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A covariant fermionic vertex is constructed in terms of Ramond spinors and ghost operators, starting from the 
Neveu-Schwarz model. Correlation functions of spinors and ghosts are defined. The supersymmetry algebra is realized as the 
algebra of massless vertices with zero momentum. 

Recently, superstrings have become the focus 
of a great deal of interest. A serious disadvantage 
of the existing formulation [1] is the lack of 
covariance. In ref. [1] only the light-cone analysis 
has been performed, which obscures the geometri- 
cal meaning of superstrings. In this letter I will try 
to overcome this drawback and present a covariant 
formulation. The starting point will be the 
Neveu-Schwarz (NS) model [2]. For simplicity 
only the open string sector will be considered. 

Amplitudes in the NS model are given by 
integrals of the correlation functions of the 
vertices V,f(p~, z~) over their two-dimensional 
coordinates z~: 

A(Pz . . .PN)  

--,L 
ordered z~ 

d~2 = (dzadZbdZc)/ZabZbcZ.. Zab = Za-- Zb ..... 

(I) 

where the vertices V:(pi, z~) are f-components of 
the superfields 

V(z, O) = vb ( z )  + OVr(z). 

0 is a Grassmann superfield coordinate: 0 2 = O. 
To construct a vertex V(p, z,O) one can take 
linear combinations of the superfields 

D(",)~,, . . .  D(",)~(~,exp[ip~(z,O)] 

of the equal level numbers N = 2~_1ni. X~,(z, O) 

is a superfield of a space-time coordinate of a 
string world-sheet, normalized as 

(~/L(z1, 01) ~ ( z 2 , 0 2 )  ) = - l~p., In 2a2, 

X~(z,O) = X~( z) + iOff~(z), 

2 1 2 = Z  1 - z  2 -  0102 . (2)  

D is a covariant derivative: D = 0/00 + O0/Oz, 
D E= d /d  z. These linear combinations must 
satisfy the supergauge conditions 

GrVb(p ,g)=O,  n > O ,  

LoVb(p, z) = ½Vb(p, Z) = ½(p2 + N)Vb(p ,  z), 

(3) 
so that (1) be projective invariant and satisfy 
factorizability. The operators Gr and L o in (3) are 
Laurent components 

G r ~ i  G ( , ) ( , -  g)r+l/2 , 

dr; 
- z )  , ( 4 )  

of the supergauge G(z)=- i~/~OzX~(z)  and 
con formal generators T(z) = - ½ 0z X ~ 0~ X~ (z) 
- ½e/~O?k~(z), satisfying the Neveu-Schwarz 
superalgebra 

[ L. ,  Lm] = ( n - m ) Ln+ m + .~..@n ( ,  2 - 1) 8.+,,,,o, 

[ L . , G r ] = ( ~ n - r ) G . + .  

{Gr, G.} = 2L.+s + ½~(r 2- ¼)Sr+., o. (5) 
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Note, that L 0 measures the conformal dimension 
of an operator. It is zero for X~, ½ for ~,,  1 for a z 
and ~_pZ for exp(ipX). Also V ~ = G_1/2 Vb. In (5) 

is the space-time dimension. The vertices 
described above correspond to space-time tensors, 
i.e. bosons. To remove a tachion p2 = 1 one can 
restrict the model to pure two-dimensional bosonic 
V t 's, considering only odd levels of N [2]. 

The model also contains another set of states, 
discovered by Ramond [3]. The respective oper- 
ators O(z) are characterized by the property that 
ff~(~) changes its sign, when moved around ®(z): 

+ = - 

Thus q~' (~) (~-z ) l /20(z )  is a single-valued 
function of ~ in the vicinity of z. We now can 
introduce operators 

bCO(z) = 2- i - z)"- I/ 0 (z), , ,  z 

(6) 
and using (2) deduce that they satisfy ( b~, b~ } = 
~/~'~8, + m,0. The zero mode subalgebra (b~, b~ } = 
~/~'~ enables us to identify b~ with the space-time 
Dirac matrices ¢~-b~ = y~ ensures that O(z) has 
a spinorial index A: O ~ O A, thus being a 
space-time spinor. A remarkable fact is that if we 
construct vertices ~ ( p ,  z) using the Majorana- 
Weyl O a and such linear combinations of oper- 
ators 

a~'h)X m . . . .  a("*)X: .,-h~'l- q, . . .  b[.b. OA(z) 

x exp [ipX(z)] 

of equal levels M = Y.n~ + Y.q~, that 

G ~ ( p , z ) = O ,  n>~O (7) 

(note that due to (6) r, s in (4), (5) must be 
integers), then for ~ = 10 the number of 
space-time fermions at each level M will equal 
the number of bosons at each level N = 2M + 1 
in the restricted bosonic sector [4]. We will see 
below.that the conformal dimension of O ~ equals 
~ / 1 6 ,  thus from (3), (5) and (7) one can deduce 
that the corresponding bosonic and fermionic 
states have equal masses. On these grounds the 
space-time supersymmetry of the model has been 
conjectured in ref. [4]. 

The difficulty one meets with is that actually the 
vertices ~ (  p, z), described above, can be used 
when only two fermions are involved. The expres- 
sion for the amplitude for ~ =  10 is [5]: 

A(pa . . . . .  PN) 

- dz i ( t } (p l  ' 
= JI~I  i " ~  z i )~(P2,Z2)  

× Wb(p3,  Z3) I - I  gf(Pi,  Zi) 
i=4 

x z?d/4z?31/2z 31/2, (8) 

where the last factor makes the whole expression 
projective invariant, i.e. makes all dimensions 
effectively 1. This shows that to construct a 
fermionic vertex using O's one must understand 
how to generalize such a factor for the case of 
more than two fermions. As all formulas must 
have purely geometrical interpretation, it is natural 
to interpret such factors as correlation functions 
of some operators from the sector of Polyakov's 
ghosts [6]. 

In order to solve this problem, let's first 
describe the properties of the correlation functions 
of chiral O 's. The adequate point of view is that 
both ~b and chiral OL a and 0 4 are highest weights 
of the vector and spinor representations of the 
Kac -Moody  algebra 

J~v( z )JaB( z') 

= _ - + nv J.  - 

(z-z') z-z'  
+ nonsingular terms (9) 

of the currents J~,v = ~,¢~ with central charge 
k = 1. When ~ - -  21 and k = 1 there is a very 
useful representation of (9) and the currents J~,~ 
in terms of I free bosonic fields rpa, a = 1 . . . . .  l [7]. 
Let us denote 21(l - 1) roots of the system D t by 
a, omitting index, and by { a, ) the l vectors of its 
basis: a~ = a l l  = at z = 2, a i " i V / +  1 = ~ l - -  2 "  I1¢l = - -  1 

for i = 1 . . . . .  l - 2. Then ½ ~ ( ~ -  1) currents J . .  
can be represented by linear combinations of 

S,,(z) = exp [ (i/v~-) a~ (z) ] ,  

Hg( z ) = ( i / f 2  )agO,~( z ), (10) 
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where ( % (  Z )Cpb( Z') ) = -- 8ab ln (  z -- z ') .  The  com- 
ponents of O A and ~k ~' can also be bosonized in L,R 
terms of linear combinations of exponents 

ff~, ",-* exp [ ( i / ¢ '2 )  ,p~0,,], 

O a ~ exp [ ( i / v ~ - ) ~ + ]  (11) L,R 

where t~ + and ~v are the weights (indices omitted) 
of the spinor and vector representations of so(21). 
The characteristic feature of these systems of 
weights is that all weights in each system have 
equal lengths. These weights are vectors on a dual 
lattice with the basis { ~ ,  i = 1 . . . . .  l } formed by 
the fundamental weights: 2 ~ i a j / a  ~ = ~ij" The  
highest weights to h of each of the above represen- 

(oh_= h tations are t~h+ = Ol_l, td I and t~ v = t~ 1. The 
conformal dimension A of 0 can be easily 
calculated from (11) by means of the representa- 
tion 

al - - - -  E1  - -  ( 2 ,  • • • ,  a l - 1  = I [ I - 1  - -  ([1~ 

a l ~ ( l _  1 + ~ 1 ,  

~1  = l ~ l ' ~ l - - 1  = 1(~1 + " ' "  + ~ l - - l - - ~ / ) '  

~ , =  ½('1 + " '"  + ' , ) ,  (12) 
where { ~ } is an orthonormal basis of Rt: ~i~j = ~q, 
and equals h---- { l - -  ~6 ~ .  An arbitrary weight 
~ + ( ~ _ )  can be obtained from ~t_l(~t)  when an 
even number of signs of the ~ is changed. Note, 
that such a construction can be used for any Lie 
algebra whose simple roots are of equal length and 
for representations with all weights of equal 
length. The set of highest weights of representa- 
"tions meeting this condition is: ~1 . . . . .  a~t for At; 
~1~ t~t-1, ~t for Dr; t~ 1, ~6 for E 6 and ~7 for E7, 
with the notations: 

E~ 0 O ~ 0 0 , 

E7 o,--,-o ~ o o 
$ 

O • 

"7 

The corresponding correlation functions are those 
of the exponents (11) of the free fields %,  thus 
being trivial. All of them and of course the 
dimensions coincide with those that can be 
obtained by means of the methods of r¢f. [8]. 

F rom (11) it follows that for ~ =  4k + 2 

= z ' )  

( ) O g  ( z ' )  = ( z - 

×[c  + 
, 

[ ~ x A B  1 /2 - .~ /8  - 1 / 2  - 1 / 2  
= I "[/.tL, ) Z12 Z13 Z23 (13) 

where AS O,~, s (Z) are analytic single-valued functions 
of z, zero at z = 0. C As is a charge conjugation 
matrix. For  ~ = 4k one must change the chirality 
of O A in (13). The "covariantization" of the 
correlation functions of the O A is a straightfor- 
ward but  not very easy task in general. We will 
give two examples: for ~ - -  6 

= 

i< j  

and for ~ = 10 

(' / I - I  
i~1  

t" x - 3/4[ [ ~ \ A , A 2 [  i~f,'~A3Aa 
= H ~ Z i j )  [Z14Z23~'~pL,) ~'~ I..,) 

i< j  

z q  = z i - zj .  (14) 

Keeping these results in mind let us now 
proceed to the amplitudes, beginning with the 
amplitudes for massless particles. We will actually 
seek for a fermionic vertex fi A (P )  FA ( P, Z) where 
the Majorana-Weyl  c-number spinor amplitude 
u ( p )  satisfies the Dirac equation 

p u ( p )  = 0, /3--p~'y~. (15) 

The vector vertex is known to be 

~'V~f(p, z ) =  ( a / 3 0 )  ( i~DA'~exp [ i p Y f ( z , g ) ] }  

= ~'(iOzX~, - ~k~,P" ~k) exp [ i p X ( z ) ]  

= G_1 /2 (  - ~ .  ~ exp [ i p X ( z ) ]  }. (16) 
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It is also known that two of the vector vertices in 
a muhivector amplitude can be represented in the 
b-form (the so-called ~-2-formalism, see ref. [5]): 

p K b ( p , z )  = (17) 

A ghost fermion X(Z) of dimension ½ must be 
introduced in order to maintain projective invari- 
ance:  

-a. 

Now one can see that in (8) each fermionic vertex 
can be represented by 

r, AF~(p, z) = aOLeX p [ipX(z)] o(z), (18) 

where o(z) is an additional ghost operator of 
dimension 3, such that 

<O(Z1)O(Z2)X(Z3)  > = Z~21/4Z13'/2Z231/2. (19) 

The vertex (18) is thus a "square root" from one 
of the two b-form vertices (17) in the sense that 

X [ - 2~IT, u 2Vp~ +,2(z2) + O(z12)]. (20) 

In (20) we have restored the correct normalization. 
The vector, obtained on the RHS of (20) is 
transverse due to (15), and we have a pole in the 
amplitude when it is on-shell: PIP2 = 0. Another 
useful relation 

X [ ½U2~( ./~ 1 +]92)Gl+p2(22)+O(z12)] (21) 

is valid both for the b- and for f-components (16), 
(17). 

Now, it is obvious that the remaining b-form 
vertex in (8) can be divided in an analogous 
fashion. The obtained correlation functions con- 
tain four fermionicvertices (18) and a number of 
f-form vector vertices (16), the relevant 4o-correla- 
tion function being 

/' > H = 1-I ? 1/4. (22) 
i=1 i<j 

Together with (14) this immediately yields the 
correct result for the four-fermion amplitude [1]. 
Yet, the simplest way to obtain this and also the 
two-fermion amplitude without knowledge of (14), 
(22) is to use the superstring vertex algebra (SVA) 
(20), (21) directly, evaluating correlation functions 
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by means of the bootstrap procedure. The funda- 
mental fact is that the correlation function 
becomes single-valued in all arguments z~ when 
multiplied by I-I, < j(z u)-p'vj, and for each i falls 
off like z 7 2 when z i ~ oo, After this operation the 
SVA becomes part of some unknown Kac-  
Moody-like algebra, and the unique three-fermion 
Jacobi identity, that can be verified, leads to the 
famous condition of the existence of super- 
Yang-Mills theories [4]: 

~//xU3H1TgU2 "Jr" TttUlU2)'ttU 3 -4- )'ttU2U3)'gUl = 0. (23) 

To construct amplitudes with more than four 
fermions one must divide f-form vector vertices 
(16) in the four-fermion and vectors correlation 
functions constructed above. For the simplest case 
of a six-fermion amplitude one can easily guess 
that five fermions can be taken in the form (18) 
and the sixth in a different form: 

fi6F/~ ( z ) =  Gl[fi6Oexp(ipX(z))]~(z), (24) 

where fi (z) is a new ghost operator of negative 
dimension - ~s, such that 

/' / I ]  
/=1 

5 
= H ( Z i j ) - I / 4 E  (g i -  Z) 1/4. (25) 

i<j i=1 

The constructed six-fermion function will have 
correct factorization properties in the Pi +P6 
channels, as is clear from 

~_liG,( zi)~16F/6 ( z6) = zpip,-1 

x z6) + o(z,6)]. (26) 
Thus (26) is the sought for division of (16) and the 
obvious generalization to the case of N = 2k + 4 
fermions and M vectors is 

 -N,M = I-[ ajFg 
• - j=1 

× 1-I ~rV~f(Pt, z,) , (27/ 
I=1 

where the relevant ghost correlation function is 

I-I o(z,) H a( j 
i=1 j = l  

= H ( z i j )  -1/4 H ~ 1 2 / 4 H ( Z i -  f l )  1/4" (28) 
i<j I<m i,l 
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One can prove that (27) is symmetric in all 
fermions u p  to total derivatives, which are 
irrelevant due to the "cancelled propagator 
argument" ,  but  the proof  is cumbersome. To 
per form it, it is necessary that only the gauge 
conditions (3), (7) should be satisfied, where in the 
case of  (27) @(p,  z) -- r io  exp [ipX(z)] and 
Vb(p ,  z) = ~'v~b(P, Z). ThUS these expressions 
can be replaced by arbitrary states, satisfying (3), 
(7). Actually, the only nonzero correlations of o 
and f~ are (25). Thus there is a unified expression 
for a fermionic vertex for an arbitrary state 
satisfying (7): 

F(p, z) z)o(z) + z). 
(29) 

When one proceeds to the light-cone gauge, ghosts 
disappear,  the dimension of 0 Z reduces from ~ to 
½ and the O A of the same chirality are free 
fermions with respect to each other, because the 
representations ~k ~, O~ and O~ of (9) are 
equivalent, as follows from the symmetry of the 

diagram for Ds: ~ z r - - o  Dynkin  

The vertex (29) turns into the one described in ref. 
[1]. 

We will now discuss supersymmetry of the 
amplitudes obtained. For this purpose let us 
consider the subalgebra of the SVA of vertices 
with zero momentum.  Identifying the operator 

2~ri 

with a space- t ime  translation operator (the 
contour  surrounds the vertex whose transforma- 
tion is under  study), one sees that 

roA(  ) 
~r 2~ri 

satisfies the space- t ime supersynunetry algebra 

= - 2 ( r . c )  p.. (30) 

From the SVA it also follows that fermionic and 
bosonic vertices are correctly transformed by Oa 
into each other. Let us now consider the function 

(,AFoA(z)l-fIt W(pi, zi)), (31) 

where W represents both bosonic and fermionic 

vertices. This function is analytic in z and has 
only simple poles at z = z r The conformal 
dimension of FoA(z) is 1. Thus when z ~ oo, (31) 
is - z -2, i.e. the sum of the residues is zero: 

But this is nothing else but the supersymmetry 
condition of the corresponding amplitude. Our 
conclusion is that the supersymmetry algebra is 
realized as the algebra of massless vertices. 

Formulas  (8), (28), (29) together with the 
SVA ~t completely describe all covariant ampli- 
tudes in superstring theory and its supersymmetry. 

The proofs of the symmetry of (27), and of the 
fact that o(z) and ~ ( z )  are really representations 
of superconformal field theory of the fermionic 
string ghosts, will be published elsewhere. An 
interesting question is how to obtain (29) on 
purely geometrical grounds. 

I ' m  grateful to A. Polyakov for a lot of useful 
conversations. Actually a study of SVA has been 
initiated by his suggestion. 

Note Added After this work had been com- 
pleted ref. [9] containing similar results was 
obtained. 

:~1 I must mention, that one cannot use the SVA when both 
fermions in (20) or a fermion in (21) are in the form (24). 
But any given set of 1, 2 or 3 fermions can always be 
represented by (18) and for them the SVA will be valid. That 
is all we need for deriving (23) and (30). 
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