compared with the results of the 1IN expansion. 

For massless particles (32) has irreducible representations of dimension two. How- 
ever, for massive particles the irreducible representations of (32) have dimension 
four. 

In perturbation theory, the n and ~ particles are massless. For given SU(N) 
quantum numbers, there is one n and one ff particle, and these two states are just 
right to make a representation of (32). 

However, in the 1IN expansion, the n and ~ particles acquire masses. These par- 
ticles, once they acquire masses, cannot be arranged in multiplets of (32), since 
four states would be required for given SU(N) quantum numbers. What is wrong? 

A similar problem arises, and has been resolved, in connection with the Higgs 
phenomenon in four-dimensional supersymmetric gauge theories [27]. The resolu- 
tion of this problem, in our model, is as follows. We have claimed that this model 
has a spontaneously broken discrete symmetry. Therefore, we can define topolo- 
gical charges 

do ** dTr 
S = f dx -~ ,  P = f dx - ~  , (45) 



312 E. Witten / Instantons 

which are zero in ordinary perturbation theory, but non-zero in the 1IN expansion, 
because there is symmetry breaking in this expansion. 

As in ref. [27], the naive supersymmetry algebra (32) is not correct, but must be 
modified to include the central charges, 

(Q~, Q~}= {Q~, Q ~ } = 0 ,  

(Q~, 0~ ) = 3;~Pu + c ( 8 ~ S  + ( 7 s ) ~ P ) ,  (46) 

where e is a constant. 
Now, (46) has representations of dimension four, but it also has representations 

of dimension two for states which have S or P non-zero. Thus, if the n and $ par- 
ticles have non-zero values of the topological charges, they can be arranged in two- 
dimensional representations of (46). Since we have argued that these particles are in 
fact solitons, with non-zero values of the topological quantum numbers, the paradox 
is resolved. 

However, if there are states with Q = 0, which by (43) cannot be solitons, they 
must come in four-dimensional representations of (46). Indeed this occurs. The o, 
n, ×, and X* particles have Q = 0, and form a four-dimensional representation of 
(46). 

Finally, in the second paper of ref. [25], it was pointed out that the 0(3) (or 
SU(2)) supersymmetric non-linear sigma model has a bosonized form. This result 
can be rederived much more easily in the SU(2) language. The constraint 
n~ ~i = 0 on the Fermi field ~i of the SU(N) model can, for SU(2), be conveniently 
solved by writing ~i = eiJn *l'X, where X is an SU(2) singlet Fermi field. In terms of 
X, the Lagrangian (30) takes a form which can be routinely bosonized, by use of the 
standard formulas, reproducing the result of ref. [25]. 

In the bosonized form of the theory, the fermions are replaced by a logarithmic 
interaction among instantons. This is the form of the theory which makes the instan- 
ton degrees of freedom most conspicuous, but it does not seem to be a form very 
close to the actual physical properties of the theory. 

5. Implications for quantum chromodynamics 

We have now seen, in a fairly detailed way, that predictions based on instanton 
lore are not reliable in the two-dimensional SU(N) sigma model. Quantitative pre- 
dictions based on instantons are wrong, and qualitatively the main phenomena in 
these theories cannot be understood in terms of instantons; the effective Lagrangians 
that describe these effects were constructed without, and do not contain, instan- 
tons. 

Now we must ask why this has occurred, and whether it is likely to occur in four- 
dimensional quantum chromodynamics. I will give here a heuristic answer to this 
question. (The analogy that follows was suggested, in part, by work of Migdal 
[28].) 
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As argued in sect. 2, the starting point of all discussions of instantons is a claim 
that the topological charge is quantized; if it is not quantized, one should not think 
about instantons at all, but about a smooth distribution of topological charge. 

Our argument in sect. 3 that the topological charge is quantized in the two-dimen- 
sional SU(N) sigma model started with the observation that to have finite action, 
the field n i must be constant at spatial infinity up to a phase factor, 

n i -+ nio e i°(x)  , as Ix[ -+ ~ , (47) 

where n~) is a constant. This boundary condition involves spontaneously broken 
SU(N) symmetry because any choice of n~ breaks the symmetry. 

In perturbation theory, the boundary condition (47) which leads us to think in 
terms of instantons is reasonable, because from the standpoint of perturbation theory 
the SU(N) symmetry really is spontaneously broken. However, in the 1/N expansion 
we see that the SU(N) symmetry is actually restored. When it is restored, the boun- 
dary condition (47), and all conclusions that one might draw from it, are invalidated. 
Instanton physics is an example of a consequence of (47) that is invalidated when 
the SU(N) symmetry is restored. 

What is the analogous situation in QCD? 
The argument for quantization of the topological charge in QCD starts by saying 

that for finite action, the gauge field must approach a pure gauge at infinity, 

A u ~ g - l ~ u g ,  as Ix[-+oo. (48) 

Is this boundary condition reasonable? We must remember that in quantum field 
theory, the correct boundary condition is always that the fields approach the 
vacuum at infinity, where by "the vacuum" I mean field configurations that are 
typical of the vacuum. 

From the point of view of perturbation theory, the vacuum is mostly pure gauge; 
in fact, in perturbation theory we construct the vacuum as an expansion around pure 
gauge. Therefore, from the point of view of perturbation theory, the boundary con- 
dition (48) is reasonable. 

However, taking as given a supposed experimental fact of quark confinement, 
quark confinement tells us that in reality the vacuum cannot be regarded as being 
mostly pure gauge. In fact, the expectation value of Wilson's loop in any state that is 
mostly pure gauge will (just as in perturbation theory) not show a confining poten- 
tial. Thus, in a quark-confining theory the boundary condition (48) is not reasonable 
and conclusions based on it are likely to be wrong. 

In particular, instantons and instanton physics are likely to be just as misleading 
in four-dimensional quantum chromodynamics as in the two-dimensional SU(N) sig- 
ma model. 

Predictions that depend only on the existence of the topological charge and of 
the axial anomaly will, I believe, be valid in QCD. This includes the existence of the 
vacuum angle, the resolution of the U(1) problem, and others that have been discussed 
at length in this paper. 
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However, predictions that depend on thinking about instantons and an instanton 
gas (even a dense gas) will not be correct. 

For instance, if QCD remains a confining theory as N ~ 0% as 't Hooft argued [9], 
then I expect that the 0 dependence and the resolution of the U(1) problem will be 
visible in the 1IN expansion, in contradiction to expectations based on instantons. 
For any approximation that yields confinement will have to include, under one guise 
or another, fields that fluctuate at infinity, corresponding to a vacuum that is not 
mainly pure gauge. Fields that fluctuate at infinity and do not approach pure gauge 
generically have non-zero f dx FF, and once we include such fields we will find the 
characteristic effects of non-zero f dx FF:  the 0 dependence and the resolution of 
the U(1) problem. In such a picture, it is most probable that the r~ mass would appear, 
in the 1IN expansion, in the first diagrams that split the singlet and non-singlet chan- 
nels. These are the first non-planar diagrams, the first diagrams that permit q~ anni- 
hilation into glue states. 

In summary, the proposed correspondence between two and four dimensions is as 
follows. 

The boundary condition n i ~ nio eia in two dimensions corresponds to the boun- 
dary condition A u _+g-i Oug in four dimensions. 

Restoration of the SU(N) symmetry in two dimensions, which signals that the 
boundary condition n i ~ nio ei° is misleading, corresponds to quark confinement in 
four dimensions, which signals that the condition A u ~ g- lOug is misleading. 

Finally, Coleman's theorem on the absence of continuous symmetry breaking in 
two dimensions [29], which tells us in advance of any calculation that in a correct 
calculation the symmetry would be restored, corresponds to the experimental fact of 
quark confinement, which tells us, in advance of our ability to do calculations, that a 
correct calculation would yield confinement. 

I believe that this heuristic line of reasoning is convincing, but is certainly not con- 
clusive by itself. It should be noted that several other considerations make this point 
of view attractive. 

(i) It removes the conflict between instantons and the quark model concerning 
the r/. 

(ii) It removes the conflict between instantons and the large N expansion. 
(iii) The instanton calculations have internal difficulties, infrared divergences that 

get worse when higher-order processes are considered, and this suggests that we 
should seek a different physical picture. 

I will comment on these points in turn. 
About.the r/, much has been said above, and I will only stress here that because 

the simple quark model is usually so successful, it is attractive to try to reconcile 
the discrepancy between the quark model and field theoretic reasoning. 

As for the second point, the 1/N expansion, it should by now be clear that the 
1IN expansion and instantons, as ways of thinking about the strong interactions, are 
in conflict. 

Assuming that the quark masses are negligibly small, 1IN is the only parameter in 
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QCD. To lose the possibility of  expanding in this parameter would be a serious set- 
back to our chances of  some day understanding the strong interactions. Therefore, 
it is important to understand whether an expansion in 1/N can be expected to be 
qualitatively right, or whether it misses qualitative effects. 

It cannot be emphasized too strongly that in attempting to understand the strong 
interactions with instantons, there is no expansion parameter. We cannot say, for 
instance, that we are expanding in "h"  since h is not dimensionless. The only dimen- 
sionless parameter in QCD, apart from I/N, is g2, which, as we know, is absorbed 
into defining the scale of  lengths. 

It is very attractive to believe that QCD behaves like the two-dimensional model 
discussed in this paper because this removes the few discrepancies with what is other- 
wise the very attractive idea of the 1/N expansion. 

A technical point should be added here. 
In sect. 1 it was argued that instanton effects are of  order e -N.  Here I would like 

to clarify one o f  the arguments that was given. (The argument that follows shows 
only that instanton effects are smaller than any power of  1/N.) 

The 1/N expansion is a systematic expansion of integrals such as (12) in powers 

of a parameter, 1/N. Although such an expansion might or might not reproduce cor- 
rectly this or that physical phenomenon, we should expect that it will be valid at 
least as an asymptotic expansion of  the Green functions. 

Therefore, we can calculate the Green functions correctly to any finite order in 
1IN simply by following the rules of  the 1/N expansion, that is, by summing certain 
classes of  Feynman diagrams. As a result, any "instanton effects," that is, any effects 
that must be included apart from summing the Feynman diagrams, must be smaller 
than any power of 1/N, as was to be shown. 

Finally, the last reason that one might find the point of  view in this paper attrac- 
tive is that instanton calculations have certain internal difficulties, in the form of 
infrared divergences, which may suggest that one should seek an alternative physical 
picture. The divergence in integration over the instanton size is well known. It appears 
in the one instanton contribution to the vacuum energy and in the two point func- 
tion of  the electromagnetic current [30] 

However, it has been shown by Zakrzewski [31] that there are additional diver- 
gences that appear in instanton calculations, which become worse when one con- 
siders higher-order processes. For instance, when one considers two-point functions 
of  operators other than the electromagnetic current, one finds, in general, that in 
addition to the scale integration, the integration over the instanton position also 
diverges. And in examining two-instanton contributions to the vacuum energy, one 
finds, because of  a similar effect, that it does not have the correct behavior propor- 
tional to the volume V of  space, but rather has a term Vln V. 

Of course, it is possible that a resolution of  these problems can be found within 
instanton reasoning. But another interpretation, in line with the discussion in this 
paper, is that one should be seeking a different physical picture. 
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6. Conclusions 

It may be useful to conclude this paper with some remarks about the connection 
of  the analysis here with previous work. 

' t  Hooft showed that the U(1) problem is resolved in QCD because, although F F  
is a total divergence, nevertheless its space-time integral is not necessarily zero. 

The existence of  instantons is the most general way to see that f d'~xF~ " is not 
necessarily zero. Because instantons exist, even if one assumes at infinity the boun- 
dary condition Au _..~ g -10ug  that is most unfavorable for getting a non-zero value 
of  this integral, still one encounters fields for which the integral is non-zero. 

' t  Hooft 's arguments show that regardless of what else happens in QCD, the U(1) 
problem will be resolved, this following from the fact that fd4xFF is not necessarily 
zero. 

While instantons show that even if quarks were not confined in QCD, the U(1) 
problem would still be resolved, a different physical picture of  the resolution of  this 
problem may be more appropriate if quarks are confined. 

If quarks are confined, the true vacuum state is far from being mainly pure gauge. 
Any approximation to the (infinite space-time volume) path integral includes, under 
one guise or another, fields whose asymptotic behavior is the behavior characteristic 
of  the fields that dominate the vacuum state found in that approximation. An approxi- 
mation that yields quark confinement will inevitably include fields that in no sense 
approach a pure gauge at infinity. For such fields, there is no reason for the crucial 
integral f d4xFF to vanish. (Remember that to show it vanishes, two ingredients are 
required: the gauge field must be a pure gauge at infinity; and this pure gauge must 
be topologically trivial. My claim is that any quark-confining approximation will 
include fields that violate the first condition.) Therefore, the effects that arise when 
one includes fields for which this integral does not vanish, the 0 dependence and 
the resolution of the U(1) problem, will appear in any approximation that yields 
quark confinement. 

In particular, the 1IN expansion may well be such an expansion [9]. If  so, I 
believe that in QCD, as in the Schwinger model, it will be inappropriate to consider 
"instantons." that is, classical fields whose contributions must be added on to the 
sum of the Feynman diagrams. The sum of the planar diagrams, if it yields confine- 
ment, will have invalidated the boundary condition, Au -~ g-10/ag at infinity, which 
motivates a consideration of  instantons, as well as yielding the effects (the 0 depen- 
dence and r/mass) for which instantons are puportedly responsible. 

The two-dimensional model considered in this paper shows that such behavior 
is possible. Perhaps the arguments in this paper will persuade the reader that it is 
attractive to believe that such behavior occurs also in QCD. 

I would like to thank A. Patrasciou for discussions. 



E. Witten / Instantons 317 

Appendix A 

The "Higgs m o d e l "  in one space dimension 

We wish to comment here on the confusing question of  whether two-dimensional 
scalar electrodynamics has a phase transition. These comments will not resolve this 
question, but may help clarify the issues. Thus, consider the Lagrangian: 

= (3 u - ie A u )  dp*(3 u + ie A u )  ~ - ~ (~b*¢) 2 

M2O*q~ 1 2 - - g F ~ v .  ( 4 9 )  

We wish to argue that this theory has a phase transition as a function o f M  2. 
One expects a phase transition for a very simple reason. For positive M 2 this 

theory has unbroken U(1) symmetry, so that the ~ and 4" particles interact via 

Coulomb potentials. This corresponds, in one space dimension, to a confining phase. 
On the other hand, for negative M 2 we expect broken U(1) symmetry and a Higgs 
phase. However, several subtleties arise when one tries to show clearly that this phase 
transition really exists. Some of  the subtleties are related to instantons. 

The most straightforward way to prove that a phase transition exists is to find a 
qualitative criterion (an "order parameter") that distinguishes the positive M 2 theory 
from the negative M 2, so that there must be a phase transition between them. 

At first sight a qualitative criterion seems easy to find. We have confinement for 
positive M 2 but not for negative M 2. However, in attempting to make this precise 
one finds trouble. 

What is confinement? One might try to define confinement by introducing the 
electric charge Q = f dx Jo, Jo being the charge density, and saying that Q annihi- 
lates all the physical states. 

Here, however, we encounter an embarrassing fact. Q also annihilates all states 
in the Higgs theory, M 2 < 0. This follows from Gauss' law, dE/dx = eJo, from which 
we learn that 

- l f ~  =l (E(oo)- E(-~)) o=f Jo- e 
But in a Higgs theory, the electric field is screened, so E(~)  = E(-oo) = 0 for all 
states. Therefore Q = 0 for all states. 

Of course, we feel intuitively that Q is zero for completely different reasons in 
the two cases: because of  confinement for M 2 > 0, and because of  screening for 
M 2 < 0. To make this intuition into an argument that a phase transition exists, we 
must somehow make precise the idea that for M 2 > 0, the physical states, although 
neutral, are bound states of  charged constituents, while for M 2 < 0 they do not 
have such an interpretation. I will suggest below a way to make this precise, but first 
let us consider other possible approaches. 

One might try to ask how the theory reacts to an external test charge. For M 2 > 0 
an external test charge of strength e can form neutral, and hence finite-energy bound 
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states with one of  the ~ or ~b* particles. However, a fractional test charge cannot 
combine with the ~ and q~* particles into a neutral bound state. Therefore, there do 
not exist, for M 2 > 0, finite-energy states with a fractional test charge. 

Ordinarily we would expect the Higgs theory, M 2 < 0, to behave differently and 
to have finite-energy states with external charges of  any strength. This is true in any 
number of  space dimensions except one, but in one dimension it is not true, be- 
cause of  instantons [ 14,15], and therefore we have failed again to distinguish 
M 2 > 0 from M 2 < 0. 

Another unusual property of  this theory is the vacuum angle 0. But 0 exists both 
for M 2 > 0 (where it corresponds to a background electric field) and for M 2 < 0 
(where it is related to instantons). Thus, the existence of 0 is not a qualitative dis- 
tinction between the two regimes. 

The qualitative property which I think makes precise the idea that M 2 > 0 is a 
confining theory and M 2 < 0 a Higgs theory appears when we consider the form of 
the 0 dependence. 

For M 2 < 0, the amplitudes depend on 0 only through factors of  cos 0 associated 
with instanton amplitudes. These factors are, of course, completely analytic as a 
function of 0. 

However, it is easy to see from ref. [12] that f o r m  2 > 0 the physics is not analy- 
tic as a function of 0. For in this theory, 0 corresponds to a background electric 
field. As one increases 0, the electric field increases, and eventually it becomes ener- 
getically favorable to create a ¢p¢* pair, which then separate to plus and minus infi- 
nity, so as to reduce the magnitude of  the electric field. At the values of 0 at which 
a pair is created, the vacuum expectation value of  the electric field changes discon- 
tinuously, and all other physical quantities are non-analytic, or, in some cases, dis- 
continuous. It was found in ref. [12] that the points of  non-analyticity are 0 = (2n 
+ l ) w .  

Thus, f o r M  2 < 0 the physics is analytic as a function of 0, while f o r m  2 > 0 it 
is not. This qualitative difference shows that a phase transition exists. It is not just 
a mathematical abstraction, but rather is closely related to our intuition that for 
M 2 > 0, but not for M 2 < 0, the physical states are bound states of  charged consti- 
tuents. For the non-analyticity corresponds precisely to the liberation, and separa- 
tion, of a pair of  these charged constituents. This gives a precise basis for saying that 
the positive M 2 theory is a theory of  confinement while the negative M 2 theory is 
a theory of  screening or a Higgs theory (but one which because of  instantons would 
confine fractional test charges). 

Appendix B 

O, dependence in the Kogut-Susskind model 

One conclusion that follows from the viewpoint of this paper is that the 0 depen- 
dence and the U(1)problem are closely related to confinement. In the case of the 
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U(1) problem, Kogut and Susskind made a similar suggestion several years ago [32] 
for somewhat different reasons. 

Kogut and Susskind considered (in four dimensions) a phenomenological model 
of confinement,  in which 1/k 4 photon propagators were introduced in perturbation 
theory, and found that the resolution of the U(1) problem could be seen in pertur- 
bation theory in such models. 

Can also the 0 dependence be seen in perturbation theory in such models? Here 
I will only state a partial result coming from a limited study of this question, which 
deserves further study. To answer this question, one may add to the Kogut-Suskind 

Lagrangian a term 0 f d4xF#u~'tsu f (x) ,  where f(x) is a test function that is taken to 
be one only at the end of the calculation. Furthermore, it is useful to expand in 
powers of 0 near 0 = 0. The term linear in 0 turns out to have a non-zero limit as 
fapproaches one. It is a correction to the energy of a system of electric charges of 
the form OP. p, P and/~ being the electric and magnetic dipole moments. This is ana. 
logous to Coleman's result that in one space dimension a non-zero 0 corresponds to 
an extra term OP in the energy. However, the terms of higher order in 0 seem to 
diverge as fapproaches one, and the nature of the true answer is not clear. 
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