
J
H
E
P
0
9
(
2
0
1
1
)
1
1
7

Published for SISSA by Springer

Received: August 9, 2011

Accepted: September 10, 2011

Published: September 26, 2011

Instantons and 2d superconformal field theory

A. Belavin,a V. Belavinb and M. Bershteina,c

aLandau Institute for Theoretical Physics, RAS,

142432 Akademika Semenova av., 1-A, Chernogolovka, Russia
bTheoretical Department, Lebedev Physical Institute, RAS,

119991 Leninskij prospekt, 53, LPI, Moscow, Russia
cIndependent University of Moscow,

119002, Bolshoy Vlasyevskiy Pereulok 11, Moscow, Russia

E-mail: belavin@itp.ac.ru, belavin@lpi.ru, mbersht@itp.ac.ru

Abstract: A recently proposed correspondence between 4-dimensional N = 2 SUSY

SU(k) gauge theories on R
4/Zm and SU(k) Toda-like theories with Zm parafermionic sym-

metry is used to construct four-point N = 1 super Liouville conformal block, which corre-

sponds to the particular case k = m = 2.

The construction is based on the conjectural relation between moduli spaces of SU(2)

instantons on R
4/Z2 and algebras like ĝl(2)2 × NSR. This conjecture is confirmed by

checking the coincidence of number of fixed points on such instanton moduli space with

given instanton number N and dimension of subspace degree N in the representation of

such algebra.

Keywords: Conformal and W Symmetry, Supersymmetric gauge theory

ArXiv ePrint: 1106.4001

c© SISSA 2011 doi:10.1007/JHEP09(2011)117

mailto:belavin@itp.ac.ru
mailto:belavin@lpi.ru
mailto:mbersht@itp.ac.ru
http://arxiv.org/abs/1106.4001
http://dx.doi.org/10.1007/JHEP09(2011)117


J
H
E
P
0
9
(
2
0
1
1
)
1
1
7

Contents

1 Introduction 1

2 Modified moduli space 2

3 Modified moduli space and ĝl(2)2 × NSR algebra 3
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1 Introduction

Alday, Gaiotto and Tachikawa [1] proposed correspondence between Liouville theory and

four-dimensional N = 2 supersymmetric gauge theories. This correspondence has been

generalized for the conformal theories with additional symmetries, such as affine Lie al-

gebras, W algebras, parafermions [2–8]. In particular, it was suggested in [6] that the

instanton calculus in the gauge theories on R
4/Z2 give rise to the super-Virasoro confor-

mal blocks. The idea to use the Z2 symmetric instanton moduli Msym is based on its

conjectural relation to the coset ĝl(n)2/ĝl(n−2)2 which is isomorphic to A = ĝl(2)2 ×NSR

(see [9]–[12] for the relation between instanton moduli spaces and algebras). This relation

should mean that the algebra A acts on the direct sum of certain cohomology of spaces

Msym. In particular the algebra A has a representation with basis labeled by fixed points

for the torus action on the moduli spaces Msym. In section 3 we show that the number

of fixed points actually coincide with the number of states in the certain representation of

algebra A = ĝl(2)2 × NSR.

The Z2 symmetric instanton moduli Msym decomposes into several connected compo-

nents. The only two of these components are used in [6] as the new integration domain.

The integral is interpreted the Z2 restricted instanton partition function of SU(2) N = 2

supersummetric pure gauge theory. This function coincides with so-called Whittaker or

Gaiotto [13] limit of the four-point super-Liouville conformal block function for N = 1

super Liouville theory (or equivalently norm of Whittaker vector). In section 3 we consider

the number of fixed points on two used components. These numbers coincide with the

number of states in the certain representation of algebra A = B × B × F × NSR where B

and F denotes Heisenberg and Clifford algebras respectively.

Then we construct explicit expression of the general four-point super-Liouville confor-

mal block function in terms of Z2 restricted instanton partition functions. For considered

conformal block the matter fields in the fundamental representation of the gauge group

should be included into the instanton calculations. Now, the integral over the moduli
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space involves zero modes of the matter fermions. After Nekrasov’s deformation [14] (see

also [15, 16]) it takes efficient equivariant form and is handled be means of the localization

method. The instanton partition function coincide with the four-point conformal block up

to additional factor related to the algebra ĝl(2)2. We found this factor and check the new

representation up to the level 5/2.

The paper is organized as follows. In section 2 we describe the structure of Z2 symmet-

ric moduli spaces Msym. The section 3 is devoted to combinatorial study of fixed points on

such space. The instanton moduli integral evaluation is the subject of section 4. We recall

the definition of the four-point conformal block function in super-Liouville theory and give

its new expression in terms of colored Young diagrams in section 5.

2 Modified moduli space

We begin by reminding ADHM construction [22] of N -instanton solution in the case of

SU(2) gauge group (see also [23–27]). ADHM date consist of complex matrices, two N×N

matrices B1, B2, a N × 2 matrix I and a 2 × N matrix J . The space MN which defines

all possible N -instanton solutions is given by the following set of conditions:

1. Matrices B1, B2, I and J satisfy the following equations

[B1, B2] + IJ = 0, (2.1)

2. The solutions related by U(N) transformations

B′
i = gBig

−1, I ′ = gI, J ′ = Jg−1; g ∈ GL(N) (2.2)

are equivalent.

3. Among vectors obtained by the repeated action of B1 and B2 on I1,2 there exist N

linear independent. Here I1 and I2 stand for the columns of the matrix I and they

are considered as two vectors of N -dimensional vector space V . The vector space V

is attached to each point of MN . It formes a fiber of the N -dimensional fiber bundle

whose base is the moduli space MN itself.

The subspace of the Moduli space Msym is defined by the following additional restric-

tion of Z2 symmetry

B1 = −PB1P
−1;B2 = −PB2P

−1; I = PI; J = JP−1. (2.3)

where P ∈ GL(N) is some gauge transformation. It is clear that P 2 = 1. Hence the space

V decomposes V+ ⊕ V− where Pv = v for v ∈ V+ and Pv = −v for v ∈ V−.

This new manifold Msym is a disjoint union of connected components Msym(N+, N−),

where N+ and N− denote dimensions of V+ and V− correspondingly, N+ + N− = N .

These numbers are fixed inside given connected component of Msym. Each component is

connected and can be considered separately.

– 2 –



J
H
E
P
0
9
(
2
0
1
1
)
1
1
7

The construction of the instanton partition function involves the determinants of the

vector field v on MN , defined by

Bl → tlBl; I → Itv; J → t1t2t
−1
v J, (2.4)

where parameters tl ≡ exp ǫlτ , l = 1, 2 and tv = exp aσ3τ .

Fixed points, which are relevant for the determinants evaluation, are found from the

conditions:

tlBl = g−1Blg; Itv = g−1I; t1t2t
−1
v J = Jg. (2.5)

The solutions of this system can be parameterized by pairs of Young diagrams ~Y = (Y1, Y2)

such that the total number of boxes |Y1|+ |Y2| = N . The cells (i1, j1) ∈ Y1 and (i2, j2) ∈ Y2

correspond to the vectors Bi1
1 B

j1
2 I1 and Bi2

1 B
j2
2 I2 respectively. It is convenient to use these

vectors as a basis in the fiber V attached to some fixed point. Then the explicit form of

the ADHM date for the given fixed point is defined straightforwardly

gss′ = δss′t
is−1
1 tjs−1

2 ,

(B1)ss′ = dss′δis+1,i
s′
δjs,j

s′
,

(B2)ss′ = dss′δis,i
s′
δjs+1,j

s′
,

(Iα)s = δs,1α
,

J = 0,

(2.6)

where s = (is, js), s
′ = (is′ , js′) denotes the boxes of Young diagrams Yi, dss′ = 1 if s, s′

belongs to the same Young diagram and ds,s′ = 0 otherwise, 1α denotes the corner box

(1, 1) of the diagram Yα.

Coming back to Msym we note that it contains all fixed points of the vector field (2.4)

found above. Eq.(2.3) defines the operator P in the fixed point ~Y

P (Bi−1
1 Bj−1

2 Iα) = (−1)i+jBi−1
1 Bj−1

2 Iα, (2.7)

so that the matrix elements can be found explicitly, Pss′ = (−1)is+jsδss′ In particular it

follows that all fixed points belong to Msym. The parity characteristic P (s) = (−1)is+js

is assigned to each box in the Young diagrams related to the fixed point. We adopt

convenient notation from [6] that a box with coordinates of the same and different parities

are respectively white and black. Then P (s) = 1 for the white boxes and P (s) = −1 for

the black ones. Therefore the fixed points can be classified by the numbers of white and

black boxes, N+ and N−. These numbers are the same as defined above, i.e. they are equal

to the dimensions of the subspaces V+ and V− of the fibers attached to those points of

Msym which belong to the same component as the fixed point itself.

3 Modified moduli space and ĝl(2)2 × NSR algebra

The norm of the Whittaker vector found in [6] is equal to the sum of contributions of fixed

points on connected components Msym(N,N) and Msym(N,N − 1). In this section we
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calculate the number of fixed points on such components and discuss the result from the

ĝl(2)2 × NSR point of view.

It is convenient to introduce the generating function

χ(q) =
∑

N

|Msym(N,N)|qN +
∑

N

|Msym(N,N − 1)|qN−1/2, (3.1)

where |Msym(N+, N−)| is a number of fixed points on Msym(N+, N−). This number equals

to the number of pairs of Young diagrams with N+ white boxes and N− black boxes.

Denote by d(Y ) = N+(Y )−N−(Y ) the difference between number of white and black

boxes in Young diagram Y . For any integer k we denote by

χk(q) =
∑

d(Y )=k

q
|Y |
2 , (3.2)

the generating function of Young diagrams of given difference d(Y ). This function has the

form:

χk(q) = q
2k

2−k

2

∏

m≥0

1

(1 − qm+1)2
. (3.3)

The formula (3.3) was proved in [17, section 5] for k = 0. The factor q
2k

2−k

2 corresponds

to the smallest Young diagram with d(Y ) = k. For k > 0 this diagram consist of 2k − 1

rows of length 2k − 1, 2k − 2, . . . , 1. For k < 0 this diagram consist of 2|k| rows of length

2|k|, 2|k| − 1, . . . , 1.

The generating function of pairs Young diagrams with N+ −N− = k reads

χ
(2)
k =

∑

k1+k2=k

χk1
χk2

, (3.4)

Using (3.3) and Jacobi triple product identity

∑

n∈Z

(−1)ntnqn2

=
∏

m≥0

(1 − q2m+2)(1 − q2m+1t)(1 − q2m+1t−1) (3.5)

we get

χ(q) = χ
(2)
0 (q) + χ

(2)
1 (q) =

∏

m≥0

(1 + qm+ 1

2 )2

(1 − qm+1)3
= χB(q)3χF (q)2, (3.6)

where

χB(q) =
∏

n∈Z, n>0

1

(1 − qn)
(3.7)

χF (q) =
∏

r∈Z+ 1

2
, r>0

(1 + qr). (3.8)

The first terms of the series for χ(q) looks as follows

χ(q) = 1 + 2q1/2 + 4q + 8q3/2 + 16q2 + 28q5/2 + . . . (3.9)
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The formula (3.6) looks very suggestive. The χB(q)χF (q) equals to the character of

standard representation of the NSR algebra with generators Ln, Gr. The remaining part is

related to the algebra B×B×F where B is the Heisenberg algebra with generators bn and

relations [bn, bm] = nδn+m and F is the Clifford algebra with generators fr and relations

{fr, fs} = rδr+s.

Thus equation (3.6) means that the generating function of numbers of fixed points on

components Msym(N,N) and Msym(N,N −1) equals to the character of representation of

the algebra A = B×B×F×NSR. This representation theory point of view can be exploit

similar to [18] (see also [19]).

One can consider the whole space Msym. The generating function has the form

χ(q) =
∑

N

|Msym(N)|q
N

2 =
∏

n∈Z, n>0

1
(
1 − q

n

2

)2 (3.10)

The result equals to the character of the certain representation of ĝl(2)2 ×NSR namely the

tensor product of Fock representation of Heisenberg algebra, vacuum representation1 of

ŝl(2)2 and NS representation of NSR. In other words the generating function of numbers

of fixed points on Msym(N) equals to the character of representation of the algebra A =

ĝl(2)2 × NSR.

Note that appearance of algebras B× B× F × NSR and ĝl(2)2 ×NSR may be related

to the fact that ŝl(2) representation of level 2 can be realized by one bosonic and one

fermionic field [20].

4 Determinants of the vector field

In [14, 15] the form of SU(k) N = 2 supersummetric instanton partition function (in what

follows we are dealing with SU(2) case) was derived as an integral of the equivariant form.

This form is defined in terms of the vector field v acting on the moduli space MN .

By means of the localization technique the evaluation of the moduli integral is reduced

to the calculation of the determinants [10, 14, 15] of the vector field v in the vicinity of

fixed points

ZN (a, ǫ1, ǫ2) =
∑

n

1

detn v
. (4.1)

Here n numerates fixed points of the vector field.

To evaluate the determinant of the vector field one needs to find all eigenvectors of the

vector field on the tangent space passing through the fixed points

tiδBi = Λ gδBig
−1,

δIt = Λ gδI,

t1t2t
−1δJ = Λ δJg−1.

(4.2)

1More precisely character of vacuum representation in principal grading.
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This is equivalent to the following set of equations

λ (δBi)ss′ = (ǫi + φs′ − φs) (δBi)ss′ ,

λ (δI)sp = (ap − φs) (δI)sp,

λ (δJ)ps = (ǫ1 + ǫ2 − ap + φs) (δJ)ps,

(4.3)

where Λ = expλτ , gss = expφsτ and

φs = (is − 1)ǫ1 + (js − 1)ǫ2 + ap(s). (4.4)

System (4.3) gives all possible eigenvectors of the vector field. We should keep only those

which belong to the tangent space. Essentially this means excluding variations breaking

ADHM constraints. On the Moduli space

[δB1, B2] + [B1, δB2] + δIJ + IδJ = 0. (4.5)

Gauge symmetry can be taken into account in the following manner. We fix a gauge in

which δB1,2, δI, δJ are orthogonal to any gauge transformation of B1,2, I, J . This gives

additional constraint [
δBl, B

†
l

]
+ δII† − J†δJ = 0. (4.6)

The variations in the l.h.s. of (4.5) and (4.6) should be excluded from (4.3). The corre-

sponding eigenvalues are defined from the equations

t1t2([δB1, B2]+[B1, δB2]+δIJ+IδJ) = Λ g

(
[δB1, B2]+[B1, δB2]+δIJ+IδJ

)
g−1,

[
δBl, B

†
l

]
+ δII† − J†δJ = Λ g

( [
δBl, B

†
l

]
+ δII† − J†δJ

)
g−1.

(4.7)

One finds the following eigenvalues, which should be excluded from (4.3):

λ = (ǫ1 + ǫ2 + φs − φs′),

λ = (φs − φs′).
(4.8)

Thus, the determinant of the vector field (2.4) is given by

det v =

∏
s,s′∈~Y (ǫ1+φs′−φs)(ǫ2+φs′−φs)

∏
l=1,2;s∈~Y (al−φs)(ǫ1+ǫ2−al+φs)∏

s,s′∈~Y (φs′−φs)(ǫ1+ǫ2−φs′+φs)
(4.9)

Now we consider the action of the vector field (2.4) in Msym. The tangent space is

reduced by the additional requirement (2.3)

− δB1,2 = PδB1,2P
−1; δI = PδI; δJ = δJP−1, (4.10)

or, on the level of the matrix elements,

− (δB1,2)ss′ = P (s)(δB1,2)ss′P (s′); (δI)sp = P (s)(δI)sp; (δJ)ps = (δJ)psP (s), (4.11)

– 6 –
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The first relation in (4.11) means that only eigenvectors (δB1,2)ss′ with the different colors

of s and s′ belong to Zsym. Similarly, the second one leaves (δJ)ps only if s is white. The

variations, which should be excluded (4.5) and (4.6) belong to Msym only for the matrix

elements between the states of the same color.

Thus, we get the new determinant of the vector field (2.4)

det ′v =

∏
s,s′∈~Y

P (s)6=P (s′)

(ǫ1+φs′−φs)(ǫ2+φs′−φs)
∏

α=1,2;s∈~Y
P (s)=1

(aα−φs)(ǫ1+ǫ2−aα+φs)

∏
s,s′∈~Y

P (s)=P (s′)

(φs′−φs)(ǫ1+ǫ2−φs′+φs)

(4.12)

Re-expressed in terms of arm-length and leg-length this expression gives

det ′v =

2∏

α,β=1

∏

s∈♦Yα(β)

E
(
aα − aβ, Yα, Yβ

∣∣s
)
(Q− E

(
aα − aβ , Yα, Yβ

∣∣s
)
), (4.13)

here E
(
a, Y1, Y2

∣∣s
)

are defined as follows

E
(
a, Y1, Y2

∣∣s
)

= a+ b(LY1
(s) + 1) − b−1AY2

(s) , (4.14)

where AY (s) and LY (s) are respectively the arm-length and the leg-length for a cell s in

Y . The region ♦Yα(β) is defined as

♦Yα(β) =
{
(i, j) ∈ Yα

∣∣P
(
k′j(Yα)

)
6= P

(
ki(Yβ)

)}
, (4.15)

or, in other words, the boxes having different parity of the leg- and arm-factors. For-

mula (4.13) is similar to the equation (3.7) in [21]. So the contribution of the vector

multiplet reads

Zsym
vec (~a, ~Y ) =

1

det ′v
(4.16)

We consider the N = 2 SU(2) theory with 4 fundamental hypermultiplets with masses

µ. These hypermultiplets give some additional contribution because of appearance of the

N null-modes for each kind of fermions in fundamental representation of the gauge group.

The amplitudes ψ of the null-modes can be considered as the fiber V attached to one of

the fixed point ~Y . The eigenvalues of the vector field are defined from the equation

λψs = (µ+ φs)ψs, (4.17)

The corresponding contribution of the fundamental hypermultiplets with masses µi looks

as follows

Zf(µi,~a, ~Y ) =
4∏

i=1

2∏

α=1

∏

s∈Yα

(
φ(aα, s) + µi

)
, (4.18)

Considering the case of Msym we impose some restrictions on the set of eigenvectors for

the fundamental multiplets. Namely we will assume that ψ ∈ V+, if N -even and ψ ∈ V−,

if N -odd.

– 7 –
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The above consideration suggests the following form of the contributions of the funda-

mental hyper multiplets

Z
sym(0)
f (µi,~a, ~Y ) =

4∏

i=1

2∏

α=1

∏

s∈Yα,s−white

(
φ(aα, s) + µi

)
,

Z
sym(1)
f (µi,~a, ~Y ) =

4∏

i=1

2∏

α=1

∏

s∈Yα,s−black

(
φ(aα, s) + µi

)
,

(4.19)

The first of these partition functions correspond to the case with even number of instantons,

the second one correspond to the case with odd number of instantons.

5 Four-point Super Liouville conformal block

Two-dimensional super conformal Liouville field theory arises in the context of super string

theory in non-critical dimensions of spacetime [28]. The Lagrangian of the theory reads

LSLFT =
1

8π
(∂aφ)2 +

1

2π

(
ψ∂̄ψ + ψ̄∂ψ̄

)
+ 2iµb2ψ̄ψebφ + 2πb2µ2e2bφ . (5.1)

Here µ is the cosmological constant and parameter b is related to the central charge c of

the super-Virasoro algebra

c = 1 + 2Q2 , Q = b+
1

b
. (5.2)

In this paper we are interested in the Neveu-Schwarz sector of the super-Virasoro algebra

= (n−m)Ln+m +
c

8
(n3 − n)δn+m ,

{Gr, Gs} = 2Lr+s +
1

2
c(r2 −

1

4
)δr+s ,

[Ln, Gr] = (
1

2
n− r)Gn+r .

(5.3)

where the subscripts m,n are integer and r, s half-integer. The NS fields are classified in

highest weight representations of super-Virasoro algebra. One of the central problems in

CFT is the computation of the correlation functions of the primary fields represented by

the highest weight vectors. We denote them Φ∆ and Ψ∆. The highest weight vector Φ∆ is

annihilated by all positive-frequency generators and has the conformal dimension ∆ defined

by L0|∆〉 = ∆|∆〉, while Ψ∆ ≡ G−1/2Φ∆. Together fields Φ∆ and Ψ∆ form primary super

doublet. In what follows we use the standard parametrization of the conformal dimensions

∆(λ) =
Q2

8
−
λ2

2
. (5.4)

In [29–33] four-point correlation functions of the primary fields in NS sector were con-

structed by means of so-called elliptic and c-recursion procedures. By means of the boot-

strap technique [34] they are expressed in terms of the basic conformal blocks and structure
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constants of the operator algebra [35, 36]. In particular, the 4-point correlation function

of bosonic primaries Φi with conformal weights ∆i is given by

〈Φ1(q)Φ2(0)Φ3(1)Φ4(∞)〉 = (qq̄)∆−∆1−∆2

∑

∆

(
C∆

12C
∆
34F0(∆i|∆|q)F0(∆i|∆|q̄)

+ C̃∆
12C̃

∆
34F1(∆i|∆|q)F1(∆i|∆|q̄)

)
.

(5.5)

Below we quote the results of [31] for the first few coefficients in the series expansion of

the superconformal blocks F0,1

F0(∆i|∆|q) =
∑

N=0,1,...

qNF (N)(∆i|∆) ,

F1(∆i|∆|q) =
∑

N=1/2,3/2,...

qNF (N)(∆i|∆) ,
(5.6)

up to N = 2:

F (0) = 1, (5.7)

F ( 1

2
) =

1

2∆
, (5.8)

F (1) =
(∆ + ∆1 − ∆2)(∆ + ∆3 − ∆4)

2∆
, (5.9)

F ( 3

2
) =

(1 + 2∆ + 2∆1 − 2∆2)(1 + 2∆ + 2∆3 − 2∆4)

8∆(1 + 2∆)

+
4(∆1 − ∆2)(∆3 − ∆4)

(1 + 2∆)(c + 2(−3 + c)∆ + 4∆2)
, (5.10)

F (2) =
(∆ + ∆1 − ∆2)(1 + ∆ + ∆1 − ∆2)(∆ + ∆3 − ∆4)(1 + ∆ + ∆3 − ∆4)

4∆(1 + 2∆)

+
(∆2 − 3(∆1 − ∆2)

2 + 2∆(∆1 + ∆2))(∆
2 − 3(∆3 − ∆4)

2 + 2∆(∆3 + ∆4))

2∆(3 + 2∆)(−3 + 3c+ 16∆)

+
(∆1 − 2(∆1 − ∆2)

2 + ∆2 + ∆(−1 + 2∆1 + 2∆2))(∆1,∆2 → ∆3,∆4)

(c+ 2(−3 + c)∆ + 4∆2)(3 + 4∆(2 + ∆))
. (5.11)

On the basis of the results of the previous section we suggest the following representation

for the NS four-point conformal blocks (5.6):

∑

N=0,1,...

qN
∑

~Y ,
N+(~Y )=N

N−(~Y )=N

Z
sym(0)
f (µi,~a, ~Y )Zsym

vec (~a, ~Y ) = (1 − q)AF0(∆(λi)|∆(a)|q) ,

∑

N= 1

2
, 3
2
,...

qN
∑

~Y ,
N+(~Y )=N+ 1

2

N−(~Y )=N− 1

2

Z
sym(1)
f (µi,~a, ~Y )Zsym

vec (~a, ~Y ) =
1

2
(1 − q)AF1(∆(λi)|∆(a)|q) .

(5.12)
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The parameters of the conformal block functions are related to those of the instanton

partition function in the following manner

µ1 =
Q

2
− (λ1 + λ2), µ2 =

Q

2
− (λ1 − λ2),

µ3 =
Q

2
− (λ3 + λ4), µ4 =

Q

2
− (λ3 − λ4),

(5.13)

and

A =

(
Q

2
− λ1

)(
Q

2
− λ3

)
. (5.14)

The formula (5.12) is the main result of this paper. We have checked this formula up

to the level 5/2.
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