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Quantum fluctuations of instantons in the two-dimensional non-linear 0(3) o- model 
are computed completely. The calculation of the instanton contribution is reduced to 
the study of the Coulomb gas. It is shown that infrared divergences disappear if we 
take into account the contribution of instantons having arbitrary topological number. 

1. Introduction 

Some features of the two-dimensional non-linear o" model (or the continuum 
classical Heisenberg ferromagnet in two space dimensions) bear many similarities to 
a four-dimensional non-Abelian gauge theory. Both are scale invariant and asymp- 
totically free. Both possess exact multi-instanton solutions. 

Since the non-linear o- model in two dimensions is much simpler than the Yang- 
Mills theory in four dimensions, this model seems to be an ideal testing ground for 
any speculations about the effects of instantons in four-dimensional gauge theories. 

The purpose of this paper is to compute the instanton contribution to the Green 
functions of the non-linear o- model. The model under consideration can be 
described by the Lagrangian 

1 3 

where o'a(Xo, Xl) is a three component unit vector: y3 o-%-" a=l  = l ; / z = 0 , 1 .  
The Euclidean Green functions of the model can be represented in the form 

; &(o) exp ( -  S)H do ' ( x ) / I  exp (-S)l-I do'(x) , (1.1) 

where ~b(o-) is an arbitrary functional and S denotes the Euclidean action: 

S = ~ (O~ora) 2 d2x. (1.2) 
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The functional integrals in (1.1) can be calculated by means of the steepest 
descent method in the weak coupling case. To apply this method we must know the 
extremals of the Euclidean action (1.2), instantons. These instantons were found 
in [1]. 

It is convenient to introduce the new field and space variables by the description 
of instantons. Namely, we use the complex variable z = Xo+ ixl instead of the space 
and time coordinates x~, Xo and the field 

1 o- +io "2 
W = 1+°" 3 (1.3) 

obtained from the field (0"1, 0"2, 0"3), taking values on the unit sphere, by stereo- 
graphic projection. 

In terms of these variables 

4 S S = ~ (1 + Iwl2)-2(azWa~, +a~Waz~,) d2x, (1.4) 

where 

a= = 1 (0~  - i o n ) ,  x . i .  ae = ~(Ox + tO~.), d2x = ~t dz d~. 

The topological charge, 

1 I q = ~ (1 + twl2)-2(Ozwaev~-aewOzff~) d2x, (1.5) 

is an integer for every field having finite Euclidean action. (The integrand in (1.4) 
can be considered as the Jacobian of the map o- of the z-plane into the two- 
dimensional sphere S 2 so that q can be interpreted as the degree of this map.) 

It follows from (1.4), (1.5) that 

S = ~ q + ~  f (l +]wl2)-2la~w]2 dZx. (1.6) 

We see therefore that the minimal value of S on the fields having topological 
charge q/> 0 is equal to (4zr/f)q ; this value is achieved on the fields satisfying 
Oew = 0. Hence the field 

v(z) = Po(z) /Pl(Z) ,  (1.7) 

where Po(z), Pl(z)  are polynomials, is an instanton; the topological charge of the 
instanton (1.7) is equal to the maximal degree of Po(z), P~(z). It is convenient to 
write the general q-instanton solution (i.e., instanton having topological charge q) 
in the form 

v(z) = c (z - al) ... (z - aq) (1.8) 
( Z - b l )  ... ( z - b q )  
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(The instantons which cannot be represented in the form (1.8) are not essential 
because the set of these instantons has zero measure.) The paper is organized as 
follows. 

In sect. 2 we review the renormalization procedure for the computation of the 
quantum fluctuations of instantons. 

In sect. 3 we derive the instanton contribution up to a constant multiplier. (The 
constant multiplier will be calculated in appendix C.) We obtain the result that the 
contribution of instantons in Euclidean Green functions can be written in the form 

I,(¢5)=K"(q!) - z .  c5(a,o,c;e ' ¢r(1+]C12) 2 i d2ai dZbj, (1.9) 

where 
q q q 

Eq(a, b) = - Y~ log lai-ail 2 -  Y~ log tbi-bj]2+~ log lai-bil 2 • 
i < i  i<i i.i 

The proof of (1.9) was sketched in [13]. 
The analysis of this answer will be performed in sect. 4. The expression (1.9) can 

be interpreted as the energy of a system consisting of q Coulomb particles at the 
points al, ..., aq and of q Coulomb particles of opposite charge at points bl, ..., bq. 
In other words the one-instanton solution can be considered as a pair of Coulomb 
particles of opposite charges and the q-instanton solution can be considered as q 
such pairs. (These Coulomb particles can be called instanton quarks.) We see that 
the study of the instanton contribution can be reduced to the study of the classical 
Coulomb system (CCS). This system was considered in many papers [5-9]. Using 
the results of these papers we find that the infrared troubles arising in the dilute 
instanton gas approximation disappear by correct calculation of the instanton 
contribution. There exists a phase transition in the CCS: this system is in the 
plasma phase for high temperatures and in the molecular phase for low tempera- 
tures. One can check that the temperature of the Coulomb system of instanton 
quarks is high in this sense, i.e., the instantons break up into unbounded instanton 
quarks. Therefore, the dilute instanton gas approximation cannot be reasonable in 
our case (this approximation corresponds to the molecular phase). 

We use the Coleman-Fr6hlich correspondence between the CCS, the massive 
Thirring model (MTM) and the sine-Gordon model (SGM) to calculate completely 
the instanton contribution in some Green functions of our theory. We find that 
these functions decrease exponentially. To explain this result we must remember 
that there exists Debye screening in the Coulomb plasma. 

The instantons in a four-dimensional gauge theory in the group SU(2) are 
similar in many ways to the instantons in the model under consideration. In the 
gauge theory one can also define instanton quarks. Every instanton having topolo- 
gical number 1 can be considered as two instanton quarks and every q-instanton 
solution can be considered as q positive and q negative quarks. In the case when 
the gauge group is SU(n) there exist n types of instanton quark and every q- 
instanton solution consists of qn quarks (q quarks of each type). The SU(n) gauge 
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theory is very similar to the two-dimensional theory with the non-linear fields 
taking values in (n - 1) dimensional complex projective space, CP(n - 1), having the 
same structure of instanton quarks. The instanton contribution in the 
CP(n - 1) theory will be described in a forthcoming paper [14]. One can think that 
general properties of the system of instanton quarks coincide with the properties of 
the corresponding system in the case of o" model, 

In the appendices we prove some general results and use the ones in appendix C 
to complete the calculation of instanton determinants. Namely, in appendix A we 
analyse the connection between Pauli-Villars and proper time regularizations of 
determinants and in appendix B we give a method for calculation of the deter- 
minant if the eigenvalues and their degeneracies depend polynomially on the 
number of eigenvalues. 

2. Regularization of the instanton contribution 

Let us use the steepest descent method for calculation of the functional integral 
entering in (1.1). The contribution of the q-instanton solution in the numerator of 
(1.1) will be denoted by Jq(~) so that the instanton contribution in (1.1) can be 
represented as 

I (& )  = Y_., Jq(4~)/2 Jq(1). (2.1) 
q q 

To avoid the infrared divergences we will suppose that the field o'a(Xo, xl) is 
defined on a sphere with the usual metric 

= S , ~ , ( l + ( X l + X o ) / 4 R  ) . 

To return to the Euclidean metric we take R -~ oe at the final step of the cal- 
culation. We will always replace the field o -a by the complex field (1.3). Using (1.6) 
we represent the action of the field v ( z )+  ~'(z), where v(z) is an instanton (1.7), 
p(z) is a small variation of the instanton, in the form 

8 
S = ~ q + ~  I po213d,12 d2x (2.2) 

(here po = 1 + Ivl 2, the higher-order terms are omitted). To work with non-singular 
expressions we introduce the functions 

p = po 11 lz - bi] ~ , 
i 

; = 2pP -1 [I (Z - bi) 2 . 
i 
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Then 
4rr 2 

where 

ko = - g  ll2pOzp-2OeP. 

The scalar product of variations vl, u2 can be written in the form 

2 1 P°2(~lP2+Vlt~2)x /gd2x=l f  (~l~2+~lff2)x/gd2X 

(2.3) 

(2.4) 

I 3 
= ~ ~$1o-aa2o'~/gd2x. 

a = l  

This scalar product is real so that Av acts in real Hilbert space. The q-instanton 
contribution is given by 
The q-instanton contribution is given by 

Jq(49)= f-2q exp ( - ~ )  f fb(1)) det-1/2 (2Av) d#o, (2.5t 

where d/zo denotes the measure on the manifold of instantons induced by the 
metric on this manifold. (We do not take into account the zero modes by definition 
of the determinants.) Let us introduce the complex parameters ~o = c, ~#1 = 
al ,  ..., ~q = aq, ~q+l = bl, ..., ~02q = b,~ on the manifold of instantons of the form 
(1.8). Then the metric on this manifold can be written in the form 

2 {911 011 -- 2 - 

~i ( f  4po (0-~-71(~7~i)~/g d X)&Ok&Oi= ~i Nkfiffka¢i, 

where 
as the 

(2.6) 

6~j denotes the variation of parameter ~0j. The matrix Nki can be interpreted 
metric tensor on the manifold of instantons. Therefore we can write 

d/zo = (q!)-e det N i-[ d2~k, (2.7) 
k 

where d2~ --½i d~# d~. The combinatorial factor (q!)-2 is necessary to avoid double 
counting. (The permutations of zeros al ,  ..., aq and the permutations of poles 
bl ..... bq do not change the instanton (1.8).) We will prove a useful identity: 

det N = 24q+21ci 4q ~I lak -- ail2[bk - bi[ 2 ~I la, - b,,,I 2 det M,  (2.8) 
k > j  l,m 

where 

Mki = f P- = ekzi ~/-g d2x . (2.9/ 

To verify (2.8) we note that the expression (Ov/O~k)[Ii (z-  bi) 2 can be represented 
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in the form Y,2%o Ul.k zk .  Using this representation we obtain N = U + M U  and 
hence det N =  det Mldet U[ 2. It is easy to check that det U = 0  if ~i =~j; l < - i , j  <- 

2q (in this case two lines in U coincide up to sign). Noting that det U is a poly- 
nomial of degree q ( 2 q -  1) we obtain 

det U = 2 2 a + 1 c 2 0  I-[ (ak--ai)(bk--bf l  l-[ ( a l - b m ) .  
k>j l,m 

This proves (2.8). 
Expression (2.5) is formal because it contains an infinite-dimensional deter- 

minant. To regularize this determinant we introduce a proper time cutoff. In other 
words we define log det~ Av as 

oc~ 

-~/ f e A,,dtt 

where Ai run over non-zero eigenvalues of Av. In other words 
co 

log det, Av = -  f (Spe -'a" _p)dt ,  (2.10) 
d t 

where p is the number of zero modes of A~, i.e., p = 4q + 2. The asymptotic of 
Sp exp ( - t  Av) for t-~ 0 can be calculated by the semiclassical method; we obtain 

Sp e -ta° = a l t  -1 + a o ,  (2.11) 

where al  = R 2, ao = 2q. Using (2.11) we get that the divergent part of log det, ho 
for e ~ 0 is equal to 

- 1  a l e  + ( a o - p ) l o g e = R 2 ~ - x - ( 2 q + 2 ) l o g e .  

It is convenient to replace Jq(tb) by 

]~(4) 
Iq (q~) = (4~'V det,-1/2((2/~-)Ao)) ' 

where V = 4~rR 2 is the area of the sphere, Ao denotes the operator A for the 
trivial instanton v = 0. (One can show that the denominator of this expression is 
equal to Jo(1)). By calculation of I4(~b) the linear divergent terms in log det, A~ and 
log det, Ao cancel. Using this usual one-loop renormalization of coupling constant 
we find that logarithmic divergences in Iq(~b) cancel too. (The analogous renor- 
malization procedure in the Yang-Mills case is described in detail in [3]). 

The regularized determinant det' Ao of Ao will be defined by the formula 

log det' Av = lim (log det, Av - a l e  -1 - ao).  (2.12) 
E ~ O  
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In other words log det' Av is the finite part of log det, Ao. We see that after remov- 
ing of the cutoff Iq(O) can be represented through the regularized determinants: 

I°(&) = Wq I &(v) d/z, (2.13) 

where 

d# = (det' ho/det' A~)1/2 d/zo, 

W = kof~phZys exp ( - 4 ~r/fphys). 2. (2.14) 

v is the subtraction point, fphys is the physical coupling constant and ko is a 
constant, depending of the cutoff method. 

3. Calculation of determinants 

In this section we study the dependence of det' Av on instanton parameters. It 
follows from (2.10) that 

(X3 

6 log det, Av = I Sp (~ Ave -ta°) dt, (3.1) 

where 

Av = p -  I Sp Av + Avp-  l ~p - -  2p<?zp-3 SpO~p . 

Noting that al  and ao do not depend on instanton parameters, we obtain from 
(2.12) and (3.1) 

c o  

61ogdet'Ao f Sp(S = Ao e-ta°) dt. 

O 

Let us define the operator A~ by the formula 

Ao = -P-lOzP2g-1/2Oep -1 

It is evident that 

AvP-xOzP = P-10~.P ~o 

and therefore 

S log det' Av = 2 I Sp p-~p(Ao e -'% -Av e -'~°) dt 

O p_l(e_ta ~ e_t~o) = - 2  f ~ Sp - dt. (3.2) 
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To calculate the integral in (3.2) we must study the behaviour of the integrand for 
t~O and for t+m.  For t~O 

2 - [Oevl 2 " ~/g t_ 1 1 
(zle-'A°lz)= t-l-t- (1+[v12) 2÷''" 4rr = + ~--~. 0~,0.  log p + ... 

~/g-1 1 / 

where the omitted terms tend to zero. (These formulae can be obtained by semi- 
classical methods or by means of the results of [2]). The asymptotics for t-+ oo are 
governed by zero modes &o . . . . .  I / / 4q+  1 of hr. (The operator 2iv has no zero modes). 
We get 

8 log det' h~ = A 1  + A 2 ,  (3.3) 

where 

2 1 Al =18 I logpO, O~, logpd x:-~-~ I ¢3(logp)O,O, logg d2x 
I7" 

+ ~  ((8 logp)a, logo-logpO.8 logo) do-. =-BI+B2+B3, (3.4) 

A2 = -2 J p-18p~r(x)dx, 

~r(x) = Y ~ , i ( x ) ¢ , ( x )  , (3.5) 
i 

(we assume that (¢i, Oj) = 8~). 

The last integral in formula (3.4) is taken over an infinitely large circle. It can be 
easily calculated. We obtain 

B3 = 4q(1 + Ic12) -~ •[C[ 2 . 

The second term in formula (3.4) can be calculated in the limit R + oo: 

B2 = 4(1 + tcl2)-a,Slcl 2 . 

The first term in 

B I =  L($ I 

=l -a  I 

1 
+ - 8  

(3.4) can be represented in the following form. 

logooO.O, logo d2x +18 ~k f l°g[z-bk[20"O~ logo d2x 

2, [0zV[ 2 1_. ~ I  
log(l+ v ) ~ 2 t d z d z T +  ~(O,O, loglz-bkl2)logod2x 

~; ((0 r log O)log Iz - bk[2-10g pa, log ]z -bk] 2) do-,. (3.6) 
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The variation of the first integral vanishes because this integral is equal to the 
topological number: 

Iozvl2 l i d z d , 5 =  log( l+lv]  )(1~v12)2 1 log (1 + ivl2)(1 +lvl2) 2 
77" 

The factor q arises because the point in z plane has in general q inverse images in 
V plane. To find the second term in (3.6) we have to take into account the fact 
that 0 ,0 ,  Jog ( x - a )  2= 41ra(x- a). The last term in (3.6) can be easily calculated. 
Thus we obtain 

B1 = 48 (~  log Icl2 lq la i - bk]2) - 4q(1+ Icl2) -18jcl 2 , 
! 

and hence 

A 1  =46  log ( H la i - bkl 2) + 4(1 + Icl2)-lalcl 2 + 4qlc1-2~$1cl 2 . (3.7) 

Let us calculate A2. It is convenient to choose the standard basis of zero modes of 
Av in the form Xk =P-lzk/2 if k is even, Xk = ip IZ "~k-1)/2 if k is odd. This system 
of zero modes is not orthonormal and therefore the expression of A2 through )¢k 
takes the form 

A2 = - 2  f p -  3 ~p2iXk X/-g d2x r ki I = Sp 6r r -1 = 6 log det r, (3.8) 

where 

~ f  2 -  -- 2 
rki p XkXiX/gd x,  (3.9) 

the matrix (r 1)k, is inverse to (3.9). It is easy to check that 

det'r = (det M) 2 , 

where the matrix M is defined by (2.9). Combining (3.3) and (3.8) we see that the 
formula (3.7) represents the variation of the expression log det' A~ - 2 log det M. It 
is easy now to obtain from (2.7), (2.8), (2.14) and (3.7) the following expression for 
d/x: 

d2c 
du = gq(q!) -2 [I lak-a,12lbk-bi] 2 [I la~-b,.1-2 lq d2ai d2bi • 

k>i ,.m rr(1 + Icl2) 2 i 
(3.10) 

The constant factor Kq is undetermined. In the case when, for each j, ]aj-bil << 
lail, Ib~l, the instanton solution can be considered as a superposition of distant 
instantons with topological number 1. In this case expression (3.10) can be 
represented as a product of factors corresponding to one-instanton solutions: 

d2c 
d# ~- Kq(q ')-2(I]i [ai- bi[-2 d2ai d2bi) ~(1 + [ C [ 2 ) 2  • 
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It is natural to think that the constant factor breaks up into product of one- 
instanton factors: 

Kq = L q, (3.11) 

where L = K >  Eq. (3.11) will be proved in appendix C. The value of K1 can be 
obtained from the study of one-instanton contribution [15]. 

4. Analysis of the instanton contribution 

In this section we will study the sum of instanton contributions in Green 
functions. 

Taking into account the instantons having arbitrary topological number we 
obtain from the results of sect. 3 the following answer for the Green functions in 
the steepest descent approximation: 

K q . d 2 c  
1(~) = ~q f *(a'b'c)(-~.)2exp(-eq(a'b))~.(1 +[c]2)2I~i d2a, d2b, 

Kq 
(q !)~ exp ( - eq(a, b)) Hi d2ai d2bj 

(4.1) 

where (a, b, c )=  ( a l  . . . . .  a n ;  bl ..... bn; c), ai, bi, c are two-dimensional vectors (or 
complex numbers), K = L W 

q q q 

eq(a, b) = - Y. log la~-ai] 2 -  Y~ log [bi _%]2+~ log lai-hi] 2 , 
i<j  i<j  i,j 

• (a, b, c) = q~(w), where w is given by (1.8) and W is given by (2.14). 

It is easy to see that the denominator Zinst in (4.1) can be expressed through the 
partition function E of the two-dimensional neutral classical Coulomb system (CCS) 
in the grand canonical ensemble: 

- K q f (  1 ) " = ~ - ~  exp -~,q(a,b)[Id2aidZbi. (4.2) 
i 

Namely, if T = 1, then 

Zinst = ~'. (4.3) 

The constant K plays the role of fugacity of the Coulomb system. The expression 
(4.1) coincides with the correlation function of the CCS 

~ (Kq/(q!) 2) ~ ~o(a, b) exp (-(1/ T)eq(a, b)) [ l id  2 aid2bi 
q 2 2 Y~q (K /(q!) ) ~ exp (r(1/T)~q(a, b)) I-Ijd aj d2b~ . 

(4.4) 
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Let us consider, for example, the instanton contribution Ginst(x, y) in the Green 
function 

G(x, y) = (A log Iw(x)l, A log ]w(y)l), 

corresponding to the functional oh(w)= A log Iw(x)]~ log [w(y)]. It is easy to see that 

¢(a, b)= ~(a, b, c)= p(x)p(y) , 

where p(x)= 2¢r(~ i ~(x-  a i ) - 8 ( x -  bi)). One can interpret p(x) as the charge 
density, we see that 

G~"St(x, y) -- (a log Iw(x)l, A log pw(y)l)in~,-- (p(x), P(Y))ccs • (4.5) 

In a similar way one can assert that the instanton contribution in the Green 
function corresponding to the functional 

~ ( w )  = A log I~ (x l ) l  , .  A log Iw(xo)$ 

is given by the formula 
inst 

G~ (xl . . . . .  Xn) = <p(X1)  . . . . .  R(Xn))CCS, 

We see that the instantons are closely related with the classical Coulomb system for 
T = 1; this Coulomb system will be called a system of instanton quarks. It is well- 
known that ultraviolet divergences occur in the CCS, if the temperature T satisfies 
T ~< 1. We see that there exist ultraviolet divergences in our case and therefore 
we will make the ultraviolet cutoff. (One can consider, for example, the lattice 
Coulomb system or Coulomb particles with cores). In more complicated models 
such as the CP(n - 1) theory and gauge theories, ultraviolet troubles do not occur. 

Of course, in the calculation of (4.2) and (4.4) we must first consider the 
Coulomb system in a box (i.e., make the spatial cutoff). If the size L of the box 
tends to infinity, then there exists a limit of the pressure p = (1/L2)T log _~. An 
analogous statement is correct for the correlation functions of the CCS. These 
assertions cannot be deduced from general results of statistical mechanics because the 
Coulomb potential is extremely long range. However, one can give an independent 
proof of these assertions in the Coulomb case (see [5] for instance). The existence 
of the limits for L ~ co denotes that infrared divergences do not occur in our prob- 
lem. It is well-known that there exists a phase transition in the CCS [6-9]. This 
system is in the plasma phase for T > Tcr and in the molecular phase for T < Tcr. 
In the molecular phase the Coulomb particles form dipoles; in other words only the 
configurations al ,  ..., a,,; bl .... , bn satisfying 

lai - bi] << ]ai -a/[ (4.6) 

are essential. The temperature of the Coulomb gas of instanton quarks is higher 
than Tcr and therefore this gas is in the plasma phase. (The calculations of [7-9] 
show that Tcr 1 ,  hence Tcr< 1). As we mentioned above, the configurations 
satisfying (4.6) (dipole configurations) correspond to distant instantons. (One can 
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1 1 interpret 5(ai + bi) as the position of ith instanton and g la i -  bil as the size of this 
instanton). The dilute instanton gas approximation can be obtained if we take into 
account in (4.1) only configurations satisfying (4.6). This approximation is not 
reasonable in our problem because the gas of instanton quarks is in the plasma 
phase. Notice that in the dilute instanton gas approximation infrared divergences 
occur, however, as we have mentioned above, these divergences disappear in the 
exact solution. 

Let us study the instanton contribution in certain Green functions. We assume in 
our calculations that the ultraviolet cutoff is removed and the standard renor- 
malization procedure is performed. It is convenient to use the Coleman-Fr6hlich 
correspondence between the CCS, massive Thirring model (MTM) and sine-Gordon 
model (SGM) [4, 5]. 

This correspondence takes place when the inverse temperature l I T  of the CCS, 
the constant/3 in the SGM: 

2 '  = ~(0,~o) 2 + M  2 cos/3~, (4.7) 

and the constant g in the MTM: 

2, = t~iO,35.g* + m ~ b  + g(~yQO)(~y"~)  , (4.8) 

are connected by 

1 /32 1 

T 4rr l+g/Tr"  

In our case T = 1 ;/3 = 2x/~; g = 0 and we see that the Coulomb system of instanton 
quarks is equivalent to free fermions. 

The complete instanton contribution in the partition function can be represented 
as the vacuum energy functional of the free Dirac field (FDF): 

Zinst = f ~I x d/~(x)d~/(x)exp (f (~i%,a.~+m~O0)d2x).  (4.9) 

It is interesting to note that the mass of the Dirac field which will play the role 
of the inverse correlation radius in our system, m = C(#/fphys) e -2=/rphys (here c is 
an inessential constant), is connected with fphy~ by the usual formula of the renor- 
malization group. 

Now we can compute the instanton contribution (4.1) to the Green function 
(4.5) 

GinSt(x, y) = (A log ]w(x)], A log ]w (y)l)inst- (p (x), p(y))ccs • 

To compute this function it is convenient to have an expression for the generating 
functional of the charge density of the Coulomb plasma. This expression can be 
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obtained in the standard way using (CCS)~ (SGM) 

(e li/'/~)fn(~°(x) d~)ccs 
= Y.q (Kq / (q ! )  2) f e %(a.b) eiE, 2.,'~-1,3(~,)-,,(bi))[iid2ai d2bi 

g q T 2 e-%(a b) 2q( /(q') )I " Hid2aid2bi 

= f H d~o(x) exp [ - I  [}(O,.w) 2 q-M2 COS ax /7 (~  q-- , ) ]  d2X] 

= f U d~o (x) exp [ - f [21-(0, (~ - rl ))2 + M 2 cos 2,/7~o ] d2x ]. (4.10) 

From (4.10) we get 

Aloglw(x)l ,-~Aloglw(y)l  inst = (A~o(x), A~(y))sc, + A,,a(x - y) ,  (4.11) 

and using the relation 

( ~ O ~ O ( X ) ,  +0v~0(y)~ ----e~taevB(/fiTU~(X), (TTt3~(y))FDF, (4.12) 
~J'JT ]SG 

we can compute this function exactly: 

2 k GinSt(x, y)= f d ik(x y) 2 f ~ - " 2 - ~  / N/~--mm~ q- ~/k-~ 
~--~- e m ~/k2-g~m2 tog / ~ _  4~-~j. (4.13) 

It may be interesting to express the sum of instanton contributions in some 
correlation functions of the o" model through the Green functions of the free Dirac 
field. To do it we can use the Euclidean version of Mandelstam's representation of 
the Fermi field in the MTM through the SG field [10]. These formulae were 
obtained in [11], and have a form 

O l ( X ) = C  e./[X dx e va ,v+iB~#(x) ~ / 2 ( X ) = ( _ i ) C  eV[~ dx % ~ ,~ it3w~x) 

( l l ( X ) = C  e-VfX dx.%~G '¢-it3'pix) ' t [ t2 (X)=( i )C  e -V f~  dx.%,/L, '#+iS'~(x) 

Here C is an inessential renormalization constant, 

2 1 +g/2rr ~2 1 --g/2rr 
= 7"r - -  [.5 = 7 7 - -  

1 -g /2rr '  1 +g/2rr" 

In our case ~ =/3 = ,/~. Using (4.11) and the Cauchy-Riemann equation, 

e,,~G log Iw(z)l =O, arg w, 

(4.14) 
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we can obtain: 

( W ( X ) ,  W (yl))inst  = (exp [log [w (x)[ + i arg w (x)] exp [ - log [w (y)[ - i arg w (y)])inst 

(J,; (x), ~(Y))r~ 
+ 

(~1 (x), ~'l(y))o 

Here (~1 (x), ¢Jl(y))~ denotes the Green function of the free Dirac field with mass 
m and ($~-(x), $1(y))o the Green function of the massless Dirac field. 

The Green functions (4.13), (4.15) decrease exponentially if m i x -  Yl >> 1 and we 
see that m plays the role of the correlation length in our o" model. 

We do not study the instanton-anti-instanton contributions and 0-vacuum prob- 
lem here. We plan to return to these problems in our next paper. 

We are grateful to A.G. Aronov, A.A. Belavin, F.A. Berezin, E.B. Bogomolny, 
V.N. Gribov, A.A. Migdal, A.M. Polyakov and Yu.S. Tyupkin for many fruitful 
discussions. 

Appendix A 

In this appendix we will establish the connection between Pauli-Villars 
regularization and proper time regularization of determinants. 

Let A be a non-negative elliptic operator on a compact manifold. Then for t ~ 0, 

S p e x p ( - t A ) =  2 c~kt-U+o(t~),  
k ~ O  

and for t ~ oo 

Sp exp ( -  tA) = p + O(t 80 

(here k run over a finite set of non-negative numbers, p denotes the number of 
zero modes of A). Therefore we can represent Sp exp ( -  tA) in the form 

Sp e -tA = p + ~ akt -k  + (ao-p)O(1  - t) + o'(t), (A.1) 
k > O  

where o'(t)= O(t 8) for t ~  0, or(t)= O(t-s ') ,  for t ~  m, 81 > 0, 8 > 0. If we use the 
proper time regularization of A (see sect. 2) then 

cc 

log de t 'A  = - I t-l~r(t) dt .  (A.2) 

O 

Let us take coefficients ci and masses M i, j = O, 1 ..... l satisfying the conditions 
Mo = 0, Mj --, oo for j > 0; Co = 1; ~j ci = 0; 3~i c~/~ p = 0 for p = 1, 2 ..... I. (Here l 
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denotes the largest integer, such that there exists k in (A.1) satisfying k ~< l, i.e., 
l = [kmax].) The Pauli-Villars cutoff of the determinant is defined by the formula 

oo 

l o g  d e t e v  A = - f ~cie. M ~ t ( S p  e tA--p) d--t.t 

0 

(A.3) 

In terms of eigenvalues Ai of operator A this expression can be represented in the 
form 

¢c 

l o g d e t p v A = - I  5 E cie ~a,+M~,),dt=y E c i l o g ( A i + M 2 )  • (A.4) 
j hi,~O t j hi>~O 

0 

These expressions are convergent due to the conditions imposed on ci and M i. 
The connection between the Pauli-Villars cutoff and proper time regularization 

of the determinant is given by the formula 

l,kCeg~ ..2k 10gM 2 log det' A = log detpv A - ~ ( - ) 77 L c;v~ 
k = [ k ] > o  K! i 

- y~ F ( - k ) a k ~ c t V l ~ k - ( a o - p ) ~  cilogM~ + y ( a o - p ) + O ( M j - Z a ) ,  
k ~ [ k  ] J i,z-O 

(A.5) 

where 3' = -F'(1)= 0.5772 is Euler's constant. The proof of (A.5) is based on the 
formulae 

o(3 

f t - k -a  y. c je  ,M~dt= 
i 

0 

(-1) k+l - - y : c i V  2k logV , ifk=[k]>0, 
k! 

- F(-  k) ~ cdW 2k , if k ¢[k] ,  
i 

1 1 oo ac 

f f d, / e_,dt+ f ( Y. c i e i  '--=t (1 - e-') t -  t e '+2i.o cie  ) + O ( M 2  2 ) 

O 0 1 0 

=3 ' -  ~ c~logM~, 

oc 

0 
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We can also compare the regularizations considered above with the zeta-function 
regularization defined as 

log detcA = - d~((s)ls=o, 

where 
3 0  

1 
((S)=F-~s) f t s - I ( S p e - ' A - - P )  dt.  

O 

There exists the following equality [3]: 

log det' A = log detcA + y ( a o - p ) .  (A.6) 

Appendix B 

We will now calculate the regularized determinant of operator A having eigen- 
values A~ = 0' +a)(u  +b) with multiplicities d~ = cu +f. It is convenient to use the 
notations a = ao + a ;  b = bo +/3 where 0 < a,/3 <~ 1; ao and bo are integer. Then we 
will show that 

log det' A =- Z(a ,  b, c, f)  = - y½f(a + b - 2ao + 1)c(~ ( - 1, o~) - c(~ ( - 1,/3) 

b o - a o - -  1 

- ( f - c a ) f ~ ( O , c ~ ) - ( f - c b ) ( ' ( O ,  f l ) -  ~, ( c v + f - c b o ) l o g ( v + / 3 )  
v - - O  

+ J c ( b - a )  2 . (g.1) 

It will be convenient to use the Pauli-Villars cutoff and the formula (A.5) 
connecting log detpv A and log det' A. 

Taking formula (A.4) we will sum over all A~ with u ~< A -  ao where A is a big 
integer number. It can be shown that the tail is O(A-~). Thus we can write 

A a o 

l o g d e t p v A = ~ c i  Y~ ( c v + f ) l o g ( ( v + a ) ( v + b ) + M ~ ) + O ( A  -1) 
j ~ 61 o 

~ ~ ciD i + O(A-1). (B.2) 
i 

First we will calculate Dj. It is convenient to use the variables t =  b - a o - ~ t + 3 ;  

g = f - aoc. Then 

A 

Do = Y (c~' + g) log (v + c~)(v + t) = cA 2 log A 
v = O  

+ (c + 2g)A log A - ½c A 2 - (2g - c (c~ + t))A 
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+ (~C( 1 - a 2 _ t 2) + g(1 + a + t)) log A 

- c('R ( - 1, a )  - c (~  ( - 1, t3) - (g - Ca)('R (0, C~) -- (g -- ct)('R (0, /3) 

t o -- 1 
1 2 +~c(a  + a + t 2 + t + ~ )  - ~ ( c ~ , + g - c t o )  l o g ( u + ~ ) .  

u = 0  

We have used the formula 

,~ (A+c01-~ 

v - 0  1 - - S  

- ~ ( - 1 ) k ~ k k ~ S ( s + l ) . . . ( s + 2 k - a ) ( A + 2 )  1-2k ~, 
~ 1  ( ). 

where (R(S, a)  is the generalized Riemann zeta-function 

~c 

(~(s,c~)= E (~'+c0 -~, 
u = 0 

and Bk are Bernoulli numbers defined by the formula 

k 

. . . . .  

To calculate the terms/91 with/" ~> 1 we use the Euler-Maclauren formula 
A 

E F(x)dx+ E (-1) ~=p+l k~l (2k)! ~ x k F ( X )  p . (B.3) 
p 

Let us take p =  - 1 ;  

F0 , )  = (cz, + g) log ((u + a )(~, + t) + M~ ), 

so that 

A 

E F ( p )  = D i . 
lJ--O 

Then we obtain 
A 

f = g 
F ( x ) d x  c A 2 1 o g A - 2 g A l o g A - ~ c A I  2 _ 2 (  - ½ c ( t + a ) ) A  

- -1  

+ ( c M  2 - ~c (a 2 + t 2) + g (a + t)) log A - } c M ~  log M~ + (g - Ic  (t + a))TrM i 

- ( ½ c ( 2 -  a 2 -  t2) + g (a  + t - 2 ) ) l o g M i + ½ ( t + a ) 2 + O ( A - ~ ) + O ( M ; 2 ) ,  
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~F(x)[2~ = cA log A + g  log A+½c( t+a)+(c  - g ) l o g  Mi + O(A-1) + O(M[X ), 

1 I ,S 1 ~F (x)l_~ = ~c(log (A/Mi)+ 1)+O(A 1)+O(M[~)  

All other terms in the expansion (B.3) are negligible in our case. Thus we can 
obtain D i. The sum over / in (B.2) can be easily taken and we obtain the formula 
(B.1). 

This method can be applied in more general cases when the eigenvalues and 
their multiplicities are polynomial in ~,. 

Appendix C 

We will obtain here the undetermined factor before expression (3.10). The result 
is 

Kq = L  q, L = 2 6 e  "~-2 . (C.1) 

To obtain (C.1) it is convenient to consider the instanton 

Z q - - 1  
vo = zq + 1 " (C.2) 

This is the solution (1.8) with the parameters 

c = 1, a i = exp (2zrji), bi = exp ((2j + 1)rri). 

We will calculate the value 

O = det' A~,,/det' Ao, 

where A~ o is the operator (2.4) with vo given by (C.2). 
We introduce new variables r /=  (1 + Ivol% 1, ~ = arg z. Using these variables we 

can write 

~ ,  =~(z)g-1/2T,  Ao=o-(z)g-1/2ro,  

where ~r(z)= (1 + ]z]2q)-24q21z12q-1 (this value coincides with the density of the 
action); 

T =  - r l  10nr/3(1 - -  T ] ) 0 r t ~  - 1  + .l~0~x 1 2 

4q2r/(1 - r/) 3'~' lqrl 

1 
To = -0.r /(1 - r/)0~ 4qZrl(l_rl)O~. (C.3) 

We shall first calculate the value 

01 = det' T/det' To. 

The connection of 01 with O will be established at the end of this section. We will 
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prove the formula 

~log O1 = - q y + 2  log (F(q)F(2q)q 3'~+l)+ 2(q - 1)log ¢r 

- (2q + 1) log 3 + 4q - log 2 .  (C.4) 

First we find the eigenvalues of operators T and To. Let us seek the eigenfunctions 
~, ~'o of these operators in the form 

~ = eim%la(1 - n ) ~ ( r / ) ,  

tPo = ei '"%/a"(1 - r/)t~"~o(r/), 

where m, mo are integer and the coefficients/3, &/30, 3o must be found from the 
regularity condition. We obtain 

m Im + 21 Imo[ 
/3 = ~q , 6=  2q ' /3o = 6o= 2q 

We see that the eigenvalues satisfy the following equations of hypergeometrical 
type 

7/(1 - rt)a 2~o + (23 - 2(/3 + 6 + 1)r/)a,,• - ((/3 + 6) 2 + fl + 6 - 1 - A )V = 0 ,  

r/(1 - rt)O2~o + (1 + 2/3o-  (4flo + 2)rt)a,,¢ - (4/32 + 2 f lo -  a ~o~)¢ = 0. 

Therefore the eigenvalues are given by the formulae 

a!o~ =/o(/o + 1), a i = / ( / +  1 ) - 2  lo 

where /o  = 2flo + n, j = fl + 6 + n and n is a non-negative integer number. Each j(lo) 
can be represented in the form 

r 
/ ( / o ) = V +  - ,  r = 0 , 1  ..... q - l ,  u = 0 , 1 , . . . .  

q 

It is easy to obtain the multiplicity d i of each eigenvalue 

r # 0 :  d ° = 4 ( v +  1), di = 4 w ,  

r = 0: d ~} = 2(2v + 1), d, = 2(2~, + 2q - 1). 

The determinants of T and To can now be calculated by means of the results of 
appendix B. We obtain 

l o g d e t ' T = 2 Z ( - 1 , 2 , 2 , 2 q - 1 ) + 2  Y~ Z - 1 +  , 2 +  , 2 , 0  , 
r = l  

l o g d e t ' T o = 2 Z ( 0 , 1 , 2 , 1 ) + 2  }~ Z , 1 + - r , 2 , 2  , 
r = l  q 

where the function Z is given by the formula (B.1). Now it is easy to obtain 
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formula (C.4) using the equalities [12] 

&(O,~) ' =log F(~) -51og  27r, 

m l ( r )  (2~r)t m 1)/2ma/2_mZF(zm),  1-I F z +  = m = 2 , 3 , 4  . . . . .  
r = 0  

There remains the only problem of connection of O1 with O. To find this connec- 
tion we introduce the operators T(s)= x(z, s)T and To(s)= x(z, s)To, where 
x(z ,  s) = s + (s - 1)g-1/2o'(z),  0 ~< s ~< 1. It is evident that T(0) = T, To(0) = To; 
T(1) = A~ o, To(l) = Ao. Using the methods of the sect. 3 we can find the depen- 
dence of the expression det T(s)/det' To(s) on s and hence establish the connection 
of O1 with O. We obtain 

O 1 / 2 d e t M - e  POT l / 2 d e t M 1  
v v1 ' (C.5) 

where 

detM1 =de t ( Io -  p 2ikz~ d2x)=,n-4q-12 13 2q-,q 4q+3F2(q)F2(2q) ' 

V1 = I o" d2x = 47rq, 

i f  P = ~ - ~  log(o-g 1/2)o'd2x=-2q+2qlog2q, i f R + o o .  

Combining formulae (2.7), (2.8), (2.14), (C.4), (C.5) we obtain 

d/x(Vo) = 22°-277" -1 e (v 2). p[ ]ak -ail2lbk -b i l  2 H Ib~-a,.I 2 H d2ai d2bj d2c. 
k > j  l, rn j 

To compare this expression with (3.10) we have to note that for instanton (C.2) 
1 + Icl 2= 2; [li.i ( a i -  b i) = 2 q. Thus we obtain the value of the constant (C. 1). 
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