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Abstract
We test recent results for the four-point correlation numbers in minimal
Liouville gravity against calculations in the one-matrix models, and find full
agreement. In the process, we construct the resonance transformation which
relates coupling parameters λk of the Liouville gravity to the couplings tk of the
matrix models, up to the terms of the order 4. We also conjecture the general
form of this transformation.

PACS numbers: 02.10.Yn, 04.60.−m, 11.25.Hf

1. Introduction

At present, there are two relatively independent approaches to 2D quantum gravity. One is
the continuous approach, in which the theory is defined through the functional integral over
the Riemannian3 metric gμν(X), with appropriate gauge fixing. The choice of the conformal
gauge leads to quantum Liouville theory [1] (coupled to matter fields), and for that reason this
approach is often called the Liouville gravity. The other is the discrete approach, based on
the idea of approximating the fluctuating 2D geometry by an ensemble of planar graphs, so
that the continuous theory is recovered in the scaling limit where the planar graphs of very
large size dominate. The discrete approach is usually referred to as the matrix models, since
technically the ensemble of the graphs is usually generated by the perturbative expansion of
the integral over N × N matrices, with N sent to infinity to guarantee the planarity of the
graphs (see, e.g., [2] and references therein). Since these two approaches stem from the same
idea of fluctuating geometry, they are expected to produce identical results for the physical
quantities. Indeed, this expectation was confirmed by explicit calculations of some quantities
in a number of particular models [3–5]. However, the techniques involved in calculations

* Talk presented at ‘Liouville Gravity and Statistical Models’, International conference in memory of Alexei
Zamolodchikov, Moscow, 21–24 June 2008.
3 Here we always have in mind the Euclidean version of the theory.
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by the two approaches are very different, and satisfactory conceptual understanding of the
relation between those techniques is still lacking. In the absence of that, more checks of the
agreement of the results seem to be desirable.

The most easily defined objects in the quantum gravity are the n-point ‘correlation
numbers’—the integrated correlation functions

Ck1...kn
= 〈Ok1 . . . Okn

〉, Ok =
∫

M

Ok(X). (1.1)

Here O(X) are some local densities (two forms) on the manifold M which may involve both
the ‘matter’ and the metric degrees of freedom localized at X ∈ M, and the expectation value
is taken over the fluctuations of both the matter and the geometry. The generating function,

Z({λk}) = Z0

〈
exp

{∑
k

λkOk

}〉
, (1.2)

may be regarded as the vacuum partition function of the original theory perturbed by adding
the fields Ok(X) to the action density, with the coupling constants −λk . Throughout this
paper we limit our attention to the case when M is topologically a sphere. Even in this
case, while it is relatively easy to evaluate the n-point correlation numbers in solvable matrix
models, the Liouville gravity approach to these quantities involves technically complicated
integration over the (n − 3)-dimensional moduli space of a sphere with n punctures. For this
reason, most previous comparisons of the matrix models and the Liouville gravity results were
limited to one-, two- and three-point correlation numbers (notable exceptions are the analysis
in [5]). A few years ago, a new technique for handling the moduli integrals was developed by
Alexei Zamolodchikov and one of the authors [6]. It applies to the so-called ‘minimal gravity’
models (minimal CFT coupled to the Liouville mode); by using the higher Liouville equations
of motion [7] it allows one to reduce the moduli integrals to the boundary terms. In this way,
the (partial) result for the four-point correlation numbers in the minimal gravity was obtained
in [6].

In this paper we test the result of [6] against the corresponding correlation numbers from
the matrix models. There is an important subtlety which makes this comparison less than
straightforward. In a local field theory, the integrated correlation functions of type (1.1) suffer
from intrinsic ambiguity generally referred to as the ‘contact terms’. Since (1.1) is the integral∫

X1,...,Xn

〈Ok1(X1) · · ·Okn
(Xn)〉, (1.3)

the correlation numbers may pick up contributions from delta-like terms in the integrand,
when two or more points Xi collide. Although most of the contact terms are not determined
by the field theory itself, it is well known that any change of contact terms is equivalent to a
certain analytic change of the coupling parameters in (1.2):

λk → λ̃k = λk +
∑
k1k2

C
k1k2
k λk1λk2 + · · · . (1.4)

Of course, this relation is at the heart of the renormalization theory, and indeed the ambiguity
of the contact terms just reflects the freedom of making finite renormalizations. Usually, the
ambiguity is resolved by appealing to the dimensional analysis. The local fields Ok(X) can be
chosen in such a way that they (and hence the associated coupling parameters in (1.2)) have
definite mass dimensions, so that

Ok ∼ [mass2]δk , λk ∼ [mass2]−δk . (1.5)
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Then, if one does not allow for any ‘auxiliary’-dimensional parameters, only transformations
(1.4) which respect the balance of the dimensions are admitted, i.e., the nonlinear (say, nth
order) terms in (1.4) are admissible only if they satisfy the ‘resonance conditions’ 4

δk = δk1 + · · · + δkn
. (1.6)

We generally refer to the nonlinear terms in (1.4) as the ‘resonance terms’.
In the absence of the resonances, no nonlinear finite renormalizations (1.4) consistent

with the dimensional counting are allowed, and thus the above ambiguity is completely fixed.
However, when the minimal CFT is coupled to the gravity, appearance of the resonances turns
out to be very common. Therefore, this ambiguity needs to be resolved before a meaningful
comparison between the correlation numbers obtained by the two different methods can be
made. The problem was first outlined by Moore, Seiberg and Staudacher [8], who also found
the solution in a number of special cases. In particular, addressing the case of the p-critical
point of the one-matrix model and the corresponding minimal gravity MG2/2p+1 (the minimal
CFT M2/2p+1 coupled to the Liouville gravity), they partly determined the resonance terms
in the relation between the coupling parameters, which allowed them to establish equivalence
up to the level of two-point correlation numbers.

In what follows, we extend this analysis to three- and four-point correlation numbers and
find perfect agreement between the matrix models and minimal gravity results. In the process,
we determine the higher-order resonance terms by demanding that the higher-order correlation
numbers satisfy the fusion rules inherent to the minimal gravity. At the end, we conjecture the
full resonance transformation which relates coupling parameters in the p-critical one-matrix
models and minimal gravity MG2/2p+1.

2. Minimal gravity MG2/2p+1

Specific models of the Liouville gravity are defined by the content of the ‘matter’ field theory
which is placed on the 2D manifold with the fluctuating metric. Perhaps the simplest models
are defined by choosing the minimal CFT Mq ′/q as the ‘matter’ theory. As in [9], we use the
term ‘minimal gravity’ MGq ′/q for such models. In this work we restrict our attention to the
models with q ′ = 2 and q = 2p + 1, p = 1, 2, 3, . . .. The minimal gravity MG2/2p+1 is very
likely to correspond to the p-critical point in the general one-matrix model [10].

2.1. Minimal model M2/2p+1

The Kac table of the minimal CFT M2/2p+1 is a single row of length 2p, the entries being
the degenerate primary fields �(1,n), n = 1, 2, . . . , 2p. Due to the mandatory identification
�(1,n) = �(1,2p+1−n), the model actually has only p-independent primary fields. We will use
the abbreviated notation

�k = �(1,k+1) (2.1)

for them, so that �0 is the identity operator. All the independent primaries are listed by letting
k run through the range k = 0, 1, 2, . . . , p − 1 (and in what follows, unless stated otherwise,
it is assumed that k lies in this range), but it is often convenient to extend the range to the full
Kac table, k = 1, 2, . . . , 2p, with the above identification,

�2p−k−1 = �k, (2.2)

4 The term is taken from the vocabulary of the renormalization group, where precisely these conditions characterize
the nonlinear terms in the beta-functions which cannot be eliminated by analytic transformations of the coupling
parameters.
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kept in mind. In particular, with this convention the fusion rules of M2/2p+1 take the simple
form

[�k1 ][�k2 ] =
k1+k2∑

k=|k1−k2|:2
[�k], (2.3)

where, as usual, [�k] stands for the irreducible Virasoro representation associated with the
primary field �k . Here and below, the symbol

∑m′
k=m:2 denotes the sum with the step 2, in

which k runs over the values m,m + 2,m + 4, . . . ,� m′. While in (2.3), it is assumed that
k1, k2 lie within the domain [0, 1, . . . , p − 1]; the summation index k is allowed to run outside
it, where the terms [�k] are understood as [�2p−k−1].

Note that the identification (2.2) breaks the naive parity symmetry �k → (−)k�k of
(2.3), so that [�k] with odd (even) k may appear in the rhs of (2.3) with even (odd) k1 + k2. In
particular, the correlation functions,

〈�k1(X1)�k2(X2) . . . �kn
(Xn)〉, (2.4)

do not necessarily vanish when k1 + k2 + · · · + kn is odd.
On the other hand, conformal invariance and the fusion rules (2.3) do force many

correlation functions to vanish. Thus, the conformal invariance demands vanishing of all
the one-point correlation functions except for 〈�0(X)〉, as well as the diagonal form of the
two-point functions, i.e.,

〈�k(X)〉 = 0 unless k = 0, (2.5)

〈�k1(X1)�k2(X2)〉 = 0 unless k1 = k2, (2.6)

while the fusion rules (2.3) impose restrictions on the multi-point correlation functions (2.4)
with n � 3. Those restrictions can be written in a compact form:

(2.4) = 0 if

{
k1 + · · · + kn−1 < kn for k1 + · · · + kn even
k1 + · · · + kn < 2p − 1 for k1 + · · · + kn odd,

(2.7)

if one assumes that all ki are in the range [0, 1, . . . , p − 1], and that kn is the largest of them,
i.e. ki � kn. Below, we generally refer to the case of even or odd k1 + · · · + kn as the even and
odd sectors.

2.2. Coupling to Liouville gravity

According to [1, 11], coupling a conformally invariant ‘matter’ field theory to the fluctuating
metric gμν(x) leads, in the conformal gauge, to the famous Liouville action,

AL = 1

4π

∫
M

√
ĝ[ĝμν∂μϕ∂νϕ + QR̂ϕ + 4πμ e2bϕ] d2x, (2.8)

for the field ϕ related to the conformal factor in gμν = e2bϕĝμν , where ĝμν is an arbitrary fixed
‘background’ metric on M. The parameters b and Q are determined by the central charge cM

of the conformal ‘matter’:

26 − cM = 1 + 6Q2 Q = 1/b + b. (2.9)

In our case, the ‘matter’ is the minimal CFT M2/2p+1 with cM = −6p + 10 − 12
2p+1 , i.e.,

b =
√

2

2p + 1
. (2.10)
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The parameter μ in (2.8) is dimensional:

μ ∼ [mass]2, (2.11)

and interpreted as the cosmological constant.
The operators Ok = ∫

M
Ok(x) are constructed by ‘gravitational dressing’ of the primary

fields �k:

Ok(x) = �k(x)e2akϕ(x)
√

ĝ d2x, (2.12)

where ak = b k+2
2 . This choice of the parameters ak ensures that the integrand in (2.12) is

indeed a density. These parameters also determine the mass dimensions of the operators Ok, δk

in (1.5) [3, 11],

δk = −ak

b
= −k + 2

2
. (2.13)

Proper gauge fixing leads to the following expression for the correlation numbers (1.1)
with n � 3:

〈Ok1 . . . Okn
〉 =

∫
x1,...,xn−3

〈Ok1(x1) . . .Okn−3(xn−3)Õkn−2(xn−2)Õkn−1(xn−1)Õkn
(xn)〉 Matter

Liouville
,

(2.14)

where Õk = CC̄e2akϕ�k are scalars (zero forms) associated with the densities Ok . Three
points, xn−2, xn−1, xn, can be chosen at will, and the integration is performed over the remaining
n−3 points x1, . . . , xn−3 (interpreted as the moduli of the n-punctured sphere). The expectation
value at the right-hand side of (2.14) involves both the ‘matter’ and the Liouville sectors. Due
to the factorized form (2.12), the integrand in (2.14) is a product of the correlation functions
(2.4) and the correlation functions of the Liouville exponentials:〈

e2ak1 ϕ(x1) . . . e2akn ϕ(xn)
〉
Liouville. (2.15)

For n = 3 no integration is necessary, and the three-point correlation numbers are obtained
by multiplying the three-point functions (2.4) by the Liouville three-point function (2.15). The
result takes a very simple form [9]:

〈Ok1Ok2Ok3〉 = −μδk1 +δk2 +δk3 Nk1k2k3Np

3∏
i=1

LegL(ki). (2.16)

Here

Np = (2p − 1)(2p + 1)(2p + 3), (2.17)

and the ‘Leg factors’

LegL(k) = (−)
k
2

2π
k
2

[
γ

(
2

2p + 1

)]− k+1
2

[
γ

(
2(k + 1)

2p + 1

)] 1
2 
(p − 1/2)


(p − k − 1/2)
. (2.18)

(γ (t) = 
(t)/
(1 − t)) will play a very small role in our discussion5. One can always get rid
of them by multiplicative renormalization of the operators Ok and the coupling parameters λk

in (1.2):

Ok → 1

LegL(k)
Ok, λk → LegL(k)λk. (2.19)

5 Note that LegL(0) = 1/2. It is also interesting to note that for odd k the factor (2.18) returns pure imaginary
values. This reflects the known property of the odd-k operators �k in the minimal CFT M2/2p+1. For example,
M2/5 is known to describe the Yang–Lee edge criticality [12]; in this identification the operator �1 corresponds to
the Ising-order parameter, which couples to the pure imaginary magnetic field.

5
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The most important entry in (2.16) is the ‘fusion coefficients’ Nk1k2k3 which take the value 1
if three-point fusion rules are satisfied, and turn to zero otherwise. Explicitly,

Nk1k2k3 =
{

1 if k1 + k2 + k3 � 2p − 1
0 otherwise

for k1 + k2 + k3 odd (2.20)

and

Nk1k2k3 =
{

1 if k1 + k2 � k3

0 otherwise
for k1 + k2 + k3 even, (2.21)

where in writing (2.21) we have assumed that k3 is the maximal of the numbers ki , i.e.
k1, k2 � k3. This factor, of course, is inherited from the ‘matter’ three-point functions
〈�k1�k2�k3〉.

Since �0 is the identity operator in M2/2p+1, insertion of O0 in (1.1) is equivalent to
taking the derivative with respect to μ, more precisely

〈O0Ok1 . . . Okn
〉 = −Z−1

0

∂

∂μ
(Z0〈Ok1 . . . Okn

〉), (2.22)

where

Z0 ∼ μ
2p+3

2 (2.23)

is the Liouville partition function of a sphere. Therefore, the two- and one-point correlation
numbers are easily deduced from (2.16):

〈OkOk′ 〉 = δk,k′
Npμ2δk

2p − 2k − 1
Leg2

L(k), 〈Ok〉 = −δk,0(p + 3/2)μ−1. (2.24)

Again, the diagonal form of the two-point numbers and vanishing of all but one of the one-point
numbers can be traced to the corresponding properties of the ‘matter’ correlation functions,
equations (2.6) and (2.5).

In [6], the integration over the moduli in (2.14) is performed in the case n = 4. The result,
specialized for MG2/2p+1, can be written as

〈Ok1Ok2Ok3Ok4〉 = Npμ
∑

δki Ck1k2k3k4

4∏
i=1

LegL(ki), (2.25)

where, if one chooses k1 to be the smallest of the numbers ki (i.e., k1 � k2, k3, k4), the factor
Ck1k2k3k4 has the form

Ck1k2k3k4 = (k1 + 1)(p + k1 + 3/2) −
4∑

i=2

k1∑
s=−k1:2

∣∣∣∣p − ki − s − 1

2

∣∣∣∣. (2.26)

An important qualification applies to this result. Equation (2.26) was obtained under the
assumption that the number of conformal blocks in the decomposition of the M2/2p+1

correlation function 〈�k1�k2�k3�k4〉 is exactly k1. To put it in an explicit form, assume
that ki are arranged in non-increasing order,

k1 � k2 � k3 � k4 � p − 1. (2.27)

Then, in the even sector, this assumption is fulfilled iff

k1 + k4 � k2 + k3 (2.28)

(which incidentally guarantees that the even-sector fusion rules are satisfied). In the odd sector,
this condition also requires that the fusion rules are satisfied with sufficient redundancy:

−k1 + k2 + k3 + k4 � 2p − 1, (2.29)

6
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which, in turn, demands the validity of (2.28) (since k4 � p − 1). Thus, in both even and odd
sectors, when (2.28) breaks down, the validity of (2.26) is questionable [6]. Indeed, we will
see in section 4.2 that at k1 + k4 > k2 + k3 (2.26) deviates from the matrix model result.

As was mentioned in the introduction, the minimal gravity MG2/2p+1 is likely to be the
world-sheet theory of the p-critical point in the one-matrix model [10]. This identification was
confirmed by explicit comparison of the one- and two-point correlation numbers [8]. The aim
of this paper is to extend the analysis to the higher-order correlation numbers, and in particular
to test the new result (2.26) against the matrix model’s calculations.

3. One-matrix model

The matrix models technique was extensively studied in the literature. Most of what we will
need here can be found in [2] and references therein.

3.1. p-critical point

The one-matrix model exhibits an infinite set of multi-critical points, labelled by the integer
p = 1, 2, 3, . . .. In the scaling limit near the p-critical point, the partition function of the
sphere is expressed through the solution of the ‘string equation’

P(u) = 0, (3.1)

where P(u) is the (p + 1)-degree polynomial:

P(u) = up+1 + t0u
p−1 +

p−1∑
k=1

tku
p−k−1, (3.2)

with the parameters tk describing the relevant deviations from the p-critical point6. The
singular part of the matrix model partition function Z(t0, t1, . . . , tp−1) is expressed through
(3.2) as follows7:

Z = 1

2

∫ u∗

0
P2(u) du, (3.3)

where u∗ = u∗(t0, t1, . . . , tp−1) is the suitably chosen root of the polynomial (3.2), i.e.,
P(u∗) = 0. It is important to remember that (3.3) really gives only the singular part of the
matrix model partition function. The actual matrix integral has also a regular part, analytic in
all the parameters tk at {tk} = 0; in the spirit of the scaling theory of criticality, the regular
part is disregarded as non-universal. For this reason the choice of 0 as the lower limit in the
integral (3.3) is largely arbitrary. One can replace it by any constant, or indeed any regular
function of tk , at the cost of adding the regular terms to Z.

There is strong evidence [8, 10] that (3.3) (with u∗ taken to be the maximal real root of
P(u)) provides the matrix model description of the minimal gravity MG2/2p+1, perturbed by
the operators (2.12). In this identification −t0 is interpreted as the cosmological constant μ

in (2.8). Obvious re-scaling symmetry u → au, tk → ak+2tk of equation (3.1) allows one to
ascribe ‘mass dimensions’ to the parameters tk ,

tk ∼ [mass2]
k+2

2 , (3.4)

and then Z ∼ [mass2]
2p+3

2 , in agreement with (2.13) and (2.23).

6 Note that our labelling of the parameters tk is different from that in [8]; our tk are tp−k−1 in [8].
7 In the matrix models technique it actually emerges through the equation ∂2Z/∂t2

p−1 = u∗(t0, . . . , tp−1).
Equation (3.3) gives ‘physical’ solution of this equation.

7
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Comparison at the level of the correlation numbers involves two subtleties noted long ago
in [8]. First, it is obvious from (2.13) that at sufficiently large p there are many resonances
(1.6) between the dimensions δk . Therefore, the relation between the parameters tk in (3.1)
and the minimal gravity couplings λk may involve the resonance terms

tk = Ckλk +
[ k+2

2 ]∑
n=2

p−1∑
k1,...,kn=0

C
k1...kn

k λk1 . . . λkn
(3.5)

with the coefficients constrained by the condition

C
k1...kn

k = 0 unless
n∑

i=1

ki = k + 2 − 2n. (3.6)

The sum over ki = 0, 1, . . . , p−1, in (3.5) includes ki = 0 to take into account the possibility
that the integer powers of the cosmological constant μ appear in the right-hand side; by
definition

λ0 = −μ. (3.7)

The coefficients Ck have very little significance. They can be removed by trivial
renormalizations of the parameters λk (or tk) similar to (2.19). Physical equivalence between
the p-critical matrix model and the minimal gravity MG2/2p+1 would imply that by the special
choice of the coefficients in C

k1...kn

k in (3.5) the partition function (3.3), expressed through {λk},
can be made identical to the generating function (1.2) of the minimal gravity, up to regular
terms. This was the idea put forward by Moore et al [8], who have verified the identity up to
the two-point correlation numbers. In the following subsection, we warm up by re-deriving
their result in somewhat different language, and then proceed to the analysis of the higher
orders.

The quantities to be compared with the correlation numbers of MG2/2p+1 are the
coefficients of the expansion

Z = Z0 +
p−1∑
k=1

λkZk +
p−1∑

k1k2=1

λk1λk2

2
Zk1k2 + · · · +

p−1∑
k1,...,kn=1

λk1 . . . λkn

n!
Zk1...kn

+ · · · . (3.8)

of the matrix model partition function (3.3) in the powers of λ1, . . . , λp−1, with λ0 = −μ kept
fixed. By dimensional analysis

Zk1...kn
= zk1...kn

μ
2p+3−2n−∑

ki
2 , (3.9)

with zk1...kn
being just numbers. The coefficients with even

∑n
i=1 ki (even sector) are half-

integer powers of μ, and thus definitely belong to the singular part of the partition function.
However, Zk1...kn

with odd
∑n

i=1 ki (odd sector) involve integer powers of μ. When also
n∑

i=1

ki � 2p + 3 − 2n, (3.10)

the odd-sector coefficients are non-negative powers of μ, and thus belong to the regular
part of the partition function. As such, they can be adjusted at will, and will be of no
interest in our analysis8. Note that this inequality is always satisfied for n = 1, 2, but at n � 3

8 However, note that these regular terms are ‘special’; in that they fully agree with the scaling (the coefficients
zk1 ...kn in (3.9) are dimensionless). Whereas generic regular terms of the full microscopic partition function violate
the scaling, and thus are definitely beyond control of continuous field theory, there is much reason to think that in
quantum gravity the special regular terms can be attributed some universal meaning (see [13]). In this work, we do
not address this interesting line of questioning.

8
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negative powers of μ appear. Therefore, it is meaningful to compare the odd-sector correlation
numbers with

∑
ki > 2p + 3−2n with the results in MG2/2p+1. We will return to this point in

sections 4 and 5.

3.2. One- and two-point correlation numbers

When one plugs (3.5) into (3.2), the polynomial takes the form

P(u) = P0(u) +
p−1∑
k=1

λkPk(u) + · · · +
p−1∑
ki=1

λk1 . . . λkn

n!
Pk1...kn

(u) + · · · , (3.11)

where P0(u) and Pk1...kn
(u) are the polynomials whose coefficients involve non-negative

powers of μ. By dimensional analysis,

P0(u) = up+1 + C ′
0μup−1 + C ′′

0 μ2up−3 + · · ·
Pk(u) = Cku

p−k−1 + C ′
kμup−k−3 + C ′′

k μ2up−k−5 + · · · (3.12)

. . .

(here Ck are the same as in (3.5), and C ′
k, C

′′
k , . . . , are dimensionless constants related to the

higher-order coefficients in (3.5)), and in general Pk1...kn
(u) are polynomials of the degree,

p + 1 − 2n −
∑

ki, (3.13)

of similar structure. Of course, only polynomials of non-negative degree appear, so that the
sum in (3.11) is finite.

It is essential to note that all the polynomials are either even or odd:

Pk1...kn
(−u) = (−)p+1−∑

kiPk1...kn
(u), (3.14)

because only integer powers of μ can appear in (3.12). We use this symmetry to rewrite
equation (3.3) in a somewhat different form, more convenient for our analysis below. We split
the integration domain into two pieces:∫ u∗

0
=

∫ u∗

u0

+
∫ u0

0
, (3.15)

where u0 stands for the root of P0(u) associated with u∗, i.e. u∗ at λ1, . . . , λp−1 = 0. Note
that

u0 = a0μ
1
2 , (3.16)

with some constant a0 which plays no significant role in our discussion below. The integrand
in (3.3) involves the products

Pk1...km
(u)Pkm+1...kn

(u)

which are even or odd in u depending on whether k1 + · · · + kn is even or odd. For the even
terms we can extend the integration in the second piece in (3.15) to the domain [−u0, u0]:∫ u0

0
→ 1

2

∫ u0

−u0

. (3.17)

On the other hand, it is not difficult to see that the contributions of the odd terms in that
piece involve only non-negative integer powers of μ, and thus belong to the regular part of the
partition function. Thus, up to regular terms

Z = 1

2

∫ u∗

u0

P2(u) du +
1

4

∫ u0

−u0

P2(u) du, (3.18)

9
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and since the regular terms are of no interest to us here, in what follows we study the partition
function (3.18).

The first order of business is to determine P0(u) and Pk(u). Since u∗ = u0 + O(λk), the
first term in (3.18) does not contribute to the first three orders in the expansion (3.8), and one
finds

Z0 = 1

4

∫ u0

−u0

P2
0 (u) du, (3.19)

Zk = 1

2

∫ u0

−u0

P0(u)Pk(u) du, (3.20)

Zk1k2 = 1

2

∫ u0

−u0

[Pk1(u)Pk2(u) + P0(u)Pk1k2(u)] du. (3.21)

Agreement with (2.24) requires that all Zk vanish. Then (3.20) suggests that all the
polynomials Pk(u) must be orthogonal to P0(u) on the interval [−u0, u0], with the measure
1. Since the degrees of all Pk1k2(u) are smaller than p − 2 (indeed, smaller than p − 4), the
second term in (3.21) may be disregarded, and then agreement with the diagonal form of the
two-point correlation numbers in (2.24) requires that Pk(u) themselves form an orthogonal
set of polynomials on that interval. One concludes that Pk(u), up to normalization, are the
Legendre polynomials:

Pk(u) = Ckgku
p−k−1
0 Pp−k−1(u/u0). (3.22)

Here Ck are the same as in (3.12), and

gk = (p − k − 1)!

(2p − 2k − 3)!!
. (3.23)

We review some trivia about the Legendre polynomials in appendix A (see, e.g., [14] for
systematic display). Furthermore, since P0(u) is (p + 1)-degree polynomial, with no up term,
and vanishing at u0, one finds

P0(u) = gu
p+1
0 [Pp+1(u/u0) − Pp−1(u/u0)], (3.24)

where the normalization constant,

g = (p + 1)!

(2p + 1)!!
, (3.25)

is inserted to guarantee that the highest-order term in (3.24) is just up+1, as in (3.2). Incidentally,
the coefficient in front of up−1 in (3.24) determines the relation between t0 in (3.2) and the
cosmological constant

t0 = −1

2

p(p + 1)

2p − 1
u2

0. (3.26)

Equation (3.19) yields

Z0 = u
2p+3
0

g2(2p + 1)

(2p + 3)(2p − 1)
, (3.27)

and then from (3.21)

Zkk′

Z0
= δk,k′

Npμ−k−2

2p − 2k − 1
Leg2

M(k), (3.28)

where Np is the same as in (2.17), and

LegM(k) = gkCk

(2p + 1)gak+2
0

. (3.29)

10
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Equation (3.28) reproduces the structure of the two-point numbers in (2.24), and the identity
of (3.29) with the Leg factors (2.18) fixes the normalization constants Ck . Equations (3.22),
(3.24) are equivalent to equations (4.24) and (4.28) in [8]9.

4. Three- and four-point correlation numbers

Before proceeding to the higher-order correlation numbers, it is useful to get rid of annoying
factors in (3.22) and (3.24). We trade λk for the dimensionless couplings

sk = gku
−k−2
0

g(2p + 1)
λk, (4.1)

and write the polynomial (3.2) as

P(u) = g(2p + 1)u
p+1
0 Q(u/u0), (4.2)

where Q(x) is the polynomial of degree p + 1, as in (3.11), we will think of it as the power
series in sk:

Q(x) = Q0(x) +
p−1∑
k=1

skQk(x) +
p−1∑
k1k2

sk1sk2

2
Qk1k2(x) + · · · . (4.3)

Equations (3.24) and (3.22) then tell us that

Q0(x) = Pp+1(x) − Pp−1(x)

2p + 1
=

∫
Pp(x) dx (4.4)

and

Qk(x) = Pp−k−1(x). (4.5)

It is convenient also to trade the partition function (3.3) for the dimensionless quantity
Z = Z(s1, . . . , sp−1),

Z = g2(2p + 1)2u
2p+3
0 Z, (4.6)

given by

Z = 1

2

∫ x∗

1
Q2(x) dx +

1

4

∫ 1

−1
Q2(x) dx, (4.7)

where x∗ = x∗(s1, . . . , sp−1) is the largest real root of Q(x). Note that x∗(0, 0, . . . , 0) = 1,
and

Q′
0(1) = 1, Qk(1) = 1. (4.8)

Up to the Leg factors, the correlation numbers are the ratios

μ
∑

δki Zk1k2...kn
/Z0 (4.9)

of the coefficients of the expansion

Z = Z0 +
p−1∑
k=1

skZk + · · · +
p−1∑

k1,...,kn=1

sk1 . . . skn

n!
Zk1...kn

+ · · · . (4.10)

Note that with (4.4), equation (4.7) yields

Z0 = 1

4

∫ 1

−1
Q2

0(x) dx = N−1
p , (4.11)

where Np is precisely the factor (2.17).

9 The relation ∫ ∞

1
Pn(x)e−lx =

√
2

πl
Kn+1/2(l)

between the Legendre polynomials and the Macdonald functions of half-integer order makes the identity evident.

11
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4.1. Three-point numbers

Evaluation of the coefficients Zk1k2k3 is straightforward; we defer the calculations to
appendix B. The result is

Zk1k2k3 = −1 +
1

2

∫ 1

−1
[Qk1k2(x)Qk3(x) + Qk1k3(x)Qk2(x) + Qk2k3(x)Qk1(x)] dx. (4.12)

The first term −1 reproduces (2.16), except for the fusion rule factor Nk1k2k3 , equations (2.20),
(2.21). The role of the second term is to fix that discrepancy. Note that in this case we need
not worry about the odd sector. Recall from (3.10) that when k1 + k2 + k3 is odd and <2p − 1,
i.e. when the odd-sector fusion rules (2.20) are violated, the terms with Zk1k2k3 belong to
the regular part of the partition function. Therefore, we only need to look at the case when
k1 + k2 + k3 is even, where (2.21) demands that the second term in (4.12) turns to 1 at all
configurations of k1, k2, k3 such that k1 + k2 > k3 (as in (2.21) we assume that k1, k2 � k3), to
cancel the first term in (4.12). To reproduce the fusion rule factor Nk1k2k3 we need to have

1

2

∫ 1

−1
Qk3(x)Qk1k2(x) dx =

{
1 if k1 + k2 < k3

0 if k1 + k2 � k3.
(4.13)

Since Qk(x) = Pp−k−1(x), this is achieved by taking (see equation (A.8) in appendix A)

Qk1k2(x) = P ′
p−k1−k2−2(x), (4.14)

where the prime denotes the derivative of the Legendre polynomial with respect to x. Note
that now for some admissible values of k1, k2 the index in (4.14) can take negative values;
throughout this paper we adopt the convention that Pn(x) with negative n are identically zero.
With (4.14), we have

Zk1k2k3/Z0 = −Nk1k2k3Np, (4.15)

in exact agreement with (2.16).

4.2. Four-point numbers

Direct calculation (appendix B) yields

Zk1k2k3k4 = Z(0)
k1k2k3k4

+ Z(I)
k1k2k3k4

, (4.16)

where

Z(0)
k1k2k3k4

= −F(−2) +
4∑

i=1

F(ki − 1) − F(k(12|34)) − F(k(13|24)) − F(k(14|23)), (4.17)

and

Z(I)
k1k2k3k4

= 1

2

∫ 1

−1
[Qk1k2k3Qk4 + Qk4k1k2Qk3 + Qk3k4k1Qk2 + Qk2k3k4Qk1 ] dx. (4.18)

In (4.17)

F(k) = P ′
p−k−2(1) = 1

2 (p − k − 1)(p − k − 2)�p−2,k, (4.19)

with �k,k′ being the step function,

�k,k′ =
{

1 for k � k′

0 for k < k′,
(4.20)

and we use the notation

k(ij |lm) = min(ki + kj , kl + km). (4.21)

12
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Like in (4.12), the role of the term (4.18) is to enforce the fusion rules, and the polynomials
Qk1k2k3(x) are to be determined from this requirement.

The analysis is simpler in the even sector, so let us start with this case. Assume again that
the numbers k1, k2, k3, k4 are arranged as in (2.27), so that in (4.17) we always have

k(12|34) = k1 + k2, k(13|24) = k1 + k3. (4.22)

Recalling (4.5), and counting the degrees of the polynomials Qk1k2k3(x), one observes that
(4.18) vanishes when the even-sector fusion rules (2.7) are satisfied. On the other hand, when
the fusion rules are violated, the inequality (2.28) is violated as well, and we have

k(14|23) = k2 + k3 < p − 1, (4.23)

where the last inequality follows from k4 � p − 1. With (4.22) and (4.23), expression (4.17)
evaluates to

− 1
2 (k4 − k1 − k2 − k3 − 2)(2p − 3 − k1 − k2 − k3 − k4). (4.24)

Thus, for (4.16) to satisfy the even-sector fusion rules (2.7) the integral,∫ 1

−1
Qk1k2k3(x)Qk4(x) dx, (4.25)

has to return (4.24) with the opposite sign. This uniquely determines the polynomials Qk1k2k3 :

Qk1k2k3(x) = P ′′
p−∑

ki−3(x) (4.26)

(see equation (A.9) in appendix A).
Now, in the odd sector, as was explained in section 2.2, the coefficients (4.16) with∑

ki � 2p − 5 correspond to regular terms in the partition function Z, and thus can be
disregarded. For that reason, in particular, we can pay no attention to the second term,
equation (4.18). The only singular terms potentially violating the odd-sector fusion rules (2.7)
are those with ∑

ki = 2p − 3. (4.27)

But it is easy to check that these terms actually vanish. Indeed, if again ki are arranged as in
(2.27), and k1 + k4 � k2 + k3 (in which case it follows from (4.27) that also k1 + k4 � p − 1),
(4.17) is given by (4.24) which vanishes at (4.27). If instead k2 + k3 � k1 + k4 (and hence
k2 + k3 � p − 1), expression (4.17) reduces to

(k1 + 1)(2p − 3 − k1 − k2 − k3 − k4), (4.28)

again vanishing at (4.27).
Once the fusion rules are taken care of, we can compare (4.16) with the MG2/2p+1 four-

point correlation number. It is not difficult to check that when (2.28) is satisfied, (4.17)
reproduces (2.26) perfectly.

However, when instead k2 + k3 < k1 + k4, (4.17) no longer agrees with (2.26). This
is expected, since the Liouville gravity calculations in [6] were made under a certain
assumption which is violated in this case. The matrix model result (4.16), which is valid
at all configurations of ki , may provide a hint on how to modify the Liouville gravity analysis
when the number of conformal blocks in the M2/2p+1 four-point function is smaller than k1.

5. Multi-point correlation numbers

In principle, one can extend the analysis of the previous section to n-point correlation numbers
with n > 4. Although at the moment no specific results for these multi-point numbers in the

13
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minimal gravity are available, one thing is known. Since the correlation functions (2.4) of
M2/2p+1 vanish when the fusion rules (2.7) are violated, the correlation numbers (2.14) then
vanish as well. This requirement for the n-point numbers imposes strong conditions on the
form of the polynomials Qk1...kn−1(x), which fix them uniquely, and thus one must be able to
determine the complete form of the polynomial Q(x), equation (4.3), step by step in n.

In fact, the problem seems over-determined. Indeed, suppose we have already constructed
the expansion (4.3) up to the order n−1, and thus Q0,Qk, . . . ,Qk1...kn−2 are already determined.
Then Qk1...kn−1 enters the expression for the nth order coefficient Zk1...kn

only through the
‘counterterm’

1

2

∫ 1

−1
Qk1...kn−1(x)Qkn

(x) dx, (5.1)

and n similar terms which differ from this by cyclic permutations of k1, . . . , kn. The
polynomials Qk1...kn−1 must be chosen in such a way that these terms cancel all other
contributions to Zk1...kn

when the even-sector fusion rules (2.7) are violated, i.e. when k1 + · · ·+
kn−1 > kn. But since the degree of the polynomial Qk1...kn−1(x) is p + 3−2n− (k1 + · · ·+kn−1)

(see equation (3.13)), the integral (5.1) actually vanishes at k1 + · · · + kn−1 > kn + 4 − 2n. For
n � 4 a window,

kn >

n−1∑
i=1

ki > kn + 4 − 2n, (5.2)

opens in the configurations of ki violating the even-sector fusion rules, where the term (5.1)
seems to be incapable of doing its job of fixing the fusion rules. A similar problem exists in
the odd sector. For n � 4 there is a window,

2p − 1 >

n∑
i=1

ki > 2p + 3 − 2n, (5.3)

in the configurations of ki , where the odd-sector fusion rules (2.7) are violated, but
corresponding coefficients Zk1...kn

are singular (involve negative integer powers of μ; see
section 3.1).

We have seen in section 4.2 that at n = 4 the problem takes care of itself, in both even
and odd sectors. The first factor in equation (4.24) forces the coefficients Zk1k2k3k4 to vanish
within the window (5.2), and the last factor in (4.24) and (4.28) makes sure that they vanish
within the window (5.3) as well.

The same phenomenon should persist for higher n > 4, for otherwise we would face
incurable disagreement between the correlation numbers in MG2/2p+1 and the matrix model.
We have calculated the five-point correlation numbers Ck1k2k3k4k5 , and indeed they automatically
vanish within both even- and odd-sector windows, equations (5.2) and (5.3). We do not present
this calculation here, for the result is somewhat cumbersome, and anyway at the moment there
is nothing on the minimal gravity side to compare it with. But as a byproduct of this calculation
we have determined the four-index polynomials Qk1...k4 ,

Qk1k2k3k4(x) = P ′′′
p−∑

k−4(x), (5.4)

where
∑

k = k1 + k2 + k3 + k4.

6. Discussion

Identification of MG2/2p+1 as the world-sheet theory of the p-critical one-matrix model
suggests that, by choosing suitable resonance terms in the relation between the couplings
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tk in (3.2) and λk , the matrix model correlation numbers can be put in agreement with the
fusion rules of MG2/2p+1. Technically, this is done by constructing the polynomial Q(x),
equation (4.3), order by order in sk . In sections 4 and 5, we have executed this program up to
the fourth order.

For higher n direct calculations become rather involved. But a quick glance at (4.5),
(4.14), (4.26) and (5.4) immediately suggests the general form,

Qk1...kn
(x) =

(
d

dx

)n−1

Pp−∑
k−n(x), (6.1)

where again
∑

k = k1 + · · · + kn. Then, using (A.6), the full polynomial Q(x) can be neatly
written as the integral

Q(x) = −
∮

0

(
1 − 2xz + z2 − ∑p−1

k=1 2skz
k+2

)1/2

zp+2

dz

2π i
, (6.2)

where the integration is over a small circle around 0. So far, we did not find a proof that all
correlation numbers computed from (4.7) with Q(x) given by (6.2) obey all fusion rules (2.7).
Thus, (6.2) remains a conjecture.
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Appendix A. Legendre polynomials

The Legendre polynomials Pn(x) are nth order polynomials which form an orthogonal system
on the interval [−1, 1] with the weight 1,∫ 1

−1
Pn(x)Pn′(x) dx = 2δn,n′

2n + 1
. (A.1)

The standard normalization is such that

Pn(1) = 1. (A.2)

Explicitly,

Pn(x) = 2−n

n!

dn

dxn
[x2 − 1]n = 2−n

[n/2]∑
l=0

(−)l
(2n − 2l)!

l!(n − l)!(n − 2l)!
xn−2l . (A.3)

Another closed expression is given in terms of the hypergeometric series,

Pn(x) = 2F1

(
−n, n + 1, 1; 1 − x

2

)
, (A.4)

i.e.

P ′
n(1) = n(n + 1)

2
, P ′′

n (1) = (n − 1)n(n + 1)(n + 2)

8
, etc. (A.5)

Yet another closed form is in terms of the contour integral

Pn(x) =
∮

0

(1 − 2xz + z2)−1/2

zn+1

dz

2π i
. (A.6)
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The following relations are useful in our analysis:

P ′
n+1(x) − P ′

n−1(x) = (2n + 1)Pn(x), (A.7)

they are valid for all n = 0, 1, 2, 3, . . . , if one assumes that P−1(x) = 0.
Besides the orthogonality condition (A.1), we need integrals involving the derivatives of

the Legendre polynomials:

1

2

∫ 1

−1
P ′

n(x)Pm(x) dx = En+m−1�n,m+1, (A.8)

1

2

∫ 1

−1
P ′′

n (x)Pm(x) dx = En+m�n,m+2
(n + m + 1)(n − m)

2
, (A.9)

and in general

1

2

∫ 1

−1
P (l)

n (x)Pm(x) dx = En+m−l�n,m+l

× 2−l+1

(l − 1)!

l−2∏
s=0

(n + m + l − 1 − 2s)(n − m + l − 2 − 2s), (A.10)

where P (l)(x) stands for the lth derivative. Here �n,m = Pn−m(1) is the step function (4.20),
and

En =
{

1 if n is even
0 if n is odd.

(A.11)

Integrating (A.9) by parts, we have

1

2

∫ 1

−1
P ′

n(x)P ′
m(x) dx = En+m

[
�m,n

n(n + 1)

2
+ �n,m

m(m + 1)

2

]
. (A.12)

Appendix B. Evaluation of Zk1...kn

Generally, the coefficient Zk1...kn
is computed by taking the nth order derivative of (4.7) with

respect to the parameters sk1 , . . . , skn
. The result naturally splits into two pieces,

Zk1...kn
= Z(∗)

k1...kn
+ Z(int)

k1...kn
, (B.1)

corresponding to two terms (4.7). Since x∗ = 1 + O(sk), the term Z(∗)
k1...kn

appears only starting
from n = 3, and in general it has the ‘local’ form, i.e., it is built from the polynomials
Q0(x),Qk(x), . . . and their x-derivatives, taken at x = 1. On the other hand, the term Z(int)

k1...kn

represents explicit dependence of the integrand in the second term in (4.7) on the parameters
sk; starting from n = 3, it exists entirely due to the presence of nonlinear terms in the
transformation (3.5). Generally, it has the form

Z(int)
k1...kn

=
[ n−1

2 ]∑
r=1

1

2

∫ 1

−1
[Ql1...lr (x)Qlr+1...ln (x)] dx, (B.2)

where (l1, . . . , ln) are permutations of the numbers (k1, . . . , kn), and the symbol [. . .] signifies
the sum of all distinct terms generated by the permutations.
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The calculation of the ‘local’ term Z(∗)
k1...kn

is more tedious since it involves taking
derivatives of x∗, but it can be streamlined by reducing it to the residue calculus. Write∫ x∗

1
Q2(x) dx =

∮
1,x∗

Q2(x) log
Q(x)

Q0(x)

dx

2π i
, (B.3)

where the integration contour encircles the points 1 and x∗, but leaves outside all other roots
of Q(x) and Q0(x). For the sake of the expansion in sk , we may write Q(x) as

Q(x) = Q0(x) + Q̃(x), (B.4)

where Q̃(x) represents all the sk-dependent terms in expansion (4.3), so that (B.3) takes the
form

1

2

∮
1,x∗

Q2
0(x)R(Q̃(x)/Q0(x))

dx

2π i
(B.5)

with R(t) = (1 + t)2 log(1 + t). When R(t) is expanded as the power series

R(t) = t +
3

2
t2 +

1

3
t3 − 1

12
t4 +

1

30
t5 + · · · , (B.6)

the lth term produces lth order pole at x = 1 in the integrand in (B.5). Then the local terms
are computed by evaluating the residues.

B.1. Results

For n = 3, one finds

Zk1k2k3 = −Qk1(1)Qk2(1)Qk3(1)

Q′
0(1)

+
1

2

∫ 1

−1
[Ql1l2(x)Ql3(x)] dx, (B.7)

which reduces to (4.12) in view of (4.8).
For n = 4, we have

Z(∗)
k1k2k3k4

= − [Ql1Ql2Ql3Ql4 ]Q′′

(Q′
0)

3
+

[Q′
l1
Ql2Ql3Ql4 ]

(Q′
0)

2
− [Ql1l2Ql3Ql4 ]

Q′
0

, (B.8)

where all the Q’s are taken at x = 1, and the brackets [. . .] have the same meaning as in (B.2);
for instance, the last term is in fact the sum of six terms.

The integral term in this case has two parts:

Z(int)
k1k2k3k4

= 1

2

∫ 1

−1
[Ql1l2(x)Ql3l4(x)] +

1

2

∫
[Ql1l2l3(x)Ql4(x)] dx. (B.9)

The first term here involves only the polynomials Qkk′(x) given by (4.14); it is evaluated using
(A.12) and when combined with (B.8), yields (4.17). The second part in (B.9) provides (4.18).
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