
Volume 103B, number 3 PHYSICS LETTERS 23 July 1981 

QUANTUM GEOMETRY OF FERMIONIC STRINGS 

A.M. POLYAKOV 
L.D. Landau Institute for Theoretical Physics, Moscow, USSR 

Received 26 May 1981 

The formalism of the previous paper is extended to the case of supersymmetric strings. The effective theory which sums 
up fermionic surfaces is described by the supersymmetric Liouville equation. At D = 10 effective decoupling of the Liouville 
dilaton takes place and our theory coincides with the old ones. At D = 3 our theory is equivalent to the three-dimensional 
Isirlg model, which is thus reduced to the two-dimensional supersymmetric LiouviUe theory. 

In the previous paper [1 ] I have developed the pro- 
cedure for quantizing Bose strings, or, which is the 
same, for summing up random surfaces. It is very ur- 
gent to extend these results to fermionic strings be- 
cause, as was shown in refs. [2,3],  the three-dimension- 
al Ising model can be reduced to the free Fermi string 
theory. In this paper we shall generalize the construc- 
tion ofref .  [1] to the fermionic case and show how 
to compute critical exponents. Let us begin from the 
supersymmetric extension of  the Bose string lagrangian 
(see ref. [4] and references therein). 

S =1 f[v~g~Da~xaex + ~iTc~ ~a~ 

+ X'c~TD3,a(a~oc + ½XDff)~ l d2~,  (1) 

here the surface is parametrized by x A = XA(~) , A 
= 1 ..... D; ~ is a two-component Majorana spinor, 
gad is a metric tensor and Xc, is a spin 3/2 "gravitino" 
field, one has to treat g~D and ×a as independent varia- 
bles in order to ensure local supersymmetry. Our 
strategy as in the previous paper will be to integrate 
out the x and ff fields first and then to examine the 
resulting theory of  "induced supergravity". Again, the 
integration can be explicitly performed because of  
the following reason. We have gauge freedom in the defi- 
nition of  gaD and Xa which consists of  general co- 
ordinate transformations, involving two arbitrary func- 
tions and a supergauge transformation, involving an 

arbitrary Majorana spinor. Because of  that we can 
choose the "superconformal" gauge 

gaD(~) = e2(~)fae , Xa(~) = TaX. (2) 

If  we try to substitute (2) into (1)we find that the e 
and X dependence disappear, due to the relation 
7DTa7 ~ = 0. That means that the functional integral 
over x,  ~k is defined by the trace anomalies of  the 
energy-momentum tensor TaD and the supercurrent 
Sa given by g,~DTa/3 and 7~Sa, respectively. The most 
simple way to compute the integral 

e -  W = f o~ Dx e - S  , (3) 

is to observe that W[e, X] must possess two symmetries, 
which are remnants o f  the local supersymmetry that 
are not destroyed by the superconformal gauge (2). 
Namely, in the language of  superspace (~ 1 ~20102), 
we have the transformations 

8z=u(z ) ,  8 0 = 0 ;  6 z = e ( z ) O ,  80 = e ( z ) ,  (4) 

where z = ~1 + i~2,0 = 01 + i02; u(z)  is an analytic 
function and e(z) is an analytic Grassman parameter. 
Another condition on W[e, X] is that being determin- 
ed by the trace anomaly it must be local in e and X 
and contain only coupling constants of  zero and posi- 
tive dimension. There exists only one expression which 
satisfies all these claims. It is the direct supersymme- 
tric extension of  the Liouville lagrangian, given in ref. 
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[1]. Let us introduce the superfields: 

E=e+O~+xO+(OO)X,  ~ = l o g E ,  (5) 

here X is a subsidary field which will be excluded later, 
the complex field X is connected with the previous 
Majorana spinor xl = (x2) by the relation X Xl + ix2. In 
terms of the superfield ~, the effective lagrangian we 
are looking for is given by 

W[e, X] = A f [(dO) (d~) +/le ¢] d2z d20,  (6) 

here A is yet undetermined constant,/~ is some arbi- 
trary mass scale, d = 3/30 + 03/3z. 

The superanalytic symmetry group (4) is realized in 
the following way: 

6E = (3/30 - 0313z) [e(z)E] , 

8~ = e(z)  (313o - o313z )¢  - o3e13z . ( 7 )  

In terms of original fields ~p = log e and X, the action 
(6) can be rewritten as: 

(d t~\[1 ('3,u~ °~2: + ½ixT(7" 3)X W=A 

1 T ~o 1 2 e 2 : ]  . (8)  + ~/a(X 75x)e + ~ 

The constant A is most easily determined by the com- 
parison of (3) and (8) with perturbation theory and 
is found to be 

A = -D/8rr, (9) 

where D is the number of space-time dimensions. 
Our next problem is to compute the contribution of 

ghosts, associated with the gauge conditions (2). The 
fermionic part of these conditions can be rewritten as 

x~ + 3'5%~ X~ = 0 ,  (10) 

where ea~ is a standard antisymmetric tensor. 
Under supersymmetry we have 8Xa = gczco where 

co is a Majorana spinor and V a is a spinorial derivative. 
It is possible to show, following the reasoning of ref. 
[ 1 ] ,  that the integration measure is given by 

dla(gab, X) ~D~0(~)Dx(~) detl /2£ B det-1/2£ F, (11) 

where £B is a supersymmetric extension of the ghost 
operator introduced in ref. [1 ],  and £F is given by 

£F 6o = V°e(V a w + T5 ea3 g 3W ) . (12) 

For the case X = 0 and ga3 = e2(~)6~# z pfa~ the 
operator (12) is reduced to 

£V = e-  33e(e3z). (13) 

The determinant of (13)is easily computed, giving 

11 1~2 e2SO] d2~ ½ log det £F = 24~-~ f [~(3u ~'°)2 + 

at X = 0 (14) 

(we use here the general formula): 

½ log det [p- / -  13e(p/3z)] 

1 +6 ] ( / ' +1 ) /~  I 2 
- 127r J [~(3u~°) + 51~2 e2:l d2~ , (15) 

• • 1 • the Dxrac operator corresponds to I = -~ ,  bosonlc 
. . . .  .11 ghosts to I = 1, fermlonxc ghosts tOl = ~ and scalar 

fields to ] = 0. Collecting together (14), (11), (8) and 
(9) we obtain the final answer: 

z = f D : ( ~ )  DX(~) 

( l O - D r  ) 
Xexp - 8~ J £ d 2 ~  , (16) 

1 1 1 22~o £= ~(3u~0) 2 +~ix(3"3)X+$/a (XT5X)e ~° +~U e . 

This is a two-dimensional, renormalizable, completely 
integrable field theory, which as we just proved de- 
scribes the sum over random surfaces with fermionic 
structure. It will be a subject of another paper to in- 
vestigate this theory in full detail. Here we shall give 
only a one-loop estimate for the critical exponents of 
the fermionic string, alias the three-dimensional Ising 
model. Let us examine the renormalization of the mass 
in (16). In order to do this we introduce some back- 
ground field ~0c, which minimizes the classical action: 

S c  I _ 10 - D  x lU2 e 2~°c] d2~ (17) 8zr f [~ (3u~°c)2 + - 

and compute the one-loop correction to (17). The cor- 
responding quadratic action has the form 

1 0 - D  1 1 eqSc~2] SII - ~ f [5 ( d ~ )  (d'~) + ~/a d2~ d20,  

(18) 

where ~b = q~c + if, ~ is a real superfield. The cut-off 
procedure for the gaussian integral of (18)needs some 
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care. Namely, we should not destroy under the renor- 
malization the analytic supersymmetry (4). This can 
be achieved by definition of  the determinant through 
the following eigenvalue problem: 

~/(d~k) = (?'n +/~) eOc~b • (19) 

The resulting effective action in terms of  X n is given 
by 

Sef f = Scl 
0 0  

1 dr 
+-~ f ~ -  ~ [exp( i rxB) - -  exp(irXnF)] , (20) 

E 

where ~ is a proper time cut-off, X~ 'F are Bose and 
Fermi branches of  the spectrum. The divergent part 
of  expression (20) can be evaluated by the use of  the 
standard WKB short-time expansion. As a result, the 
mass/a acquires a logarithmically divergent renorma- 
lization. Detailed calculations will be given in a sepa- 
rate paper. It is a very important effect, because, as is 

well known, in phase transition theory the depen- 
dence of a physical mass ~t on a bare mass ~0 defines 
the critical behaviour of  the specific heat [5].  So, 
by solving the Liouville problem and finding the ~(/~0) 
dependence we can check the scaling laws and find 
the critical exponents. 

This solution is certainly possible to find due to 
the complete integrability of  the theory. There still 
will be some further problems, since up to now we 
dealt with topologically trivial surfaces. It might 
happen that summation over topologies will introduce 
some extra renormalization of the physical mass. Ob- 
viously, there is still a lot o f  work ahead. 
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