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We mvesugate quantum field theory m two dlmenstons mvanant w~th respect to conformal 
(Virasoro) and non-abehan current (Kac-Moody) algebras The Wess-Zurmno model ts related to 
the special case of the representauons of these algebras, the conformal generators being quadrau- 
cally expressed m terms of currents The anomalous &mensmns of the Wess-Zuwano fields are 
found exactly, and the multlpomt correlataon functions are shown to sausfy hnear dffferenttal 
equations In parucular, W~tten's non-abelean bosomsauon rules are proven 

1. Introduction 

In  recent papers  [1-3] some novel important  properties of  the two-dimensional  

o-model  with Wess-Zumino action 

S x , , ( g )  = 4-- ~ f t r (  a.g-lO.g)d2;+ k F ( g )  (1.1) 

have been discovered. The matrix field g(~) in (1.1) is taken to be an element of  

some semisimple group G, ~ ' =  (~t, ~2) are the coordinates of  two-dimensional  

space, A 2 and  k are dimensionless coupling constants,  k being necessarily integer 

[1,2]. The  Wess-Zumino term F ( g )  is defined by the integral 

l fd3Xe~aqr(g-18~gg-tSl~gg-18~g) r ( g )  = (1.2) 

over  the three-dimensional  ball with coordinates X~; the boundary  being identified 
with two-dimensional  space [2]. The boundary  values g(~)  determine (1.2) modulo  

2~r [11. 
I f  k = 0, the action (1.1) reduces to the usual o-model which is well known to be 

asymptot ica l ly  free and effectively massive. This model  has been exactly solved in 
[4, 5]. U n d e r  the choice k = 1, 2 . . . .  the character of  the theory changes drastically as 
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has been shown by Witten [2], Polyakov and Wiegmann [3]. The renormalization 
group possesses the infrared-stable fixed point 

~2 4,r = --~-, (1.3) 

and therefore the effective theory is massless and its large-distance behavior is 
governed by the action 

Sk(g ) = kW(g), (1.4) 

where 

W(g)= {1-~ Str( O,g-iO, g)d2,+ F ( g ) } .  (1.5) 

In further discussions this theory (1.4) will be referred to as the Wess-Zumino 
model*. 

The most important property of the action (1.4) is its invariance with respect to 
infinite-dimensional current (Kac-Moody) algebra [2, 3, 8]. The action (1.4) remains 
unchanged under the transformations 

g(~)~O(z)g(~)~-~(~),  (1.6) 

where 12(z) and ~(~,) are arbitrary G-valued matrices analytically depending on the 
complex coordinates 

z -- ~1 + i~2, 

= ~1 _ i~2, (1.7) 

respectively. (Here we imply the euclidean version of the theory; in Minkowski 
space-time the variables (1.7) are the light-cone coordinates.) One can easily ensure 
symmetry (1.6) using the following remarkable relation [3, 8]: 

tr - t  h - I  W(gh-1) =W(g)+W(h)+16 , r f (g  d~g dzh)dZ~, (1.8) 

satisfied by the functional (1.5). Note that the group (1.6) generalizes the usual 
G × G symmetry of the chiral field, and it can also be represented as the direct 
product of the "left"  and "right" gauge groups; we shall denote it by G(z) × G(~,). 

* The fixed-point theory (1.4) deserves special interest because of tts analogies wath the quantum 
Ltouvdle theory related to the Polyakov stnng [7]. 
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The symmetry (1.6) gives rise to an infinite number of conserved currents which 
can be derived from the equations 

O,J = 0, a,,l= 0, (1.9) 

where the basic currents J and J: 

J = Ja ta  = - ½ k S z g g  -~ ' 

J = Ja t  ~ = -- ½ k g -  ~O~g, (1.10) 

correspond to the generators of the groups G(z) and G(~) respectively [2, 3]. Here t a 

are the antihermitian matrices representing (for the field g(~)) the Lie algebra 

[ l  a, t b ] = f ~ b c t c  (1.11) 

of the group G; fabc are the structure constants. Due to (1.9) we can write 

j a = j a ( z ) ,  .fa = ja(~.). (1.12) 

The variations of the fields (1.10) under the infinitesimal transformations (1.6) 
with 

I2( z ) = I + ~ (  z ) = I + o : (  z ) t  ~, (1.13a) 

~(,~) = I + ~( ,~)  = I + ~ ( , ~ ) t  ~, (1 .138)  

are described by the formulae 

8~J(z) = [,o(z), J(z)] + ½k,o'(z), 

6~J(,~) = [~(,~), :(,~)] + ½k~'( ,~) ,  (1.14)  

which shows that the generators J ( J )  of the group G(z) (G(~)) represent the 
Kac-Moody algebra [2] with the central charge k*. Since 8 ~ , ] = 8 ~ J = 0 ,  the 
generators J and ,7 are commutative. 

Under the choice G = O(N) the group G(z) x G(~') describes the symmetry of the 
free massless N-component Majorana fermion theory with the action 

N 

S , ( q ' , ~ ) = ½ f  E [ff~O?/,. +~.8,{.]d2~j ,  (1.15) 
a m l  

" Obwously,  there are no &vergent renormahzattons of the integer-valued "'couphng constant" k m the 
theory (1 1). However, fimte renormahzation of the type k 0 ~ k = k 0 + z~k, where k 0 stands m front 
of the " b a r e "  actaon (1 4) and zak ~s some integer, cannot be excluded a priori The one-loop 

computauon  shows that A k = 0 
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where ~k and ff are the "left" and "right" components of the Fermi fields. Actually, 
the theories (1.4) and (1.15) are related. Witten [2] has shown that the Wess-Zumino 
model with G = O(N)  and k = 1 is equivalent to the free fermion theory (1.15), the 
fields (1.10) being equal to the corresponding currents of (1.15): 

J~,(z) = :~k,(z)~bo,(z):, ,~a,(£) = :~a(£) f fa , (£ ) : .  (1.16) 

This result follows directly from the observation that the current of the models (1.14) 
and (1.15) satisfies the same algebra. Moreover, Witten suggested the local expres- 
sion f.or the field g(~) = g,a(~) in terms of the Fermi fields ~k, 5: 

= (1.17) 

where M is the mass parameter dependent on the regularization scheme. The same 
formulae (with slight specifications, see [8] and sect. 4) relate the model (1.4) with 
G = U(N) ,  k = 1 to the theory of N-component charged Fermi fields. Formulae 
(1.16) and (1.17) are Witten's non-abelian bosonization rules. 

Since the conformal anomaly vanishes at the fixed point (1.3), the Wess-Zumino 
theory (1.4) is invariant also with respect to the infinite-dimensional group of 
coordinate transformations: 

z ---} ~(z) ,  £ --* ~(£) ,  (1.18) 

with arbitrary analytic functions ~ and g; these transformations constitute the 
conformal group of two-dimensional space. In conformal quantum theory the local 
fields, like g(z, ~) in (1.4), can acquire anomalous dimensions, i.e. they are trans- 
formed as 

g(z,~.)--} (-~z ] k-~z ] g(~'~) (1.19) 

(with real positive A and A) under the substitutions (1.18). Obviously, for the 
spinless field g(z, ~.) of (1.4) z~ and A must be equal. 

In this paper we investigate the Wess-Zumino model with an arbitrary integer k. 
Using the infinite-dimensional symmetry (1.6), we compute exactly the anomalous 
dimensions and develop the method for computing the multipoint correlation 
functions (Green's functions) 

(g (z l ,  ~'1)""" g(ZN, 7"N)) ; (1.20) 

some of them will also be constructed explicitly. We apply the technique similar to 
that proposed in [9] for the conformal field theories in two dimensions. In particular, 
we will find the field g(z, ~,) (as well as some other "composite" fields of the theory) 
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tO be associated with the degenerate representation of symmetry algebra (semidirect 
product of current algebra and Virasoro algebra) of the model (1.4); therefore the 
correlation functions (1.20) satisfy special linear differential equations. Together 
with the general requirements of crossing symmetry, these equations determine the 
functions (1.20) completely. In the particular case G = U(N) or O(N) and k = 1, 
the relations (1.17) follow from our result. At k > 1 the correlation functions (1.20) 
turn out to be more complicated and the theory (1.4) can hardly be connected with 
free fields in any local way. In fact, the field g(~) and other local fields possess 
nontrivial anomalous dimensions in the theory with k > 1. 

Polyakov and Wiegmann [3] have managed to solve the model (1.1) (with arbitrary 
~2) exactly by means of the Bethe ansatz technique. Our approach is based 
completely on the symmetry (1.6) and conformal symmetry and therefore is re- 
stricted to the fixed-point theory (1.4). However, our approach provides much more 
detailed information about the theory (1.4); in particular, the computation of 
correlation functions like (1.20) remain beyond the powers of the Bethe ansatz 
method. It is also worth noting that the correlation functions of the model (1.4) 
studied in this paper describe exact infrared asymptotics of the general model (1.1). 

2. General properties of conformal quantum field theory invariant with 
respect to current algebra 

The stress-energy tensor T~,(~) of a conformal quantum field theory satisfies, 
besides the usual equation O~T~'(~) -~ 0, the zero trace condition T~(~) = 0. In two 
dimensions these two equations can be reduced to 

where 

OeT= O, 0~T-- 0, (2.1) 

In view of (2.1) we shall write 

T - -  Tll - T22 + 2iT12, 

T =  Tll -- T22 - 2iT12. (2.2) 

tions 

z ~ z + e ( z ) ,  (2.4a) 

• ~ --* ~, + ~(~), (2.4b) 

in the field theory, the field T being associated with the infinitesimal substitutions 

T =  T ( z ) ,  T =  T ( ~ ) .  (2.3) 

The fields (2.2) represent the generators of the infinitesimal conformal transforma- 
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(2.4a) of the variable z and T plays the same role for ~, [9]. If, besides the conformal 
symmetry, the field theory is invariant with respect to the transformations (1.6), 
there are also the local fields 

S(z)  =J~(z) t  ~, ] ( z )  =]~(5) t  ~, (2.5) 

satisfying eqs. (1.9) and representing the generators of G(z)  and G(2)  respectively. 
These statements have the following precise meaning. Consider correlation functions 
of the form 

<r(z)A, ,(zt ,  ~t). . .  Aj~(ZN, Z'N)), (2.6a) 

(Ja(z)Aj , (z l ,  zq)... Am(Zlu, ZN)), (2.6b) 

where A.tk(Zk, 7"k) are the arbitrary local fields. These correlators are single-valued 
analytic functions of z, possessing poles at z = zt, z z . . . . .  z N. The order and residue 
of each of these poles, say z k, are determined by the transformation properties of the 
corresponding field Aj,(Zk, Zk) with respect to the conformal (2.4a) and gauge 
(1.13a) transformations*. In fact, the following relations are valid: 

8,Aj(z, Y.) =~T(~)e (~)A~(z ,  ~)d~, 

~,oAj( z, Y. ) = ~  J°(~ )o~a(~ ) Aj( z, ~,) d~, (2.7) 

where 8~Aj and 8,~Aj are the variations of the field Aj under the infinitesimal 
transformations (2.4a) and (1.13a); the integration contour surrounds the point 
~" = z. Formulae (2.7) are understood as the relations between correlation functions. 
The same equations, with the substitutions T --, T, J ---, J, are valid for the variations 
8~ and 8~. 

Generally, the variations of the fields T(z) and J"(z) themselves are given by the 
formulae 

8~T(z) = e(z)T ' (z )  + 2 g ( z ) T ( z )  + ~ c e "  ( z ) ,  (2.8a) 

= + JO(z),  (2.8b) 

a jO(z) JC( ) + (2.8c) 

* Here and below we coastantly consider the correlators functions of the complex coordinates/~ ~ C 2. 
In the space C 2 the coorchnates z and ~ (1 7) are independent complex variables and the conformal 
group (hke the group (1 6)) can be considered as the threct product F(z)x F(~) of two 0denucal) 
groups F of analytic substatutaons of one variable. 
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where the prime denotes the derivative. The variations 8, and 8~ of the fields :F and 
J are given by the same equations, whereas the variations 8~ and 8~ of T and J 
vanish. The values of the real parameters c and k in (2.8) are not completely fixed 
by general principles. There are, however, the strong limitations of the values of 
these parameters: c must be positive and k must be an integer. It can be shown that 
otherwise the positivity condition of quantum field theory cannot be satisfied*. The 
equations (2.8) determine the algebra of the generators of the symmetry group in 
field theory. 

According to (2.7), eqs. (2.8) can be rewritten in the form of operator product 
expansions: 

c 2 T(z ' )  + 1 T'(z')  + ( 2 . 9 a )  
r ( ~ ) r ( z ' )  = 2 ( ~  - z ' ) '  + ( z  - z ' )  2 z - z-----: "'" ' 

T ( z ) j ~ ( z , )  = _ _ 1  + z___~j~,(z,) + . " ' ,  ( z  - z ' )  2J~(z ' )  (2.9b) 

k~ab f~bc c 
= - -  + z _--Z-~TJ (z ')  + - . .  , (2.9c) Ja ( z ) J t~ (Z ' )  ( Z _ Z , ) 2  

where the terms regular at z---, z' are ormtted from r.h.s.'s. The definition of the 
fields T ( z )  and J a ( z )  (as well as T and a v) should be supplemented with the 
requirement of regularity at z = o0, which is equivalent to the asymptotic conditions 

T ( z )  - z -4,  J a ( z )  - z -2 as z -+ oo. (2.10) 

Any local field Af l z ,  ~) of the theory is an "isotopic" tensor corresponding to 
some finite-dimensional representation of the "left" and "right" (global) groups G. 
Besides that, it is characterized by the anomalous dimensions (A j, ~j)  describing its 
transformation 

.4~ ~ x " ~ , ~ , t ,  ( 2 . 1 1 )  

under the (complex) dilatations z --, ~,z, ~ ~ ~ .  In fact, the difference sj = A -- Aj 
is the spin of the field Aj (the spin sj of the local fields can take integer or 
half-integer values only) whereas the sum dj = Aj + ~ coincides with the conven- 
tional anomalous dimension. Applying arguments sinular to those presented in [9] 
for the conformal theory, one can prove that there are the fields (like in [9] we shall 
call them "primary fields") which transform according to (1.19) and (1.6) under 

* A t  0 < c < 1 the  p o s i t i w t y  condxt ion  selects a l so  a n  m f t m t e  d iscre te  set o f  a l l owed  values  o f  c [11] 
T h i s  l m u t a t i o n  ts n o t  s l gmf l can t  here  because  m the W e s s - Z u m a n o  mode l  c > 1, see sect.  3 
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arbitrary conformal and gauge transformations. Let us note that the matrices IZ(z) 
and I2(~,) may correspond, in the general case, to different representations of G. 
Introducing the notation cot(z, ~) for the primary fields and (At, ~t) for the corre- 
sponding dimensions, one can write down the singular terms of the operator product 
expansions: 

T(~) , t ( z ,  ~) = a - - - - ~ '  , , , ( z ,  ~) + 1 0 z ) ' ( ~ "  - ~'---~ Oz * ' (z '  ~) + . . .  , (2.12a) 

= t "  
I Z , + . . . ,  (2.12b) 

which are determined by the transformation properties of the field ¢t with respect to 
the infinitesimal transformations (2.4a) and (1.3a). Here t7 is the "left" representa- 
tion of the generators of G for the field ¢l- Similar formulae (with the substitutions 
At--'-AI and t~--, i~, where i:' corresponds to the "right" representation) are valid 
for the expansions of the products Tq~t and Jq~t. Eqs. (2.12) allow one to determine 
explicitly the z-dependence of the correlation functions (2.6) provided all the fields 
A: involved are primary ones: 

( T ( z ) * , ( z x ,  ~'t).. "*N(ZN, ~N)) = E 
j - -1  ( Z  - - -  2 

- -  Zj )  

1 0 q  } Z j  ^ - -  . J f - - -  

Z -- OZj 

× (q'a(Zl, z'l).--Cu(ZN, ZN)), (2.13a) 

N i a 

( J a ( Z ) q ~ I ( Z l , Z l ) ' ' ' O N ( Z N ,  Z N ) > =  E g--"~(q~l(21, "" 
j=l 

(2.13b) 

where the matrices t~ are applied to the "left" isotopic indices of the field ¢j(z, ~). 
The relations (2.13) are the Ward identities corresponding to the conformal and 
gauge symmetries. Combining (2.13) with asymptotic conditions (2.10) one can 
easily derive the well-known Ward identities: 

~--'~ z; 0-~z:N ( +l O +(n+I)A,Z;}(01(Zt,~.t)...*N(ZN,~.N))=0, (2.14a) 
j--i 

where n-- -I, 0, + 1 and 

N 
E t:(¢1(zl, zl)...ON(ZN, Z'N)) ----- 0, (2.14b) 
j-I 

which are manifestations of the invariance with respect to the regular subgroups 
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SL 2 c F(z)  of projective conformal transformations and G c G(z) of global gauge 
transformations. 

The variations ~ and 8~ can be understood as some operators, defined by the 
r.h.s.'s of eqs. (2.7), acting on the fields Aj. It is convenient to expand the functions 
e(~') and co(~') as a power series in ( ~ ' - z )  and to introduce the corresponding 
operators: 

L,A~( z, ~) = ~c T(~')(~"- z)  "+ lAs( z, ~) d~, 

o ~_ - z )  t ; ~ ( ~ ,  s)d~'. jnrA/ ( z ,  ~) = j a ( ~ ) ( ~  n a 

C z 

(2.15) 

The primary fields ¢t satisfy the equations 

L,ePt = J~¢t = 0 for n > 0, 

Loep I = Alept, J~dpt = t~q~t, (2.16) 

which are the direct consequence of (2.12). Eqs. (2.15) define the operators L,  and 
Jff with negative values of n as well as with positive ones. In general, the local fields 
L_ ,Aj and J ~ . A j  with n > 0 do not vanish. In particular, the operators L_ 1 and 
L ~ reduce to simple differential ones: 

L_lq,,( ~, ~) = ~ep,( z, ~), L-zq',( z, '~) = ~-~'#t( , '~)- (2.17) 

Evidently, the regular terms omitted in the operator product expansions (2.12) can 
be expressed in terms of the fields L_,q~/, J~-,q~t with n = 2, 3 . . . . .  

Due to the singular terms in (2.9), the operators L,  and J~ are not commutative 
but satisfy the relations 

[L. ,  L,.] = (,, - m)L.+, .  + tic(, ,  ~ - , , )8.+, . ,  (2.18a) 

[ L,,, Jm~} = - m./ff+,,, (2.18b) 

[j~, j~]  =/ob%~+,. + ½k,,8obS.+,.,o. (2.18c) 

The commutation relations (2.18a) and (2.18c) are known as Virasoro algebra and 
Kac-Moody algebra respectively. The complete algebra (2.18), which is the semidi- 
rect product of these algebras, will be denoted here as (~. Obviously, the operators 
Ln and ~° defined by the same formulae as (2.15) except with the fields T and a v 
constitute the same algebra which will be denoted by (~. 



92 V.G. Kmzhmk, A.B. Zamolodchtkov / Wess-Zummo model 

The complete system of local fields { Aj } involved in the theory includes, besides 
the primary fields q't, all the fields of the form 

L _ ,  . . .  L _ , , , L _ n  . . .  f - , _ , , , J " 2 , ,  . • • J~',,,MJb'r~ . . .  j-b~,,_ ~ M,~t, (2.19) 

with arbitrary positives n, ~, m, ~.  Like in [9], we shall denote by [q't]¢ the totality 
of the fields (2.19) associated with some primary field q~t- This infinite set of fields 
corresponds, obviously, to the highest weight representation (Verma modulus) of the 
algebra ~ (more precisely, [q~e]~ is the direct product of the highest weight 
representations of ~ and ~), the primary field q~t being associated with the highest 
weight vector. The dimensions of the fields (2.19) are 

N M N' M' 

a/""}=a,+ E . , +  E,. , ,  a ? " } = , L +  En,  + Era,, (2.20) 
i--1 t - 1  i - 1  ~ l  

and their isotropic properties are self-evident from (2.19). The complete set of fields 

{As} = • ['~t]¢ (2.21) 
I 

form the closed operator algebra [9]. 
It is worth noting that the fields T(z), J(z), T(~), J(2) are not primary ones; they 

belong to [I]~, where I is the identity operator. Namely, 

T ( z ) = L _ 2 I ,  J a ( z ) = J a _ l l ,  

Z _ 2 / ,  = (2.22) 

3. Wess-Zumino model 

The relations presented in the previous section concern any quantum field theory 
with the symmetry algebra ~ × 6. The expression (1.10) of currents in terms of the 
g-field can be considered as the peculiarity of the Wess-Zumino model. In the 
quantum theory these expressions have the following meaning. We assume that the 
complete set of fields {Aj} contains the spinless primary field g ( z , Y . )  (which 
corresponds to the representation t a of the left and right global groups G and have 
the dimensions A g = ~ s = A) satisfying the equations 

~: ~-~g(z, ~,) = :Ja(z ) tag(g ,  z ) : ,  ( 3 . 1 a )  

0 
Jc-~g(z, ~')= : J a ( Y . ) g ( z , ~ ) t a : ,  (3.1b) 

where K is the numerical factor (which will be computed later) and the local 
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products of fields on the r.h.s, of (3.1) are regularized in a particular way. Eqs. (3.1) 
can be understood as the special property of the operator product expansions of 
Ja(~)tag(z, ~) and Ja(~)g(z,  ~)t a. Consider, for example, the first of these products 
which has the general form 

¢g oo 

Ja(~) tag(z ,  ?.) = - ~ - ~ g ( z ,  ?.) + ~_. (~ - z ) " - l  t V ~ . g ( z ,  ~), (3.2) 

where the constant c s is defined as 

fa t  a = Cg].  (3.3) 

The operator coefficient accompanying the zero power of (~"- z) in (3.2) has to 
coincide (up to a numerical factor) with the derivative O~g, i.e. 

= cs K~---~g(z,?,) +0(~ z) Ja(~) tag(z ,  z.) ~Z--~g(z,  z)  + - . (3.4) 

So the product in (3.1a) is defined as 

: Ja ( z ) t "g ( z ,~ ) :  = lim j a ( ~ ) _  tag(z ,~) .  
~---~z 

(3.5) 

A similar definition applies to the r.h.s of (3.16). 
The peculiarity of the operator product expansion (3.4) allows one to determine 

immediately the anomalous dimension A of the field g. Comparing (3.2) and (3.4) 
one gets 

X =- (J~-I t a -  s L - 1 ) g  = O, (3.6) 

where (2.17) is taken into account. From the mathematical point of view, this 
relation means that the representation [g]~ of the algebra (2.18) is degenerate, the 
field X (defined by (3.6)) being associated with the "null vector". The field X should 
satisfy the equations 

LoX = (A + 1)X , J~X = taX, (3.7a) 

L,X  = J~X = 0 for n > 0, (3.7b) 

since otherwise eq. (3.6) does not make sense. Note that eqs. (3.7a) are satisfied 
identically whereas (3.7b) has to be solved for n = 1 only because the other eqs. 
(3.7b) can be derived from these by means of (2.18). Using (2.16) and (2.18) one can 
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ascertain that eqs. (3.7b) are satisfied provided 

cs+ 2A~ = O, 

where Cv is defined as 

c v +  k + 2 ~ = 0 ,  (3.8) 

facdfbcd= Cvc$ab. (3.9) 

Eqs. (3.8) provide the values of the anomalous dimension of the field g: 

and of the parameter ~ in (3.1): 

c, (3.10) 
A = c v + k  , 

= - ½(c  v + k ) .  ( 3 . 1 1 )  

There is another way of deriving eq. (3.6). In the classical Wess-Zumino theory the 
stress-energy tensor is expressed quadratically in terms of the currents (1.10). Let us 
assume that a similar relation holds in the quantum theory, i.e. 

2 K r ( z ) =  :Ja(z)Ja(z):, 

2~:T(~) = : f ~ ( ~ ) f ~ ( 2 )  :, (3.12) 

where the numerical parameter K coincides, as we shall see below, with (3.11). This 
assumption can be considered as another definition of the Wess-Zumino model, 
equivalent to (3.1). Like (3.1), the relations (3.12) have to be understood in terms of 
the operator product expansions. For instance, the expansion of the product 
Ja( z )Ja ( z ' )  has the following nonvanishing terms at z ~ z': 

kD 
J a ( z ) J a ( z ' )  - - -  + 21¢T(z') + O(z - z ' ) ,  (3.13) 

( z -  z') 2 

where D = 8 aa is the dimension of the group G. Evaluating the multipoint correla- 
tion functions 

( ja l  (zt)  .." jaN(ZN)) ,  (3.14) 

and performing the expansion (3.13) one can find that the definition (3.13) of the 
stress-energy tensor is consistent with (2.9) only if 

kD 
c = Cv + k ' (3.15) 

and the parameter K is given by (3.11). Formula (3.13) is equivalent to the following 
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relation between the generators (2.15): 

oo 

2 x L . =  E " a ".J~,J'-m.', (3.16) 
gel m - - o 0  

where the symbol : : denotes the conventional normal ordering: the operators Jn 
with negative n are always placed to the left of the operators with n > 0".  Applying 
the eq. (3.16) with n = - 1 to the field g one gets exactly (3.6). Note that in this way 
of reasoning no particular properties of the field g are specified. Therefore, the 

equation 

( J"_ tt~ - r L _ l ) d p t  = 0 (3.17) 

is satisfied with any primary field ~t as well. Hence any primary field qb t in the 
Wess-Zumino theory is degenerate and its dimensions are given by 

At = Cl ~1 = c'l ~v+k '  ~v-7-~ ' (3.18) 

where c t = t~t~, ct = t-tat-t a. In particular, any primary field which is scalar with respect 
to the left and right gauge group both have vanishing dimensions and therefore it is 
proportional to the identity operator I. It is also worth noting that all the fields 
(2.19) belonging to any representation [~t]¢ are expressed (by means of (3.16)) in 
terms of the fields 

: - % . . .  J%,~J~-% ... Y~-~M¢',. (3.19) 

Therefore in the Wess-Zumino theory the representations [~t]¢ of the algebra @ X 
are in fact the highest weight representations of the current algebra (2.18c) only; 
they can be denoted by [~t]J- 

As in general conforinal theory [9], the correlation functions (1.20) of the 
degenerate field g satisfy some linear differential equations. Consider the relation 

C g  

t,~(J°(z)g(z,, ~,).. .  g ( z , , ,  ~ , , ) )  = z - z ,  

N t,~t: / 
+ ~,  --z-z,) (g(z,, ~,)... g(z~, ~N)), 

(3.20) 

which is a direct consequence of the Ward identity (2.13b); here the matrices t 7 act 

* The fact that the Virasoro algebra belongs to the enveloping algebra of a Kac-Moody algebra is well 
known by mathemauclans [12]. Earlier, it had been discovered m the study of tw(ydlmenslonal field 
theory models [10]. 
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on the left indices of the field g(z,, ;,,). Substituting the operator product expansion 
(3.4) on the l.h.s, of (3.20) and taking the limit z ~ z, one gets the equation 

(~ 0-~,- ~ z,-z:t~t] )(g(zt, y.X)...g(ZN,~N))=O" 
j ~ t  

(3.21) 

Since i can take any of N values, t = 1,2 . . . . .  N, we have in fact the system of linear 
differential equations. The same equations with substitutions z---,2, t a ~  [" ( i  ~ 
acting on g from the right) are also valid. Clearly, the equations (3.21) with obvious 
modifications are satisfied by any correlation function 

(3.22) 

of primary fields q't in the Wess-Zumino theory. The correlation functions (1.20) can 
be computed as the solutions of these differential equations with appropriate 
analytical characteristics; an example of this computation is given in the next 
section. 

Let us consider the operator expansion of the product g(z, ~)g(0,0). One could 
expect, as in [9], the following form of this expansion: 

= C~sz z [q,,(0,0)+ - . . ] ,  (3.23) 
I 

where Cct) are numerical "structure constants" and q~t denotes some primary fields ss 
of the theory having the dimensions (At,-At). Here we omitted, in each term of the 
sum (3.23), the infinite power series in z and ~ with the fields belonging to [q~t]J as 
the coefficients. What kinds of primary fields could appear in (3.23)? The product 
g(z, ~,)g(0, 0) transforms as the tensor product of two irreducible representations of 
(for instance) the left global group G. It can be decomposed in the set of some 
irreducible representations: 

g(z, e)g(0, 0) = E? , (  g(z, e)g(0,0)}, 
I 

(3.24) 

where Pt are the projectors (acting on the left indices of the product g ® g) each 
selecting the subspace of l 's  representation. Let us substitute the expansion (3.23) 
for some pair of fields, say g(z 1, ~q)g(z 2, ~2), in (3.21) and take into account the 
most singular (at z I ~ z2) contribution of each term of (3.23). Assuming P/q~t = q~/ 
and using the identity 

{tag(z,Y.)){tag(O,O)}ffiY'.½(ct-2cs)Pt(g(z,~)g(O,O)}, (3.25) 
I 
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where c t = t~t~, one gets the characteristic equation 

- ~ ( a , -  2 A ) =  ½(c , -  2 q )  

97 

(3.26) 

for (3.21) and recovers (3.18). So the primary fields q'/ corresponding to the 
representations 1 entering the decomposition (3.24) could only appear in the opera- 
tor product expansion (3.23). Surely this result was obvious before, and we presented 
the above computation as the self-consistency check. 

Note  that some of the coefficients C ~° in the expansions like (3.23) could vanish. 
In fact, there are special selection rules which forbid most of the a priori conceivable 
primary fields to appear in the operator algebra, generated by the fields g*. 
Apparently, in the general case a finite number of primary fields q~l form the closed 
operator  algebra of the Wess-Zumino model (a similar phenomenon takes place in 
the "minimal"  conformal theories introduced in [9]). In the next section we shall 
meet an example (k = 1) of this situation. 

It is worth saying some words about the composite fields of the model (1.4). Let us 
consider the primary field q,?(z, ;?), which transforms as adjomt representations of 
left and right groups G. According to (3.18) its dimensions are 

A1 = A1 Cv (3.27) 
c v + k  " 

This field is naturally identified with the composite field 

The fields 

~ h  = t r (g - t t ag t6 ) .  (3.28) 

K a = ja_ ldpbla, K.a = j b  l ~ b ,  (3.29) 

have the dimensions (A 1 + 1, A1) and (A1, A 1 + 1) respectively. They transform 
according to the formulae 

6 ~ K ~ ( z , ~ ) = f a b c ~ h ( ~ ) K C ( z , 2 ) ,  

(3.30) 

Therefore they apparently coincide with the "wrong currents" of the model (1.4) 

K a -  t r ( tag-10~g) ,  K a -  t r ( t "O~gg- l ) ,  (3.31) 

* These selectmn rules have the following origin In a general integer case of k, the highest weight 
representation [g]j contains null vectors Like (3 6), these null-vectors gave rise to some extra mamx 
equauons for the correlation functaons (1 20) whmh, contrary to (3 21), contmn no denvatxves The 
selection rules come from the consastency condmon of these matrix equauons and (3 21) 



98 V.G. Kmzhmk, A.B. Zamolodchtkov / Wess-Zummo model 

Note that the "currents" (3.31) possess anomalous dimensions and therefore in 
conformal theory they cannot be conserved. Finally, the field 

S(z ,  ~,) = J~_ 1 ]b_ , , ]b,  (3.32) 

which has the dimensions (a  t + 1, A t + 1), corresponds to the lagrangian density 

S -  tr(O~g-tO~g).  (3.33) 

This enables one to predict the slope of the fl-function of the model (1.1) at the fixed 
point (1.3): 

df l (h  2,dJk 2 k)  A2-4*r/k _ _  C V2cv+ k " (3.34) 

At k - ,  oo this equation is in agreement with the one-loop result [2]. 

4. Correlation functions 

The projective Ward identities (2.14a) determine the two- and three-point correla- 
tion functions up to a numerical factor. Here we shall compute the four-point 
functions 

G(z,,?.,)=(g(z,,E1)g-I(z2,?.2)g-'(z3,E3)g(z,,?.,)> (4.1) 

for the Wess-Zumino model, combining the differential equations (3.21) with the 
general requirement of crossing symmetry. In fact, the crossing symmetry of four- 
point functions ensures the associativity of the complete operator algebra* and 
therefore the self-consistency of the field theory in general. 

Firstly, let us note that the correlation function (4.1) depends essentially on two 
variables; due to the Ward identities (2.14a) it can be represented in the form 

G ( Z , ,  Z.,) = [ ( Z  1 --  Z 4 ) ( Z  2 - -  Z3)( .Z 1 - -  'Z ' ) ( -~2 --  Z3) ]  - 2 A G (  )C' "~) ' ( 4 . 2 )  

where x and .~ are the anharmonic quotients 

( , 1  - ~ 2 ) ( 2 3  - 2 , )  ( z ,  - ~ 4 ) ( z 3  - z , )  
x = ~ = (4.3) 

(Z1 - -  Z 4 ) ( Z 3  - -  2 2 )  ' (Z1 - -  Z 4 ) ( Z 3 - -  Z 2 )  ' 

and A is the dimension (3.10) of the field g. Further computation depends on the 
choice of the group G. Here we elaborate the case of unitary groups. 

* See ref. [9] for the details. The bootstrap approach based on the operator algebra was ongmally 
proposed by Polyakov [14]. 
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Let G = SU(N), g(z, ~.) being the N x N unitary matrix, de tg  = 1, which trans- 
forms as the fundamental representation of S U ( N ) ×  SU(N). Let us denote by 
a,(fl ,)  the tensor indices of the fields g(z,, ~,) corresponding to the left (right) 
SU(N)  group; this way, in (4.1) we imply g(z,,~.,)=g~:(z,,~.,) and g-l(z, ,  2,)= 
g~la,(z,, 2,). The correlation function (4.2) enjoys the S U ( N ) ×  SU(N) invariant 
decomposition 

G(x,  .~) -- Y'. (IA)(is)GAB(X,~), (4.4) 
A , B ~ I , 2  

with the scalar coefficients GAn(x, ~). The matrices I and i are defined as 

¢t 2 tl 4 Ix = 8,,i 8113 II - -  8~18#4 ' -- ~: ~3 '  

I14 a 2 12 = 8 . ,  80, ' 12  ---- 8~4~1~2 ~3 " ( 4 . 5 )  

The correlation function (4.1) satisfies the differential equations (3.21) and the 
same equations with respect to ~. By means of direct computation these equations 
can be converted to the form* 

aG [ 1 p +  1 ] 
7 ;  = x  -1Qa' 

O---~= G et  +--ff-z-~_ l Q , (4.6) 

where G denotes 2 X 2 matrix GAB, the matrices P and Q are given by 

1__1__( N 2 -  1 
P = 2 N x ~ O  -N1)' 

1( 1 0) 
Q = 2N-rK N 2 - 1  ' 

and the mark t means the matrix transposition. The parameter K, the same as in 
(3.11), in the case under consideration is equal to 

x = - ½ ( N  + k ) .  ( 4 . 8 )  

The general solution of eqs. (4.6) can be given in terms of hypergeometric functions; 
it is conveniently represented in the form 

G4B(x,X) = ~ Upq~AtP)(x)~¢)(.~), (4.9) 
p , q - - O ,  1 

* Note that precisely eqs (4.6) appeared earher in the paper by Dashen and Frishman [10], m their 
study of the conformally invariant soluuon of the SU(N) Thrnng model 
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with arbitrary constants Upq and the functions oy given by 

( 1 1 _  ,1 :N ) = x-2 (1 - x ) a ' - 2 a F  2 K ' 2 r  + , x  , 

1 ,  1 N ) 
~ ° ) ( x )  = - ( 2 r  + N ) - l x l - 2 a ( 1  - x)  a~-2aF 1 - ~ 1 + 2-rK' 2 + ~-~-K, x , 

(4.10a) 

x)a,_ZaF [ ~ N -  1 N + 1 N ) xat-2a(1 2~ ' 2K ,1--~--~,x , 

~2a ) (x )=  _Nxa ,_2a(1  _ x ) a , - 2 a F (  N -  1 N +  1 N ) 2x ' 2~ ' 2 x ' x  . (4.10b) 

Here A is the dimension (3.10) of the field g: 

whereas 

N 2 - 1  
A -- (4.11) 

2N(N+k) '  

N (4.12) AI=N+ k 

is the dimension of the composite field (3.28). Note that the functions ~A(P)(x) play 
here a role similar to the "conformal blocks" in conformal theory [9]; the functions 
~(0) and ~(1) in (4.9) describe the "s-channel" contribution of all the fields 
belonging to the representations [ I ] j  and [~b]S, respectively. It is not out of place 
to name them the current blocks. 

Now we have to take into account the local properties of the field g and impose 
the crossing symmetry (4.2); this requirement proves to determine the c o n s t a n t s  Upq 
in (4.9). According to the local properties, the correlation functions must be 
single-valued while considered in the euclidian domain £ = x * ,  where the star 
denotes the complex conjugation. Concentrating attention in the vicinity of the point 
x = 2 = 0 one immediately recognizes that (4.9) is compatible with this requirement 
only if 

Ulo = Uol = O. (4.13) 

The crossing symmetry of the four-point function (4.1) requires 

CAB(X, )= E 
A ' , B ' - I , 2  

(4.14) 

where Ea2 = E:: = 1, El1 = E:2 = 0. Let us substitute (4.9) into (4.14) and use the 



V.G. Kmzhmk, A.B Zamolodchtkov / Wess-Zummo model 101 

relation 

~ P ) ( x )  = Y'~ CqPE4A,~5)(1- x ) ,  (4.15) 
q,A' 

which can be verified directly. The elements of the "crossing matrix" Cq p in (4.15) 
are given by 

C ° = - C~ = N F - ( - - - N / 2 x ) r ( N / z x )  
F ( -  1 / 2 K ) r ( 1 / 2 t ¢ )  ' 

F2(-N/ZK) , CJC° + Co°C~ = 1. (4.16) cJ 
-N_r(" - (N - 1 ) / 2 g ) r ( -  (N + 1) /2~)  

Eqs. (4.14) are satisfied provided U n = hUoo: 

h= 1_ r ( ( N - 1 ) / ( N + k ) ) P ( ( N + I ) / ( N + k ) )  r2(/</(N+k)) (4.17) 
N 2 E( (k  + 1 ) / ( N  + k ) ) F ( ( k  - I ) / ( N  + k))  r 2 ( U / ( N  +/~)) 

Finally we obtain 

G A , ( x ,  .~) = M-Sa{ ~At°)(x) ~'Bt°)(X) + h~A<l)(x) °-f~l)(ff) }, (4.18) 

where the overall factor is the matter of the g-field normalization; the normalization 
in (4.18) corresponds to the two-point function 

(g~) (z, ~,)gL la' (0, 0)) = M-'~aS~2~ 2 (zZ,) - 2,1 (4.19) 

In the general case the function (4.18) possesses the power-like singularities at 
x = oo, 2 = o0, which correspond to the contnbutions of the composite fields 

~bA 6{a~6,,2}~ , , 

= ,,[#1o021{ z ,~), 
~S  61116121 t, , 

(4.20a) 

(4.20b) 

in the operator product expansion of g ( z  1, ,zl)g(z2, z,2) in (1.1). Here the braces 
(square brackets) denote the antisymmetrization (symmetrization). The dimensions 
of these fields are 

( N -  2 ) ( N  + 1) (N  + 2 ) ( N -  1) 
AA-= N ( N + k )  ' A s =  N ( N + k )  ' (4.21) 

in agreement with (3.18). 
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Note that at k = 1 the second term in (4.18) vanishes and the function (4.4) 
becomes* 

G(x ,  ~) -~ [x~(1 - x)(1 - £)11/N 

- L+(12) (4.22) X[ (I1) x 1 + ( 1 2 ) 1 - ~ 1 [ ( i l ) . ~  

Obviously, this result has the following meaning. Let us consider the field 

~(z, 2,) = e' 4~V'~v~<z'~)g(z, ~,), (4.23) 

where g is the above SU(N) Wess-Zumino field and q0 is the free massless boson 
field so that (4.23) corresponds to the U ( N ) =  S U ( N ) x  U(1) group. In fact, the 
parameter ~, can be chosen arbitrarily and the dimension of the field ~ is 

:~ = A + A(3,), (4.24) 

where 

A (.y ) = .y2/2 N. (4.25) 

The four-point function (~(z,, ~,,) of the fields (4.23) is given by 

G(x, £) = [x~(1 - x)(1 - £)] -2atv)G(x, ~ )M -aatv), (4.26) 

and under the choice 

V = 1 (4.27) 

coincides with that of the bilinears of the free massless charged Fermi fields: 

M ~ l * ( z ,  ;~) = :~/~(2,),+~(z):, (4.28) 

governed by the action 

+ d2 . (4.29) 

* In tins case the operators (3 28) and (4 20b) decouple from the operator algebra generated by the field 
g, tins ~s the sm~plest example of the selecuon rules menuoned m the prewous secuon 
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Clear ly ,  this  resul t  holds  for any  mul t ipo in t  cor re la t ion  funct ions  (1.20). In  fact, 

the re  is no  need  in comput ing  the mul t ipo in t  funct ions  to prove  this. I t  is suff icient  

to ver i fy  tha t  the  s t ress-energy tensor  

N 
T f ( z ) =  E :q~+"O,q,,,: (4.30) 

or- - I  

is r e la ted  to the fermion currents  J " =  :~k+ t~ :  and  J = :~+~b: as [10] 

1 :ja(z)ja(z):+lj(z)j(g):, 
N +  1 

(4.31) 

and  to  no te  tha t  the singlet cur rent  J is expressed in terms of  the free massless 

b o s o n  field 

J (  z ) = iv/-N azcp( z ,  ~ ) .  (4.32) 

N o t e  a lso  tha t  (4.28) remains  valid at  a rb i t r a ry  values of  3' in (4.23) p rov ided  the ~k's 

a re  u n d e r s t o o d  as the fermions  of  the N - c o m p o n e n t  Thi r r ing  model  with the 

i sosca la r  cu r r en t  coupl ing  

1 ,- 
s , - , ( , , ¢ ) - -  jJ(z) (4.33) 

Clear ly ,  the  re la t ion (1.17) cor respond ing  to the model  (1.4) with G = O ( N )  and  

k = 1 can be  p roved  in the same way. 

W e  thank  A .A.  Belavin, A.M.  Polyakov  and  P.B. W i e g m a n n  for many  interes t ing 

commen t s .  V .G.K.  is obl iged to A.Yu.  Morozov  for helpful  discussions.  
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