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Based on the conformal algebra approach, a general technique is given for the calculation of 
multipoint correlation functions in 2D statistical models at the critical point. Particular conformal 
operator algebras are found for operators of the 2D q-component Potts model (1 < q < 4), and the 
O(N) model (0 < N < 2) at the critical point. A number of four-point correlation functions are 
calculated for these models. 

1. In~oducfion 

In a recent paper by Belavin, Polyakov and Zamolodchikov [1] a new approach 
has been initiated for 2D conformal invariant theories. In that paper a full 
classification was given of the operators in such theories. It was also shown that 
there is a special class of 2D conformal invariant theories, the so-called degenerate 
conformal theories, in which all the anomalous dimensions of the operators are given 
by a simple algebraic equation. All the correlators in such theories satisfy special 
linear differential equations. 

In this new approach the different 2D conformal invariant theories arise as 
particular representations of the general conformal operator algebra. 

In ref. [1] still more special conformal theories were found in which the operator 
algebra consists of only a finite number of basic conformal operators. It was argued 
in [1] that such minimal theories should describe critical fluctuations in 2D statistical 
models at the second-order phase transition point. To back this idea it was shown 
that the simplest minimal operator algebra corresponds to the algebra of e (energy) 
and o (spin) operators of the 2D Ising model at the critical point. 

* Address after 20th August 1984: Laudau Institute for Theoretical Physics, Kosygina 2, Moscow, 
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This idea was pursued further in ref. [2], where it was shown that degenerate 
conformal theories provide operator algebras which describe critical fluctuations in 
2D q-component Potts models. In ref. [2] a detailed study was made of a particular 
operator algebra generated by the energy and spin operators of the Z 3 model. In this 
algebra, the same as in the Ising (Z2) model, there are only a finite number of basic 
operators (five, instead of two as in the Ising model). But, in general, the Potts model 
with general q ~< 4 COntains an infinite number of basic operators, which are 
generated by taking operator products of energy (e) and spin (o) operators. 

In theories with scaling invariance the two-point correlation function has the 
following simple form: 

1 (A(z)A(z')) - - 2 A .  (1.1) 
Iz-z'l 

Here A(z) is some basic operator of the theory and A is its scaling dimension. 
Some years ago Polyakov had suggested [3] that scaling invariance generalizes to 
conformal invariance. In particular, it was suggested that critical fluctuations are in 
fact conformal invariant. As was shown in [3], in conformal invariant theory the 
three-point correlators also have a simple form: 

Iz121a, +~2-a31z23Va2+~3-~,lg131A, +A3-~2 " 
(1.2) 

Nontrivial functions may appear in four and more point COl'relators. For example, 
the four-point correlator has the following general form [3]: 

- 

Hlzijla,+a:-a/3 ' 
i<j 

A = E A , .  (1.3) 
i 

Here 71 = ZI2Z34/Z13Z24, and f(T/) is, in general, a nontrivial function, which is not 
fixed by the special (finite parameter) conformal group (projective group in 2D). 
Recent development of the 2D conformal theory in [1], which uses the general 
(infinite parameter) conformal group in 2D, makes it possible to find this function 
too. In particular, in degenerate conformal theories it is found as a quadratic form of 
solutions of the conformal linear differential equations. (It is this which we imply by 
saying sometimes that the correlators in degenerate conformal theories satisfy linear 
differential equations. The solutions of these equations are not really the correlators 
themselves but they are the conformal functions out of which the correlator is made. 
In [1] these functions are called "conformal blocks".) 

In [1] the 4-spin correlator of the Ising model (aoao) has been found using the 
conformal theory approach, and the result agreed with that of Kadanoff [4], and 
Luther and Peschel [5]. 
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In [2] several 4-point correlation functions of the Z 3 model have been found. 
Calculations in [2] were restricted to correlators in which the conformal functions, 
which make the function f (~)  in (1.3), are solutions of the second-order equation. In 
the Z 3 model these are the correlators which contain the energy operator e. 

Recently Feigin and Fuchs developed a special integral representation for the 
conformal functions (conformal blocks) in the general conformal theory [6]. In 
particular, these integrals provide a convenient form for conformal solutions in the 
degenerate conformal theories. 

In the present paper and in our next paper [7] we shall define, by using the 
Feigin-Fuchs integral representation, the correlation functions (or amplitudes, in the 
terminology of the general theory in [1]) for the operators in the degenerate 
conformal theories. For statistical physics it provides correlation functions, at the 
phase transition point, for all the operators of a particular statistical model for which 
the conformal algebra is known. 

At present we have found two series of such particular algebras. More precisely, 
what we have found is a proper identification of conformal operators with the 
physical ones of spin and energy. The first is the Potts model with a continuous 
number of components q ~< 4 [8], and the second is the O(n) model with continuous 
0 ~ n ~< 2 [9]. These are described in sect. 2. 

In sect. 3 the Feigin-Fuchs integrals are introduced, and the relation of these 
integrals to the operator algebra of the degenerate conformal operators is described. 
In sect. 4 the monodromy problem, which is involved in constructing the physical 
correlators out of conformal functions, is introduced. And in this section we deal 
with the simplest case of nontrivial correlators - the 4-point correlators made of the 
second-order functions (hypergeometric functions). 

In sect. 5 we start with higher-order functions. In this section we calculate 4-point 
correlators for the third-order conformal operator. In the O(n) model this is the 
energy operator, see sect. 2. 

Generalization to still higher operators is then straightforward, but technically 
involved. The first remarks on the conformal functions for the general degenerate 
operators are given in sect. 3. Explicit formulas will be worked out in our next paper 
[7]. 

Discussion of the results is given in sect. 6. 

2. Conformal algebra of the Ports and O(n) models, generated by the energy 
and spin operators 

The identification of the energy and spin operators of the general Potts model as 
the basic operators of the degenerate conformal algebra has already been found in 
[2]. We shall review this in short again, and then we shall give the identification for 
the energy and spin operators of the O(n) model, with 0 ~< n ~< 2. This model has 
been considered recently by Nierthuis [9]. 
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The basic operators of the degenerate conformal algebra are classified by two 
integer numbers as ~n.m(z), n, m being integers [1]. Conformal dimensions An.,, of 
these operators are given by the Kac formula [10]: 

Here 

a n , .  = + (2.1) 

a ± = a o +  ~o2+ 1 ,  (2.2) 

and a 0 is related to the anomaly number C of the conformal algebra as 

C =  1 -  24a 2, (2.3) 

see also sect. 3. The anomaly number C is a continuous parameter, and it determines 
a one-parameter set of degenerate conformal theories. We shall show shortly that in 
the operator algebras for the Potts and O(n) models the number C is a function of q 
and n, respectively. 

In [1,2] it was found that the energy operator e in the Ising (q = 2) and Z 3 (q -- 3) 
models corresponds to the operator ~1.2(z) of the conformal algebra. The number 
( a_ )  2 = (a+) -2 in (2.1) for these two models was found to be ~ and ~ respectively. 
They both correspond to the finite, or minimal, algebras. 

The general rule is that the degenerate conformal algebra becomes finite if the 
number ( a_ )  2 is rational, i.e. 

( a_ )  2 = p / k .  (2.4) 

Here p, k are integers. The main series of minimal theories found in [1] corresponds 
to k - p  -- 1. The Ising and Z 3 Potts models are two such theories. Now let us look 
at the whole series. We define 

k = 2N, p =  2 N -  1, (2.5) 

where N runs over integer and half-integer values. 
For minimal theories the Kac formula (2.1) reads 

( pn - km)2  _ ( k  - p ) 2  ( 2 . 6 )  
A,,, r,, = 4pk 

As was said above, in Ising and Z 3 models the energy operator e is represented, in 
the corresponding conformal algebras, by the operator ~I,2' with conformal dimen- 
sion A1, 2. Now we make a conjecture that this is the case for the general Potts 
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model. For k, p defined as in (2.5) we find 

( 2 N -  1 -  2NX 2) 2 -  1 N +  1 
31'2= 4 X E N X ( E N - 1 )  = 2 ( 2 N - 1 ) "  

(2.7) 

Now we recall that the physical critical dimensions of statistical operators are two 
times larger than their dimensions in the conformal algebra, sc¢ [2]. So we obtain 
from (7) 

(A,)ph = 2A1,2 = 1 + y  1 2 - y '  Y = N "  (2.8) 

The last formula is precisely that of den Nijs [11,12]. This is the In'st thermal 
exponent X.r~ in his notation. Yet, relation (2.8) can be viewed here just as a 
definition of the parameter y. Consistency is established by calculating the second 
thermal exponent X.r2 using the same parameter y = 1/N. In terms of the conformal 
theory the second thermal exponent corresponds to the operator 0~.3 which is 
created in the product of two energy operators: 

1 1 
(z-z') 2a12I+ ( z -  , (2.9) 

see [1, 2]. In the following we shall write such local operator expansions in a compact 
form, skipping the standard scaling factors, and indicating only the basic conformal 
operators in the expansion 

0 1 , 2 0 1 , 2  - -  I + 01,3" (2.9') 

Here I is an identity operator of the algebra, and 01.3 is the next-to-leading 
thermal operator. Its dimension is found from (2.6) 

A13 = ( 2 N -  1 -  2NX 3) 2 -  1 4 +  2y 
4X 2 N × ( 2 N -  1) 2 ( 2 - y )  ' 

4 + 2y (2.10) XT2=2A13= 2 - -y  ' 

and it gives correctly the second thermal exponent, cf. [12]. 
In the leading series of the minimal conformal theories with k = 2N, p = 2N - 1, 

and N an integer, the spin operator is placed right in the center of a table containing 
the operators 0n.,~ (se¢ [2]), and it corresponds to the operator 0N. N-t. This is a 
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unique place in the tables for finite theories in the sense that only this operator is 
created again in the product with the energy operator 

e S - S +  . . . .  (2.11) 

Anyway, in the Ising and Z 3 model the spin operator does correspond to the 
conformal operator ckN, N-~, and we assume that this is the case in general. Then the 
first and the second magnetic exponents, which correspond to the operators ~N, N- 1, 
~t¢, N-2, are found to be 

N 2 - 1 1 _ y 2  

XH~ = 2AN'N-1 = 4N(EN - 1) = 4(2 - y ) '  (2.12) 

9N 2 - 1 9 _ y 2  

XH:---- 2AN'N-2 = 4 N ( E N -  1 ) =  4 ( 2 - y ) "  (2.13) 

These are just the relations which were conjectured by Nienhuis et al. [13] and 
Pearson [14], and derived in terms of a Coulomb gas by den Nijs [15]. 

In general, the thermal and magnetic series of exponents for the Potts model are 
given by the formulas 

n2 + nY (2.14) XT '=2AI ' "+I=  2 - y  ' 

(2n - 1 )  2 _y2 
XH" = 2 ~ m s - l - ~  = 4 ( 2 - y )  (2.15) 

The parameter y = 1 / N  above was restricted so far to a discrete set of values. The 
spin operator, which is the operator ON, N-t, is contained in the set of degenerate 
conformal operators { On, m } only for N being integer. 

Also one can check that the set of conformal dimensions {An.m), given by the 
Kac formula (2.1), does not contain negative dimensions (which, of course, are 
physically unacceptable) only for the main series of minimal conformal theories. 
These correspond to N being integer, or half-integer. Note that this set of theories 
was also singled out in a different approach by Friedan, Qiu and Shenker in their 
recent paper [18] using the requirement of the absence of the negative norm 
Virassoro algebra states. 

Yet the point is that even in the theories which do contain some of the operators 
{ On,m } with negative dimensions, it is possible to make a reduction of the whole 
operator theory to certain subalgebras, which do not contain pathological operators. 
Such subalgebras are well defined, at least from the statistical theory point of view. 
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We have not analyzed in much detail all the possible subalgebras which can be 
selected from other finite theories, not in the main series ((a_) 2 = p/k, but k - p  > 
1). And anyway, as the operator qN.N-I is contained in the set of degenerate 
conformal operators only for integer N, we take it that the spin operator in the Potts 
series of models is defined in our theory only for the discrete, but infinite, set of 
values of the parameter y = 1/N above. 

But the "thermal" operator subalgebra, which is generated by taking products of 
the energy operator e -  ~1,2, and which contains conformal operators (~Ln }, does 
not include pathological operators for the whole continuous range of values of the 
parameter y. It is in this sense, if only the thermal algebra and the corresponding 
thermal critical exponents are considered, that we say the conformal theory of the 
Potts model is well defined for the continuous range of the parameter y or q. 

We remark finally that the parameter q of the Potts model is related to the 
parameter y by the formula [16,17] 

V~ -= 2 cos(½~ry). (2.16) 

On the other hand, for a continuous (a_) 2 the parameter y = 1/N becomes 

1 =2(l_a2)=4ao(a~o2+l_l) Y - - ~  a o = / /~(1  - C ) .  (2.17) 

In this way the "number of components" parameter q of the Potts model becomes 
related to the numbers of the conformal algebra (a_) 2, C. 

We note here that the q -- 4 model is obtained in the limit N --* o0,(a_) 2 ---, 1. 
This algebra has the anomaly number C--1,  and this is a trivial case of the 
conformal theory in the sense that all the multipoint correlators in this theory are 
given by simple algebraic functions. Some examples of that are given in appendix B. 

Now we are in a position to find the conformal algebra for the O(n) model. This 
model has been considered recently by Nienhuis for a continuous range of the 
parameter n: -2~<n~<2 [9]. Under some plausible assumptions he derived the 
following relations for the thermal exponents of this model: 

with 

XT, = 2 - YT~ = 2t -- 2, (2.18) 

XT2 = 6t - 4, (2.19) 

2 f i r  
n = - 2 cos T "  (2.20) 

And he conjectured a relation for the magnetic exponent: 

3 t v 1 (2.21) Atl, = ~ 4t 4" 
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Relation (2.18) has been conjectured earlier by Cardy and Hamber [19]. 
We find the realization of the conformal algebra for this model by the following 

line of arguments. First, it is easy to convince oneself that exponents Xr~ and Xr2 in 
(2.18), (2.19) are essentially different from those for the Potts model, eqs. (2.8), 
(2.10). Even if we knew nothing of (2.20) and just adjusted the parameter t in (2.18) 
to the parameter y in the Potts model in order to make XT, in (2.8) and in (2.18) the 
same, the exponent Xr2 expressed in this parameter would be different. 

Next we know that the two models must coincide for q-- 2 and n = 1 - which is 
the Ising model. In particular, the exponent Xrl which is given by the conformal 
dimension of the energy operator A ~, should be the same at this crossing point of the 
two models. In minimal conformal theories, to which the Ising model belongs, each 
physical operator has two "representatives" among the conformal operators cn.,,, 
see [1, 2]. In the Ising model algebra [1] the second partner of the energy operator 
e - g'z.2 is '#3,1. One can check e.g. that for the Ising model value of (a_)2 = ~ in 
(2.1), /$1,2 =/$3,1 = ½ ((At)ph = 2 A - , 2  = 1 as it should be). It is only at this point 
( ( a - )  2= ~4) that the operator ~3.1 is equivalent to the energy operator of the Potts 
model ~1,2. Now it is natural to assume that the operator ~3.~ should be the energy 
operator of the O(n) model. Let us now check this assumption. We calculate/$3.! 
using the same parametrization as in the Potts model: ( a )  2 = p / k ,  k = 2 N ,  p = 

2N - 1 ,  y = 1/N. We obtain 

( 3 p - k ) 2 - ( p - k )  2 

/$3.t = 4 p k  

X T =  2/$3, t  = 2 -  2y.  

1 
1 - ~ = l - y ,  

(2.22) 

Now we adjust this equation to (2.18) and find the relation between the parame- 
ters: 

y -- 2 - t. (2.23) 

The next-to-leading thermal exponent, relative to the operator t~3 ,1, corresponds to 
the conformal operator which is created in the product of two energy operators. 
According to the general theory [1] 

~b3,l~b3,1 -- I + ¢~3,1 + ~Ps,I. (2.24) 

So the next-to-leading thermal operator is ~5,r We calculate 

(5p - k ) 2 -  1 
"45,1 = 4 p k  - 4 - 3 y ,  

and we use relation (2.23) to find 

XT2 ---- 2AsA = 6t -- 4. (2.25) 
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This agrees with (2.19). Finally, if we assume that the spin operators in both Potts 
and O(n) models correspond to the same conformal operator epN, N_ 1, then we find 

1 _y2 3 t 
-- 1 (2.26) XH~ = 2 A N ' N - 1  = 4 ( 2 - - y )  4t 4 " 

This is the Nienhuis' conjecture (2.21). 
Thus we have established the following identifications: the energy operators of the 

Potts and O(n) models correspond respectively to the basic operators ~i,2 and ~3,1 
of the degenerate conformal theory; the spin operators in both models correspond to 
the same conformal operator ~N, N-1. 

We remark finally that one more infinite series of models is obtained if we choose 
¢2.1 to be the energy operator e. It has been found by Friedan, Qiu and Shenker [18] 
that for this choice the tricritical Ising (Z2) and Z 3 Potts models result. As they have 
found, the spin operator is again placed in the center of the table. By taking 
y = l / N ,  and N running in this case over half-integer values, one gets an infinite set 
of tricritical Potts models. The thermal subalgebra of the operators ~2,+L1 (n = 
0,1, 2 . . . )  is well defined for the continuous range of y. 

3. Integral rewesentation for conformal correlators 

In this section it will be shown that the correlators of the general conformal theory 
in 2D [1] can be represented by averages of vertex operators in a Coulomb-like 
system with special boundary conditions (BC). 

In this language the basic conformal operators are represented as exponents of a 
free field (p(z, ~): 

V . ( z ,  = (3.1) 
and the dynamics of the field ¢p are defined by the action 

- f dzd O  O, . (3.2) 

For the usual BC on ~ at infinity the correlators of the theory (3.1), (3.2) are trivial: 

<vo(z)v_.(z,)> 
f D e-Af l 

= exp{ - ½a 2 [2(tp 2) - 2 (¢p (z )¢ (z ' ) ) ]  } 

p( ( R)) ---- e x  - - 4 a  2 In R - In [ z _ z'[ 

=1 a''2- 4o2 (3.3) 
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In the same way we find 

(Val(zl)V~2(z2)V,,3(z3)Va,(z4))  - l ' l l z , -  zjl4~,~s, ~']a i = O. (3.4) 
i<j 

Here we used (~p(z)cp(z')) = 4 1 n ( R / I z  - z'l), a is a cut-off scale at small distances 
(lattice spacing), R is the size of the system, R -* oo. The correlators for vertices 
(3.1) are nonzero only if R cancels out, which imposes the usual neutrality condition 
Eai = 0. 

Expression (3.3) shows that the scaling dimension of the operator V~(z) is 2a z. 
The energy momentum (EM) tensor in this theory is 

- = - : ( 3 . 5 9  

This theory, with operators (3.1) and the EM tensor (3.5), is a simple case of a 2D 
conformal invariant operator system, to which the general theory of [1] also applies. 

In particular, it is shown that 

(T,~(z, ~)¢t(zl ,  ~h)¢z(zz, ez) . . .  ) = 0, (3.6) 

a,<T~,(z, ~,)~x(z,, ~z),2(z2~,2)... ) = 0, (3.7) 

( ~ ,  ~ . . .  are any basic conformal invariant operators) which implies that the z and 
~, dynamics decouple (see [1,2]), i.e. we can consider all operators and their 
correlators as dependent only on z~, keeping all %,;'s formally fixed. Dependence on 
{ ~,, } will be restored later by using certain symmetry requirements on physical 
correlators, see sects. 4 and 5. 

So for the time being we shall ignore £, dependencies altogether. Then the 
expressions (3.3) and (3.4) become 

( V , ( z ) V _ ~ ( z ' ) )  - - 1  2a 2, (3.Y) 
( z - z ' )  

'2~'~s (3.4') (V . , ( z , )V~, , ( zz )V . , ( z , )V~, , ( z4) )  - H ( z i -  z s ] , 
i<j 

and the relevant component of the EM tensor is 

r ( z )  - r , , (z )  = - ~ :az~a~: .  (3.5') 

It follows from (3.3') that the conformal dimension of the operator V,(z)  is 

m a = a 2  , 

which is one-half of its real scaling dimension. 
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The product of fields in (3.5') is "normal ordered", which implies that we extract 
an irrelevant divergence from the product of fields that would occur if we put this 
product inside some correlator, i.e. 

z , z ' " ( z + z ' ) / 2  

The vertex operator (3.1) is also "normal ordered", which again implies that if we 
put it inside some correlator and expand the exponent in powers of 

exp(  i a ~ (  z ) ) = 1 + ia~p + ½(ia)2q0q0 + . . .  , 

then, under the functional averaging, the Wick pairings of q0's in the expansion 
should be made only with the outside fields. All internal pairings are extracted. This 
results in an overall divergent factor: 

V~( z ) = :exp( iaep( z ) ) : - ~ exp(  iacp( z ) ) . a a2 (3.8) 

Eq. (3.8) shows explicitly that the quantum dimension of the vertex V~(z) is A = ~x 2 .  

The Coulomb system (3.1)-(3.5) gets modified if we assume that there is a fixed 
charge -2ao ,  placed at oo, and resulting in a modified BC at oo on the field cp(z). 
Now the neutrality condition becomes 

~ a i  = 2a0. (3.9) 

Only correlators which satisfy (3.9) are nonzero in this theory. The two-point 
correlator becomes 

1 (V.(z)V2oo_ 
- " 

Here V2~o_ ~ is a sort of conjugate to 
conformal dimension becomes 

A a -~ A 2 a o _  a = {X 2 - -  2aao. 

(3.10) 

V a (instead of V_,, if a o=0)  and the 

(3.11) 

Because of modified BC the EM tensor T ( z )  gets an additional term (cf. (3.5')): 
T(  z ) = - ~ : OzCpO,~p: + AO2z~p. (3.12) 

The coefficient at Oz2q0 is fixed by the conformal Ward identity (WI) [1]: 

(Aj(z_z,) 2 lz 0~) ( T ( z ) ¢ l ( z l ) ~ ( z 2 ) . . . )  = E  + (¢ , (z l )¢2(z2) . . .  5. 
T • Z - -  • 

(3.13) 
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Here {q~ } are conformal operators with dimensions {A, }. The WI (3.13) fixes the 
first two terms in the operator expansion of the product T(z)Vo(z ' ) :  

a .  vo(r) + 1 T(z)V,(z')= ( z - z ' )  2 z_z,O:,V.(z')+ . . . .  (3.14) 

On the other hand we can derive this expansion explicitly: 

r(z)V~(z')= : ( - t o , ~ o , ~  + A0~o): :e'"~(~'): 

tv 2 "1- 2 iaA :ei~(~): + i a 

( z - z ' )  2 z - z '  
: 0 ~ ( z )  e '*~(~ ' ) :  

a 2 + 2 iaA 1 0 r V , , ( z ,  ) + . . . .  (3.15) ?;---;7 vo(z,)+ 

Here we have used (~(z )~(z ' ) )  = 2 1 n ( R / ( z  - z')). Now comparing aa  in (3.11) 
with (3.14) and (3.15) we find A = ia o, so that 

T(z) = - ¼ : a ~ a z ~ :  + iaoaZ~. (3.16) 

Transformation of the field ~(z) under conformal transformations also changes. 
The basic conformal operator q~(z) with dimension A transforms, by definition, as 
follows (see [11): 

z - - * f ( z ) - - - z + e ( z ) ,  (3.17) 

,(~)-~ (/,(~))%(/(~)) 

-- ,t,(~) + ( ,a,'(~) + , ( z )  a,) ,t ,(~).  (3.18) 

In the Coulomb theory (3.1), (3.2) with a 0 --0 only the variable z of the ¢p(z) 
changes under the conformal transformations: 

(p(z) --) (p ( f (z ) ) ,  (3.19) 

and the vertex Va(z ) acquires an additional scaling factor only because of its 
dependence on the cut-off scale a, see (3.8): 

Vo(z)  = :e~"~(z): ~ (f'(z))a":ei"'P(-t(z)):, A° = a 2. (3.20) 
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In the Coulomb theory with a 0 ~ 0 the transformation of qo(z) has to be modified. 
This is due to special BC on tp(z) at oo. The easiest way to find this additional piece 
in 8qo(z) is by noticing that the dimension A a in the transformation (3.18) of the 
vertex Va(z ) should be the same as that given by the two-point correlator (3.10). This 
requires the following transformation of the scalar field q~(z): 

~p(z) --* ~p(f(z))  + 2ia o ln f ' ( z )  

= ~p(z) + e(z)  Oz~p(z) + 2iaoe' ( z ) .  (3.21) 

By using (3.21) and (3.8) we then find 

v.  = :e'"'<'): --, ( / ' ( z ) )  "~ :exp { ia,p(f(z)) - 2aa o In f ' (  z ) }: 

= ( f ' ( z ) ) "Z-za"°V~( f ( z ) ) ,  (3.22) 

in agreement with ,~o = a z - 2aao, see (3.11). 
Another useful relation is that of the "vacuum" charge a0 to the anomaly number 

C of the general conformal algebra [1]. The two-point correlator for T(z) has the 
form: 

< r ( z ) r ( , , ) >  = ½c 
( . - r ) "  

where C is the central charge of the Virassoro algebra for L n components of T(z): 

L.(z,) 
r (z)  = E ( z _  ~,1.+ 2 , 

[ L n, Lm] = (n - m)Ln+  m + ½Cn(n = - 1) 8.._ m, (3 .23 )  

see [1,2]. We can now find the correlator (T(z )T(z ' ) )  explicitly: 

( r (  z ) r (  z ' )  ) = ( : (  - ~ Ovp( z ) Ocp( z ) + iaoa2Cp( z ) ) : 

x : ( -  .~ a,v (,~') a+ (~')  + .,oa~(z.)):> 

- l - -A - - -  ½(1- 24,~o~), (3.24) 
(z - z ' ) '  

which gives 

C = 1 - 24ao 2 . (3.25) 
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Now we shall start deriving an integral representation for multipoint conformal 
correlators, using the relation, established above, of the Coulomb system with a 0 ÷ 0 
to the general conformal theory. 

First we shall specify which particular operator theory we should like to obtain. 
We shall look at properties of operators { V~ } of the Coulomb system and impose 
certain requirements which should hold if these operators are to be identified with 
physical operators of some statistical theory. 

The first requirement is that the 4-point correlator for any operator of the theory 
should be nonzero: 

o. (3.26) 

In our Coulomb system we can construct the following function: 

(V~ V~2V~3V~4) , (3.27) 

with F.a~ = 2%.  Next we want all the Coulomb operators in this function to have the 
same conformal dimension ,% if they are to be identified with the 4-point correlator 
for a single physical operator, as in (3.26). This leaves us with the choice between Va 
and V2~ o_ ~ for any of V~, in (3.27). If a 0 = 0 such a function is easy to find: 

(v v v 

In the case of a 0 ÷ 0 it seems that there is no way to meet the two requirements: 
F.~a~ = 2ao, and or, = ct or 2a 0 - a. Functions like 

(v.voV2 o_ oV2 o- a), (3.28) 

( V~V~V~V2~ o_ ~), (3.29) 

are zero in our Coulomb theory because Ea; ~ 2a  o. 
Yet there is, in fact, a way to make the correlators like (3.29) nonzero. In the 

Coulomb theory with a o ~ 0 there are two nontrivial operators which can "screen" 
an additional charge. Such screening operators should be conformal invariant (have 
conformal dimension A = 0) so that they do not change the conformal properties of 
the correlator. A local operator with A = 0 is an identity operator of the algebra. In 
Coulomb theory it has two representatives: Va_o(z ) and V2a0(z). Neither of these 
operators would provide the necessary screening. There remains the possibility of the 
integral operators like 

Q = ~ ¢ d z J ( z ) .  (3.30) 
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For the operator Q to be conformal invariant, the operator J(z)  must have A -- 1. 
We take the vertex Va(z ) and impose the condition 

Z~,~ = a 2 - 2aa o = 1. (3.31) 

There are two solutions to it: 

a±--  a0 :t: ~ + 1 ,  (3.32) 

and so there are two screening operators 

Q=~=~c dZJ±(z ) ,  J ± ( z )  = V,~±(z). (3.33) 

Now we can put operators (3.33) inside the Coulomb average in any numbers. 
They will not effect the conformal properties, which will be defined only by 
operators V~,,(zi) inside the correlator. And yet operators Q ± will shift the balance 
of the charges ( a, }. 

Let us look now at the 4-point correlators (3.28), (3.29). For (3.28) Za~ - 2a  o = 2a o. 
This surplus of 2a o cannot be cancelled by the charges a± of J±. But in the case of 
(3.29) we have Ea  i - 2 a  o = 2a, and this can be cancelled by adding Q ±, if a is 
quantized: 

2 a = - h a  -rha+, 

o r  

a = a n , , . = ½ ( 1 - n ) a _ + ½ ( 1 - m ) a + .  (3.34) 

Here h, rh are positive integers, which are shifted in (3.34) for later convenience. 
Thus we can build 4-point correlators with the properties natural for statistical 

theory (nonzero, if all 4 operators are the same) out of Coulomb vertices V~(z) only 
if the parameter a is restricted to the discrete set of values an.,,, eq. (3.34). (We 
notice here that the set (3.34) is not unique. Another choice is to start with the 
Coulomb average (V,,V~V,.Va) and obtain the condition 4-, = 2 a o - n a _ - m a  +, 
a = ¼(1 - n ) a _ +  ¼(1 - re)a+ [20]. In this paper we restrict ourselves to the confor- 
mal algebra related to the set (3.34).) The corresponding conformal dimensions are 
given by 

1 2 A,,, ,  = a,,,,,,2 _ 2a,,,r,,ao= 4[ (a_n - -a+m)  - - ( a + +  a _ )  2] , (3.35) 

which is precisely the Kac formula for the degenerate conformal operators [10], see 
also eq. (2.1), and eqs. (32), (33) in [2]. In general, the 4-point function will have the 
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following form: 

< ~ n . m ( z , ) ~ . , ~ ( z 2 ) ~ , ~ ( z ~ ) ~ , , ( z 4 ) >  

X Van.(z3)Vetnra(z4)J_(14l)...S_(un_l)J+(Ol)...J+(Om_l)>. (3.36) 

As all the integrations are analytic, the integral does not depend on the precise 
form of the contours { C 1 . . . .  Cn- t, St  . . . .  Sm-  z}' But they have to be chosen care- 
fully, winding around points z t, z 2, z 3, z 4, so that they do not shrink to a point, 
resulting in the integral being zero. 

This integral representation for the conformal functions has been found recently 
by Feigin and Fuchs [6]. Here it was described, perhaps, in a somewhat different 
language. 

In the remainder of this section we shall start more specific studies of the 
conformal functions provided by the integrals (3.36). 

Let us look first at a particular correlator: 

<¢~n, m~l,2~l,2¢~n, m>" (3.37) 

We assume that ( n , m ) ) ( 1 , 2 ) .  The corresponding integral with the minimal 
number of J ' s  has the form 

d o < vo,,(z3) ° _ ._(z,)S+(o)> 

/ ~.2at2a~,. / \2a~2 / \ 2an.(2~o--  a~,.) /  ~,2a12(2aO- a .~  ) 
- ~zz2zt3) tz23) tz24) tz24z34) 

(3.38) 

This integral gives the functions of z z, z 2, z 3, z 4, which is projectively invariant. 
Using this invariance we can fix three points at arbitrary values. The standard choice 
is z 1 = 0, z 2 = z, z 3 = 1, z 4 ~ oo. Then the integral takes the form 

zZa"~"" (I - z)Z"hfcdvVZ*+a..(v - l)Z"+"'2 (v - z) z"*°'2 . (3.39) 
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The integral here is the hypergeometric function which is a solution of the 
second-order differential equation. 

There are two independent choices of the contour C in (3.39), fig. 1. They 
correspond to two independent solutions of the hypergeometric differential equa- 
tion: 

l l ( a ,  b, c; z )  = fl °° d v v ~ ( v  - 1)b(V -- z)* 

r ( - a -  b -  c -  1)r(b + 1) 
r ( - a - c )  F ( - c , - a - b - c - l ; - a - c ; z ) ,  

I2(a,  b, c; z) = fo~dVva(1 - v)b(z  - v) ~ 

= Z 1 +a+CfO1 dooa(1 -- O)¢(1 - zv) b 

= z , . o + c r ( a  + 1 ) r ( c  + l) T((~ ¥ 7~: ~ F(-b,a+l,a+c+2;z).  (3.40) 

Here a = 2a+a,m, b = c = 2a+oq2 and F(a, fl; "t; ) is the hypergeometfic function. 
I t  i s  assumed here that powers of v ,  v - 1, v - z in these integrals are such that the 
integrals are convergent. Otherwise the contours of integration should be taken 
winding around the corresponding points, or, exluivalcntly but technically simpler, 
the functions (3.40) can be assumed as an analytic continuation from values of the 
parameters for which the integrals are convergent. This analytic continuation 
simplifies essentially the handling with higher integrals (with the number of integra- 
tions more than one), see sect. 5 and the coming paper [7]. 

In a similar way, the integral for the correlator 

('O~,,, (0) ~3~ (z)  031 (1) 0,,,,, (00), 

C 
o z 

(3.41) 

Fig. 1. 
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takes the form 

z2""""'(1- z)2'~i'f" c, du, fc du2u~(ux- 1 ) t ' ( u , -  z )  ~ 

xu~(u2- 1 ) b ( u 2 -  z)'(u, - u2) ~. (3.42) 

Here a = 2 a _ a , , . ,  b = c =  2a_a31, g = 2a2_. In this case we choose the set of 
contours shown in fig. 2. The corresponding integrals are studied in detail in sect. 5. 
Here we only note that in this case there are three independent configurations of 
contours C~, C 2 - those in fig. 2. The corresponding integrals provide three indepen- 
dent solutions to the third-order differential equation of the general theory [1]. 

For the correlator 

((pnm(O)@22( g )@22(1)@nm( OO ))  , (3.43) 

the Coulomb average will contain both J=(u)  and J+(v). The integral will take the 
form: 

z2~'~.a..,(1-z)2°~'fedu fsdvUa(U-1)b(u-z)C 

Xv"'(v - 1) b'(v - z ) C ' ( u  - v )  g . (3.44) 

Here a = 2a_a ,m,  b = c = 2 a _ a 2 2  , a '  --- 2a+a . , , ,  b' = c' = 2 a + o t 2 2  , g = 2a+a_ 
-2 .  
In this case there are four independent configurations of contours, those in fig. 3, 

which provide four solutions of the fourth-order differential equation. 
Now the generalization is straightforward. It is easy to check that for the 

correlator 

(dPnm(O)dPkl( Z )dPkl(1)dPnm(O0)) , (3.45) 

01 
o z 

C2 
C~ C1 

w v 

Cl 

Cz 

Fig. 2. 
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C 
o z 

S 
C S 

S C 
v ~ v 

C 

S 

Fig. 3. 

there are k x I independent integrals (we assume that k x 1 < n × m). In this way we 
recover the result of the general theory that the conformal correlators containing the 
degenerate operator epk. t satisfy the (k x l)th-order differential equation. By using 
the Coulomb representation described above we can find directly all the solutions to 
those equations. 

We should like to remark finally on the apparent ambiguity in the choice of 
integrals for a particular correlator. For example, for the correlator (3.41) we could 
equally well write the following integral: 

× V2ao_a3,(oo)J_(ul) . . .  J _ ( u  n _ , ) J + ( v l ) . . .  J+ (vm- l ) )  • 

Taking all the independent configurations of contours we would obtain n x m 
functions, which are solutions of the differential equation corresponding to the 
operator 0n. m. The point is that among those n x m functions there are three which 
are also solutions of the third-order equation (corresponding to the operator qb3,~ and 
given by the integrals (3.42)), while the others are redundant. 

Particular examples of how this technique enables us actually to find the physical 
correlators in 2D statistical models are described in detail in the next sections. 

4. Monodromy problem involved in the calculation of the conformal 
operators. The second-order correlator 

In this section we shall present our technique as applied to the simplest nontrivial 
case - the 4-point correlator which contains the second-order conformal operator 

~)12" 
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As explained in the preceding section the conformal  functions related to the 

correlator  

(,0.,,., (0) ¢x2 ( z )  ¢,,3,,,,(1) 0,,.,., ( o o ) ) ,  (4.1) 

are given by  the integral 

f c  d t  (Va, (0) V.,2(z) V.,(1) Va,(oo)J + ( t ) )  

= z2a'"2 (1 - z)2"2~3fcdtta(t - a )b ( t  - z )  c , (4.2) 

with the two choices of C, those in fig. 1. Here a = 2 a t a  +, b = 2a3a+,  c = 2aza  + 
and ai=-a.,,., are given by (3.34), in particular a 2 - - a l 2  = - - ½ a + .  And {ai} are 
subject  to the neutrali ty condit ion (3.9), so that a 4 = 2a  o - a 1 - a 2 - -  a 3 - -  a+.  

For  the two choices of  the contour  C shown in fig. 1 we shall have the two 
integrals I i (z  ) and I2(z) ,  see (3.40). To  form the physical correlator  we have to 
restore the dependence  on L The  physical correlator  should be of  the following 

form: 

= E x ,  d,(=) . (4.3) 

The  funct ion I~(z) has the singular points 0,1, oo. If we cont inue z analytically 
along a closed contour  C O or Ct encircling the point  z = 0 or z = 1 (fig. 4), the 
funct ion I~ ( z )  t ransforms as 

(go),dj(=). 

--.c' (g,),jIj(=). (4.4) 

Co C~ 

Fig. 4. 

o , o  
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Here go and gx are 2 × 2 matrices. They are the generating dements of the 
monodromy group transformations*. If we continue Ii(z ) and ~ in (4.3) 
simultaneously along C O or C1, the function G(z, Y.) will change, in general. 
Obviously the physical corrdator for the operators like energy or spin should be 
monodromy invariant. 

From (3.40) it follows that go has a diagonal form: 

0 ) 
go-- exp(2~ri(1 + a + c)) " (4.5) 

G(z, Y.) will be invariant with respect to the go transformation if it has a diagonal 
form, too. So we are led to the expression 

a ( z ,  ~) = x , z , ( z )  1,(z)  + x212(z)  12(z) . (4.6) 

There remains the transformation g~. This matrix can be made unitary by rescaling 
11 and 12 like 

ix(z)  = lx(z) ,  ]2(z) = C12(z ) , (4.7) 

see [2]. When both go and gl are unitary the quadratic form 

G(zl~. ) - ] , ( z ) ] , ( z )  + ]2(z) ]2(z) (4.8) 

will be monodromy invariant. 
But in this paper we shall take the slightly different route of constructing the 

invariant function G(z, ~.), which is shorter, and is easier to generalize to higher 
corrdators. 

We rewrite (4.6) in a compact form as 

~(z,~)- Ex,~;(~) i;(z). (4.9) 

As was said above, this function is explicitly go-invariant. Now for the integrals 
I~(z), which are the basic solutions of the differential equation, there is the following 
expansion [21]: 

I,(z) = E % ~ ( 1 - z ) .  (4.1o) 
J 

The set of integrals l i(z ) is said to be a canonical one for the point z ffi 0, because 
each integral has no more than one singularity as z--, 0. The functions ~ ( 1 -  z) 

* See any textbook on linear differential equations. 
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form a canonical set for the point z = 1. In particular, for the base { ]j(1 - z)} the 
matrix ga has a diagonal form like (4.5). If we put (4.10) into (4.9) we obtain 

6(z, ~)-- ~.,X,a,kajk(1-z)it(1-z) 
i 

(4.11) 

The function G(z, ~) will be invariant with respect to gl if the quadratic form on 
the r.h.s, of (4.11) is diagonal, i.e. 

~X~a~kait = O, k ~ l. (4.12) 

If the matrix a~j of (4.10) is known, the coefficients XI, X 2 in the quadratic form 
(4.7) can be found easily from (4.12) (their relation X I / X  2 in fact). 

So the remaining problem is to find the matrix a~j. For the second-order case, in 
which { I i } are hypergeometric integrals, the expansion (4.10) is well known of 
course. But we shall derive it again here by the technique which can be easily 
generalized to the higher-order cases. 

Let us take the integral If(z),  eq. (3.10), and continue analytically the contour of 
the integration in the two different ways, as shown in fig. 5. Then we multiply the 
two resulting integrals by the phase factors shown in fig. 5a in order to cancel the 
phases in the interval (0, z). And then we subtract them one from another. In this 

I J z )  = 
o z 

ei~(a+b+c ) ei~:(b+c) ei~b x (~hl:(b+c) 

(~i~(a+b+c) ~i~(b+c) ~i'n:b x eilt(b+c) 

(a) 

0 Z ~ ---- 

Z 1 - ~  : _- + 

(b) 

Fig. 5. 

v w 
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way we find the relation (see also fig. 5b, where the coefficients are omitted): 

s(a) 11(6 , a , c ; l _ z )  I , (a ,b ,c;z)= s(b+c)  

s(S--(b~-c) I2 (b ,a , c ;1 - z ) .  (4.13) 

Here s (A ) -  sin(rrA), and so on. A similar expansion for the function 12(z ) is found 
as shown in fig. 6. We obtain 

12(a, b, c; z) = - s(a + b + c) ii(b ' a, c;1 - z) 
s(b + c) 

s(b) 12(b ,a ,c ;1-z ) .  (4.14) 
s(b+c) 

So, we find 

s(a) s(c) 
aH= s(b+ c) '  %2 = s(b+ c) '  

s(a + b + c) s(b) (4.15) 
~ =  ~(b+~) ' ~ =  ~(b+¢)" 

]~2(Z) = 
v w • 

ei~a 

0 

~i~a 

,E,, 

~i~c ~il~lb+c) 
~ '~ '  ~ ~ xe i~(b÷c) 

z 1 

ei~C ei~(b÷c) 
~ ,  ~ ~ ~ ~ x ~  i~(~÷~) 

I 

z i o 

Fig. 6. 
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NOW, from the eq. (4.12) we find 

335 

X 1 = ct2,a2. _2 = s(a + b + c)s(b) ( 4 . 1 6 )  
X: 

The invariant function G(z, ~) in (4.6) is found to be 

G( z, ~) - s( a + b + c)s( b )lll( a, b, c; z)l 2 + s( a)s( c)lI2( a, b, c; z)l 2 . (4.17) 

Restoring all the standard scaling factors and returning to the gauge in which z I, 
z 3 and z 4 are arbitrary, we find the following expression for the general second-order 

correlator (up to an overall normalization): 

izx31 ~a(~, +~, + , . ) -  a, -a ,  + 2,.  ,21lz2a 12[a(,2 +, , )-  a, -a ,  + 2°. ozl 

izx= I - ~a(~, + °,)-a,-a,llz23 [ - 2[a(a=+ °~)- a~-a~l 
[z341 - 2[,a(,,, + ~,,+ ° . ) - a 3 - a , . l l z 1 4 1  - 2 l a ( , , ,  + , , , +  o . ) - a ~ - A 4 1  

X {s(a + b + c) xs (b) l l l (a ,  b, c; ,1)12 

+s(a)s(c)lI2(a, b, c; ~)12}. (4.18) 

Here T1 = z12z~t/z~3z24; the parameters are defined as in (4.2), and the conformal 
dimensions A(at) are related to the Coulomb parameters a~ - a,,m, of the operators 

#,,=, by the Kac formula (3.35). 
The integrals I,( , /)  here are proportional to the hypergeometric functions, see 

(3.40). When T! + 0 the expansion of I ,(~) starts as 

Ii(~l ) ~ NI(1 + alTl+ . . .  ) ,  

12(~/) --- N2~ +~+~(1 + b l ,  + " '"  ) .  (4.19) 

We may need to know the normalization numbers N, of the integrals I~(~) because 
they determine the relative numerical values of the coefficients in the operator 

algebra expansions: 

~, , ( z , ) , j ( z j ) -  E C ~  1 p i z _ z j l a . ÷ a , _ a , p ( z j ) .  (4.20) 

These last can be derived from the 4-point correlator (~l(Zl)~(z2)eP3(zs)ep4(z4)) if 
we let some pairs of the points, e.g. zt, z 2 and z 3, z 4, come close together, 
zl --* z 2, z 3 ~ z 4, and examine the singularities which result in this limit. In this way 
the structure constants of the operator algebra C,~ become related to the normaliza- 

tion constants N x and N 2 in the expansions (4.19). 
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The general structure of the conformal operator algebra, as related to the 
properties of the 4-point correlator (or amplitude) are treated in detail in [1]. We 
shall come back to this point in our next paper. 

For the Potts models eq. (4.18) provides 4-point correlation functions containing 
the energy operator e. This operator corresponds to the second-order conformal 
operators ~1.2 in the Potts model, and ~2,t in the tricritical Potts model, see sect. 2. 
The "symmetric" correlation functions (~,n,.ee~m) of the Potts model have been 
calculated in [2]. The four-energy correlation function (eeee) of the Potts model was 
also found by Kadanoff and Nienhuis [21]. Expression (4.18) also provides nonsym- 
metric correlation functions. For the particular representation of the Z 3 model some 
of these are listed in the summary section of [2]. 

For O(n) series of statistical models the energy operator is the third-order 
conformal operator ~3,t (see sect. 2). So in this case even the "thermal" correlators 
require the higher-order functions. In the next section, we shall calculate the 
third-order correlation functions, and, in particular, we shall find the thermal 
correlators of the O(n) model. 

5. The third-order correlation functions 

The conformal functions related to the third-order correlator 

( ¢Pn,m, (O),3t ( z )tkn,m3(1)tkn,m, ( Oo ) ) , (5.1) 

are given by the integral (see sect. 3): 

fc,  dt ,  fc2 d t2( V*' (0) Va2(z) Va3(1) V~,(oo)J_ (t 1 )J_ (t 2)) 

--z2~'"2(1-z)2~:'f d t l f  dt2t~(tl--1)b(tt--Z) c 
C1 C2 

×t[(t  2 -  1 ) b ( t 2 - z ) c ( t l -  t2) s. (5.2) 

Here a = 2a la  _, b -- 2 a : t _ ,  c -- 2a2a_, g = 2a:_ and a i -= a . . . .  are given by (3.34). 
In particular, a3. t = - a _, so that c -- 2a3,1a _ = - 2a 2_ = - g .  The parameters { a, } 
are subject to the neutrality condition (3.9), so that a 4 = 2a 0 - a t - a 2 - a 3 - 2a _. 

In this case there are three independent configurations of contours -  they are 
shown in fig. 2. Accordingly, we define the following set of basic functions: 

J l ( a , b , c ; g ; z ) = e - i " s / 2 f l  dt  1 d t 2 ( . . . )  

= 2c(½g dt ,  d t 2 ( . . .  ) - 2 c ( ~ g ) I i ( a ,  b, c; g; z ) ,  

(5.3) 
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J2( a, b, c; g; z ) = f l ~ d t l  Jodt2(  . . . ) 

foldt2t~(ta 1 )b ( t l - -Z )  c =z l+a+c f  d / t  
"1 

× /~(1  - t 2 ) b ( t a -  zt2) s=- 12(a ,b ,c;  g; z ) ,  (5 .4 )  

J3( a, b, c; g; z ) = e-i"s/Z Jod t t  foZdt2( . . . ) 

£ Z' =z2+2a+2c+S2c(½g) l d t l  d t 2 t r ( 1 - t l ) c ( 1 - z t l )  b 

X / ~ ( 1  -- t 2 ) ' ( 1  -- z t2) t ' ( t l - -  t2) s--  2c(½g)13(a , b,c;  g; z) (5 .5 )  

Here ( . . . )  stands for the standard integrand, that in the integral (5.2); c(½G)= 
cos(½~rG). Integration in the first expressions for the integrals (5.3), (5.5), in which 
(q  - t2) changes sign, is defined as in fig. 2 - one contour goes above the other. 

In the integral (5.2) there are, in fact, only three parameters, since g = - c .  We 
shall build the invariant form G(z ,  ~,), eq. (4.9) (the correlation function itself) for a 
more general case, when g is not related to c. There is an additional reason for doing 
this. In the integral (5.2), related to the correlator (5.1), it is assumed that one of the 
operators is the third-order operator q~3,~. For this particular case the third-order 
integral (5.2) satisfied the linear differential equation of the general theory in [1], 
which is derived by using the third-level degeneracy of Virassoro states of the 
operator q~3.x. Yet the situation may be more general. In the next section an example 
of the correlator is given, which does not contain the third-order operators q'3.~ or 
~1,3, and yet the correlation function is given by the third-order integrals (5.3)-(5.5), 
with g ÷ - c .  The differential equation for this more general case, when g is an 
independent parameter, is given in appendix A. One can check that for g = - c  this 
equation reduces to that given in [1]. 

We remark also that for the special case of "symmetric" correlators, like ( A B B A ) ,  
the situation will be the standard one" the order of the conformal functions will 
correspond to the order of the operators, and the differential equations will be those 
found in [1]. In sect. 3 we considered integrals only for this symmetric case. 

We shall turn now to the construction of the invariant function G(z ,  ~), eq. (4.9). 
The integrals I , ( z ) ,  eqs. (5.3)-(5.5), form a full set of independent solutions of eq. 

(A.9), canonical for the point z = 0. They have the following form: 

i,(z) = 

p~o) = O, p~O) = 1 + a + c, p~O) = 2 + 2a + 2c + g. (5.6) 

Here f~(z) are analytic functions regular at z = 0. 



338 VI.S. Dotsenko, V.A. Fateev / Correlation functions 

The integrals I~(z), the same as the second-order (hypergeometric) integrals in the 
preceding section, have three singular points: 0,1, ~ .  Corresponding to an analytic 
continuation of these functions around z = 0 and z = 1 there are two generating 
elements of the monodromy group: go and gl (see sect. 4). In this case they are 
3 x 3 matrices. In particular, the matrix go is diagonal - this follows from (5.6). 

The function G(z, ~), eq. (4.9), in this case has the form 

G ( z ,  ~) = Xxl/~(z)l 2 + X2112(z)l 2 + x3113(z)l 2 , (5.7) 

and it is explicitly g0-invariant. The invariance with respect to a gl-transformation is 
to be ensured by a proper choice of the coefficients X~ in (5.7). Just as in sect. 4, we 
can express the functions I , ( z )  as a linear combination of solutions ]~(1 - z) which 
are canonical for the point z -- 1. In the basis of the functions { ],(1 - z)} the matrix 
gl will be diagonal. We have the relation 

I~(z) = E % i j ( 1 -  z),  (5.8) 
J 

and we substitute it into (5.7) to find 

6;(z, z) = Ex, a,k,x,,i,(1-z)it(1-z). 
i 

(5.9) 

The quadratic form G(z,~,) will be gl-invariant if the matrix F.iX~a~ka a is 
diagonal. So we obtain the equation 

X~a~kait = O, k * I. (5.10) 

which determines the coefficients X, (their relations in fact) if the matrix a,j is 
known. 

We have to remark now that, apparently, there is a question of solubility of the 
system (5.10) with respect to { X, }. The fact is that if the matrix a~j is not arbitrary, 
but is related to the solutions of the differential equation, as in (5.8), then the system 
(5.10) is solvable. We have checked this by using the explicit form of the matrix a~j, 
but we expect that there should be a general theorem on this. 

The remaining problem is to find the matrix a~j. It can be solved by using a 
technique similar to that which we have used in sect. 4 for the second-order integrals. 
Now we first transform only one of the contours. It is transformed in two different 
ways, as in fig. 7a. Then we multiply the two resulting integrals by the phase factors 
and subtract them one from another, so as to eliminate the unwanted piece of the 
first contour. After that the same is done with the second contour. This is shown in 
fig. 7b. As a result we obtain the first line of the relation (5.8). One of the 
manipulations with the contours needed for the integral I2(z)  is shown in fig. 8. In 
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I2= 

---- =f 

Fig. 8. 

this way we obtain the following expressions for the matrix elements aij(a, b, c; g) 
in relation (5.8): 

s ( a ) s ( a +  ½g) 
ctu= s(b+c)s(b+c+ ½g) ' 

~(.)~(~) 
a12= s(b+c)s(b+c+ g) ' 

~(¢)~(~ + ½g) 
a13= s(b+c+ ½g)s(b+c+g) ' 

~(a+b+c+ ½g)~(a+ ½g) 
a21=- s(b+c)s(b+c+½g) 2c(½g), 

s(b+½g)s(c+½g) 2c(½g), 
a23 = s(b+c+ ½g)s(b+ c + g )  

~(a+b+c+½g)~(c) 
"::= ~(b+ c)~(b+ c+ ½g) 

~(b+ ½g)~(a) 
s(b+c+ ½g)s(b+c+g) ' 

s (a+b+c+ ½g)s(a+b+c+g) 
a31= s(b+c)s(b+c+½g) ' 

s (a+b+c+g)s (b)  
a32= s (b+c)s(b+c+g)  ' 

s(b)s(b + ½g) 
a33= s(b+c+ ½g)s(b+c+g) " 

(5.11) 

Here s(A) = sin(,rA), c(A) -- cos(IrA), and so on. The integrals ]~(1 - z) in relation 
(5.8) are given by 

i ~ ( 1  - z )  = Ii(b, a, c; g; 1 - z ) ,  (5.12) 

with I~ defined by (5.3)-(5.5). 
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Now from (5.10) we find 

X 1 a33&3x s ( a + b + c + g ) s ( a + b + c + ½ g ) s ( b ) s ( b + ½ g ) s ( a + c + g )  
X 3 0t13~33 

X2 __ °t33(x32 _- 

X 3 a23¢~33 

s (a ) s (a+  ½g)s(c)s(c+ ½g)s(a+c) 

s (a+ b+ c + g ) s ( a  +c+  ½g)s(b) 
s (c+ ½g)s(a+ ½g)s(a+c)2c(½g) " 

(5.13) 

Here fi,j is the matrix for the relation inverse to (5.12): 

/ , ( a -  z) = E a , f l j ( z ) .  
) 

Obviously 

(5.14) 

6tij(a, b, c; g) = a~ 1(a, b, c; g) = a,j(b, a, c; g). (5.15) 

Now, collecting all the factors and returning to the general values of z 1, z 3, z 4, we 
obtain the following expression for the third-order correlator (up to an overall 
constant): 

izt312ta(,, +~,+ zo-)-a,-z,+4o~-llz~12ta(~2 +*,)-a~-a, +4o~,-I 
X 

izx21 - 2Ia(ax +aa)-a, -a2]lz231 - 21a(,,2 +,,3)-a2-a31 

]z341 -21'a(a3+a'+2a-)-a3-a*]12141 --2[A(at +a,,+2a_)--al--,a4] 

× {s(a+ b+ c + g ) s ( a  + b+ c+ ½g)s(b)s(b+ ½g) 

× s(a + c + g)2c(½s)16(a, b, c; g; 7)12 

+s(a + b + c + g)s(a + c + ½g)s(b)s(a)s(c)lI2(a, b, c; g; 7)12 

+ s( a)s( a +. ½g)s( c)s( c + ½g)s( a + c)2c( ½g)ll3( a, b, c; g; vl)l 2 . 

(5.16) 

Here 71 = z12z34/zz3zz4; the parameters are defined as in (5.2), and the conformal 
dimensions A(a,)  are related to the Coulomb parameters a, = a,,,,, by the Kac 
formula (3.35). 

For the reasons pointed out in sect. 4 it is convenient to introduce normalized 
functions ~ ( a ,  b, c; g; z), such that for z --, 0 they have the following expansions: 

~ ( a ,  b, c; g; z) = -~il,(z) = z°~°'(1 + a,z + fl,½z 2 + . . .  ), 

pt °) = O, p~O) = 1 + a + c ,  pt °) = 2 + 2 a  + 2 c  + g .  ( 5 . 1 7 )  
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The norroaliTation numbers { N~ ) here are given by 

r(g) 
N~ = r(½g) 

r(-1 - a - b - c - g ) F ( - 1  - a -  b - c -  ½ g ) r ( 1  + b)r(1 + b+ ½g) 
X 

r ( - a - c ) r ( - a - c - ½ g )  

F ( - 1  - a - b - c - g ) r ( 1  + b) r (1  + a ) r ( 1  + c) 
N2= r ( - a - c - g )  r ( 2 + a + c )  ' 

r(g) r ( 1  + a ) r ( 1  + a + ½ g ) r ( 1  + c ) r ( 1  + c + ½g) 

N3= r(½g) r(2+a+c+½g)r(2+a+c+g) (5.18) 

Finally, we give two explicit expressions for the correlation functions of the O(n) 
model, which follow from the general formula (5.16). These are the four-energy 
correlator (eeee) and the spin-energy correlator (oeeo). Using the parameter y 
defined in sect. 2 we get the following results: 

Here 

(eeee> - Izlzz23z34z1414-2ylz13z241 By- t2 

× E.4,1 q~(y - 2, y - 2, y - 2 ; 2  - y ;  n)l 2 . 
i 

A 1 = 2 c ( ½ y ) s ( ~ y ) s ( 2 y ) s 2 ( y ) s ( ½ y ) ( N  1)2, 

A 2 = s ( 2 y ) s ( ~ y ) s 3 ( y ) ( N 2 )  2, 

A 3 = 2c(½y)s(2y)s2(y)s2(½y)(N3) 2, 

r ( 2 - y )  r (1  - 2 y ) r ( 4 -  ~ y ) r ( - 1  +y ) r (½y)  
N~ = r ( l  - ½y) r ( 4 -  2 y ) r ( 3  - ½y) 

r (1  - 2 y ) r ( - 1  + y )  F : ( - 1  + y )  
N2-- F ( 2 - y )  F ( - 2 + 2 y )  ' 

r(E-y) r2(-l+y)r2(½y) 
N3 = r (1  - ½y) r ( - 1  + ~ y ) r ( y )  " 

(5.19) 

(5.20) 
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A similar expression is found for the other correlator: 

343 

<oeeo>-  Izx2z3alX +Ylzx322415Y-glz2314- 2ylz141 <31-4°y+13y2)/2(2-y) 

3 

X ~ . , B i l ~ ( - ½ ( l + y ) , y - 2 ,  y -2 ;2-y ;71) l  2 (5.21) 
i--1 

The expressions for the coefficients B, here follow from (5.16) and (5.18). As is 
found in sect. 2, the parameter y is related to the parameter n of the O(n) model by 
the formula (it follows from (2.20), (2.23)): 

try (5.22) n = 2 c o S 2 _ y  • 

6. Sununary and discussion 

In this paper we have described the technique of calculating the multipoint 
correlation functions in 2D statistical models at the critical point, which uses the 
conformal algebra approach initiated recently in the paper by Belavin, Polyakov and 
Zamolodchikov [1]. 

We have found the conformal representations for the Potts and O(n) series of 
models, see [2] and sect. 2 of this paper. Also Friedan, Qiu and Shenker have found 
the representations for the tricritical Potts models [18]. 

The 4-point correlation functions in these systems appear to be described by the 
higher analytic functions of the Fuchs kind (see previous footnote). The simplest of 
these are hypergeometric functions. 

In this paper we have also studied some analytic properties of such functions, in 
particular their monodromy relations, which appear to be necessary for the calcula- 
tion of correlation functions (Green functions, in the corresponding quantum field 
theories). 

Detailed calculations have been presented in this paper only for the third-order 
functions. We have also found the general expressions for the 4-point Green 
functions in conformal theories of this kind (abelian theories). But this we shall leave 
until our next paper [7], because the calculations become much more complicated 
and require substantial space. 

Now we shall make one or two remarks on the subject. 
It should be noted that all the calculations of correlation functions in this paper 

deal with the cases where there is no degeneracy among the analytic functions. These 
may occur if the dimensions of the basic conformal operators differ by integers. 
More precisely, in terms of the operator algebra, the degeneracy occurs if the 
conformal dimensions of the operators, which appear in the intermediate channels of 
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the 4-point Green functions, differ by integers. The integrals I~(z) provide indepen- 
dent solutions of the corresponding equations if this is not the case (#~0)_ p)0)÷ 
integer, in (5.17)). 

Degeneracies result in zeroes or poles in the structural coefficients { X~ } of the 
correlators (sects. 4, 5), as functions of parameters. In such anomalous cases one 
should be careful and define the necessary limits. 

One check which we have carded out is the following. As was stated in sect. 2, in 
the IM algebra the operators ql.2 - e and q~3.z are identical, see [1]. On the other 
hand we have found the general expression for the correlator (@31(~31(~31(~31) which 
should reduce to (~2~12~12~12) at the IM point. We have checked that this is the 
case, but the limit is rather subtle. In particular, some coefficients A, in 

(q~31~3~3z~3z)- ~ . , A , [ ~ (  z )l 2 (6.1) 
i 

go to zero, when we approach the IM point. But some of the coefficients of the 
expansion of functions ~ ( z )  themselves become divergent, providing a finite result. 

Another point is that in the C = 1 conformal theory the correlation functions 
reduce to simple algebraic functions. For Potts and O(n) models C---, 1 corresponds 
to q ~ 4, n --, 2 (see sect. 2). As a result, all the multipoint correlation functions in 
q = 4 and n = 2 models have a simple algebraic form. We demonstrate this reduction 
for the Potts model correlators (eeee) and (oeeo)  in appendix B. The same can also 
be checked for the third-order integrals of sect. 5. 

And our last remark is on the existence of correlation functions which do not 
follow the standard rules. Here we just give an example of the following correlator: 

(~b12~14~14~ ~ ). (6.2) 

It is easy to check that the corresponding integral is the following third-order 
function: 

f dtlf dtz(V~z(O)V~4(z)Vz,(1)V-~(oo)J+(tl)J+(t2)). (6.3) 

This correlator, being a third-order one, does not contain the third-order operators 
~1,3 or ~3.z. Also, there are no second-order integrals for the set of operators in (6.2). 
Yet we have to include the correlator (6.2) in the theory, or otherwise we would get 
problems with the operator algebra relations. 

Some remarks on this example have already been made in sect. 5. A detailed study 
of the operator algebra issues in this theory is left until our next paper [7]. 

We thank A.A. Belavin, A.M. Polyakov and A.B. Zamolodchik0v for useful and 
stimulating discussions. One of us (V1.S.D.) is grateful to Nordita for the financial 
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Appendix A 

Let us consider the analytic function 

I( acblCcb;g;z)-I(a,b,c;g;z)=fcldtlfcdtzt~(tl-1)b(tl-Z)C 

×t~(t 2- 1)b(/2- z)C(tl- t2) s. (A.1) 

It is assumed that we can integrate by parts, and the ends of the contours C 1 and C 2 
do not contribute. In other words, it is assumed that the integrals are always 
convergent. 

It is easy to check that the function 

I( acb d e f ;g ;z )  

has the following properties: 

( ab e l ; c+1  g - 1 ) - I ( a c b  ce/1;g-1)=I(acble/;g ), (A.2) 

I( ab c + l  cefl'g-1)-l(' c-1 ab if+f1, g -  1)= i ( ,  acb[ c-1 e f  ,'g)+I( c-abl ] e / ;  g) ,  

(A.3) 

zI( a b e f ; z ) = I( a +cl, b z ) - l( a b z ) , (A.4) c C g; el;g; c+lle/;g;  

( z - 1 ) I (  acb e/ ;g;z)=I(  a,b+ l te / ;g;z)_l (  a bec f  ;g;z) 
c c+1  ' 

aI( a - l , b  dfe; g) + bi ( a,b-1 dfe; g) 

+cI( c-lab dfe.g)+gi( c d ef ;g-1)=O, 

(A.5) 

(A.6) 
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dl( acb d-fa,e.,g)+el( acb d,e-a.f , g) 

+LI( acb / _ l ' g ) - g l  ( ,  acb de;g-1)--O (A.7) 

I( a+l,bc dfe. ,g_l)_i(  acbld+fa'e',g-a)=I( acb dfe;g). (A.8) 

Using relations (A.2)-(A.8) it can be shown that the function 

I( acb acb ; g; z ) -  l(a,b,c; g; z ) 

satisfies the following differential equation: 

z2(z - 1)2Ira(z)  + (Klz + K2(z - 1))z(z - 1)I  II (z) 

+( Llz 2 + L2(z- 1) 2 + L3z(z- 1))I I (z)  

+( Mlz + M2(z - 1) ) / ( z ) .  (A.9) 

The coefficients here are expressed through the parameters a, b, c and g of the 
function I(a, b, c; g; z), eq. (A.1), by the following relations: 

K~= -(g+ 3b+ 3c), K2= -(g+ 3a+ 3c), 

L 1 = ( b +  c) (2b+ 2 c + g +  1), L 2 = (a + c)(2a + 2 c + g +  1), 

L 3 = ( b +  c)(2a + 2 c + g +  1) + ( a  + c ) (2b+ 2 c + g +  1) 

+ ( c -  1)(a + b + c ) + ( 3 c + g ) ( a + b + c + g +  1), 

Mx-- -c(2b+2c+g+ 1 ) ( 2 a + 2 b +  2 c + g +  2), 

M 2 = -c(2a + 2¢+ g+ 1)(2a + 2b+  2 c + g +  2). (A.10) 

Appendix B 

We shall demonstrate the reduction of the correlators in the limit C ---, 1 to simple 
algebraic functions by using a relatively simple example of the correlators (eeee) and 
(oeeo) of the Potts model. For this model C ~ 1 corresponds to q ~ 4, see (2.16), 
(2.17). 
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F rom (3.40), (4.18), and in the gauge z x = 0, z 2 = z z 3 = 1, z 4 --, oo, we obtain the 
expressions 

( e (O)e ( z )e (1 )e (oo) )  - Iz(1 - z ) l~+a(s (3  + 38)s (1  + 8) 

x[ r(E+r(23s)r( - s ) +  28)  21F(1 + 8 , 2 +  38;2+ 28; z) [ 2 

+[z(1-z)12(-x-2%(1 + a)s(1 +8) 

x r ( - s ) r ( - 8 )  ~IF( / ' ( - 2 8 )  - 1 - 3 8 , - 8 ; - 2 8 ; z ) 1 2 ,  (B.1) 

( o ( O ) , ( z ) e ( 1 ) a ( o o ) )  - I z l - ' / 2 -  3a/211 - z[ ' + '  

X r(½ + ½8) /"( -8 )  2IF(1 

+ i z i 2 ( , / 2 + 6 : ) 1 1  _ z l ~ ( - , -  2%(½ + ½S)s(S) 

x r(~+ ~s)r(-s) ~IF(½ } r ( ~  + ½s) - 18, - 8 ;  ~ + 18; z)12 . 

Here  we have used the following expressions for the parameters:  

e - ¢12, c,12 -- - ½a+, 

a = b = c = 2al2a + = - e t  2= - 1  - 8 ,  

A ( a , )  + A ( % )  - A ( a ,  + %)  = - 2 a , a j ,  

4 ~  = ~,.~ 1 + 8, 

in the case of  correlator  (B.1), and 

e -  qh2, o -  q~N,N-t, aN, N- i  = I ( 1 - -  N ) a _ +  ½(2-- N ) a + ,  

a-'=2aN, N_la+-~½+½8,  b f c =  - 1 - 8 ,  

4aN, N-lax2 = --2aN, N - l a . =  -- ½ -- 2~a, 

(B.2) 

(B.3) 

(B.4) 
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in the case of correlator (B.2). In both cases we defined (a+ )  - 2 = (a_ )2  = 1 - 1/2N 
- 1  - 8 .  

The limit C --* 1 implies that ( a+ )  2 ---, 1, i.e. 8 --, 0 (see (3.25), (3.32)). In this limit 
we obtain the results 

1 + Iz-----J--I + I i - z l  (B.5) 
(eeee) I z ( 1 - z ) l  I I - z l  Izl ' 

1 Izl x/2 (B.6) 
(aeea) Izl*/2ll-zl + I1-z-----'-i-" 

It is easy to check that we would obtain the same results by just averaging the 
exponents of free fields ~ (z ) :  

(cos(  ,,,.,p (0))  0 ) )  0 ) )  ( o o ) ) ) ,  

1 
Ore = 0 [ 1 2  ~ - -  21 , ~ = 2N  ~ 0 ; (B.7) 

<cos(a.,(0))cos(a°,(,))cos(.°,(1))cos(.°,(oo))>. 
1 

= a . ,  N - ,  -" 14, 8 = 2---g --' 0.  (B.8) 
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