
Complex geometry and the theory of quantum strings 
A. A. Belavin and V. G. Knizhnik 

L. D. Landau Institute for Theoretical Physics of the USSR Academy of Sciences 
(Submitted 18 February 1986) 
Zh. Eksp. Teor. Fiz. 91,364-390 (August 1986) 

A summation over closed orientable surfaces of genusp>2 ( p-loop vacuum amplitudes in the 
theory of bosonic strings) in the critical dimension 9 = 26 reduces to an integration over the 
moduli space M, of complex structures of Riemann surfaces of genusp. The analytic 
properties of the integration measure are studied as a function of the complex coordinates on 
M,. It is shown that the measure multiplied by (det Im ?) l 3  (where ? is the period matrix of 
the Riemann surface) is the absolute square of a function holomorphic and nowhere vanishing 
on M, . This function has a second-order pole at the infinity D = a, /Mp of the compactified 
moduli space M,. By these properties the measure is determined uniquely, up to an arbitrary 
constant factor, fact which allows one to construct explicit formulas in terms of theta functions 
for surfaces of genusp = 2, 3. The theory contains power and logarithmic divergences, related 
respectively to the renormalization of the tachyon wave function and of the slope. The relation 
of these results to Mumford's theorem is discussed. The quantum geometry of critical strings 
turns out to be a complex geometry. 

1. INTRODUCTION 

The theory of quantum strings undoubtedly deserves 
the immense interest it has generated. To the old ideas we 
add a new principle: fundamental objects are not pointlike, 
but one-dimensional; this theory has achieved a number of 
successes and is at the present time "the most promising 
candidate, etc." 

However, string theory cannot be considered to be free 
of problems. Since most often one discusses its phenomeno- 
logy problems, we would like here to recall some of the theo- 
retical problems. First, there is no understanding of the fun- 
damental theoretical principle lying at the basis of the 
theory. The existing description is analogous to the descrip- 
tion of particles in the language of sums over trajectories, 
rather than a field theory. Second, in connection with this 
absence of a profound fundamental understanding, we do 
not know how many string theories exist, and perceive the 
theories which exist for D = 10 and D = 26 as unique. On 
the other hand, these theories are special cases of two-dimen- 
sional conformal field theories (conformal bootstrap), Ref. 
4. At the present time an infinite number of such theories is 
known. The use of (present and future) achievements of the 
conformal bootstrap may be beneficial for understanding 
string theories and increase our possibilities in the construc- 
tion of new models. Third, there exist two languages for the 
description of strings: the algebraic language, making use of 
representations of Virasoro algebras and of other infinite- 
dimensional Lie algebras, and the geometric language, the 
language of sums over surfaces, which, as will be shown in 
the present paper, leads to the complex-analytic geometry of 
moduli spaces of Riemann surfaces. A relation between 
these two approaches does not exist, in the large. In the geo- 
metric approach thep-loop scattering amplitudes of orient- 
ed closed bosonic strings are sums over closed oriented sur- 
faces of genus p ("spheres" with p handles). As will be 

shown in Sec. 2, in the critical dimension 23 = 26, the sum- 
mation reduces to an integration over the moduli space a, 
of Riemann surfaces of genus p. If one takes string theory 
seriously it is important to study such sums. Here there 
arises a fourth problem-that of describing the analyticity 
properties of multiloop amplitudes as functions of the co- 
ordinates on a,. These properties determine the structure 
of divergences of the theory. 

In the present paper we investigate just the latter prob- 
lem and shall see that the analyticity properties turn out to 
be very simple. Roughly speaking, the amplitudes are con- 
structed in terms of meromorphic, and even rational, func- 
tions on & . One can formulate the problem and the result 
more precisely in the following manner: In  the covariant 
geometric approach of Polyakov5 the sum over surfaces is a 
sum over the topologies (the generap), the internal metrics 
gab ( l ) ,  and the embeddings X, of the surface with coordi- 
nates c ,,, in a flat 23-dimensional spacetime. For 9 = 26 
the conformal anomaly cancels5 and the complete quantum 
symmetry group is the product of the Weyl group Conf(S) 
of conformal transformations: gob (6) -A (6)gab (6 )  with 
the diffeomorphism group Diff(S) of general coordinate 
transformations of the surface S. Thus, for each p we must 
integrate over the orbits of the group H = Conf(S) 
e Diff(S) in the space G(S)  of all metrics, i.e., we must 
integrate over the quotient space G / H  = Mp . This space is 
called the moduli space of Riemann surfaces of genusp, and 
its dimension, as shown by Riemann, is finite and equal to 0 
forp = 0, equal to 2 forp = 1, and equal to 6p - 6 forp22. 
In the papers of Teichmiiller, Ahlfors, and Bersh it was 
shown that Mp has a natural complex structure. Moreover, 
Mp is an algebraic manifold.' 

Let y,, ... , y3,-, denote some complex-analytic coordi- 
nates on M p .  Then for 9 = 26 the sum over surfaces of 
genus p, after separating the volume of the gauge group H, 
will have the following form (see below, Sec. 2 ) .  
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where p i s  some function of the coordinates y, ,yi. The natu- 
ral question arises whether the complex structure on Mp 
manifests itself in the analytic properties of ii.'(yi, 7, )? Re- 
call that the one-loop calculation ( p = 1 ) (Ref. 8 ) yields: 

where y = exp(2ri.r) and r is the ratio of the two periods of a 
torus which ranges over fundamental domain of the modular 
function of the group SL (2, Z) . Equation ( 1.2) suggests that 
these properties may turn out to be sufficiently simple also in 
the case whenp > 1. Up to a power of the logarithm the mea- 
sure in ( 1.2) is the absolute square of a nowhere vanishing 
analytic function y which has a pole of second order at y = 0, 
where the torus degenerates. Our basic claim, proved in de- 
tail in Secs. 3 and 4, is that for p > 1 the measure exhibits 
almost the same properties: 

where F(y)dv is a holomorphic (3p - 3,O)-form which van- 
ishes nowhere on Mp , and ? is the period matrix of the Rie- - 
mann surface with coordinates y,, J,, ... , y,,., , y,,, in Mp. 

B) The form F(y)dv has a second-order pole at the 
point at infinity D of the space Mp , where the surfaces degen- 
erate. " 

This pole leads to divergences in the expression ( 1.1 ), 
and its presence is closely related to the circumstance that 
the ground state of the bosonic string is a tachyon. 

It is easy to show that the conditions A)  and B) deter- 
mine the form F(y)dv uniquely, up to a constant factor. This 
allows, in particular, to express the F(y)  in the casep = 2,3 
(Ref. lo),  as well as forp = 4, in terms of the Riemann theta 
functions. These results, together with necessary facts from 
the theory of automorphic forms of C. L. Siegel, form the 
contents of Section 6. We also indicate that recently, making 
use of the results of Faltings" and of the properties A)  and 
B) of the measure,12 Manin13 has succeeded in expressing 
the measure in terms of theta functions and Abelian differen- 
tials by means of a more complicated formula, but in ex- 
change, for arbitrary genus. 

We note that in recent papers2' (Ref. 15) multiloop am- 
plitudes have been constructed with the aid of the Selberg f 
function.I6 The only shortcoming of these elegant formulas 
is the fact that they yield an expression in terms of real co- 
ordinates on M, (more precisely, on the Teichmiiller space 
which covers it). This hides the simple complex-analytic 
structure of the theory, which is a serious obstacle to the 
study of supersymmetric (SS) and heterotic (HS) strings. 
We discuss briefly our approach to the theories ofSSand HS 
in Section 7, where the vanishing of vacuum amplitudes is 

related the putative absence of parabolic forms of weight 8 
on Mp . 

The occurrence of a complex-analytic structure in 
string theory is closely related to the conformal invariance 
and the cancellation of the gravitational anomaly separately 
in the sectors of right-movers and left-movers of the string.18 - 
Here F(y) [respectively F(y)  ] is the contribution to the 
measure of left-movers (right-movers). The three anoma- 
lies-the conformal, gravitational, and analytic ones-can- 
cel simultaneously. 

2. FROM A SUM OVER SURFACES TO INTEGRATION OVER 
MODULI SPACE 

According to Polyakov5 the sum over surfaces is de- 
fined as 

ca 

e -  """ 2 j Bg.b(l)BX,(E)erp{-SIX,, g o b ] ) .  
surf P=O 

(2.1) 

whereg,, (6) is the intrinsic metric of a surface with coordi- 
nates c,, 12, and X, (6) defines the embedding of the surface 
in 9-dimensional spacetime; S is the Nambu-Goto action 

We shall assume below that 9 = 26. The integration mea- 
sure in (2. l )  is defined by means of integrals in function 
space: 

(2.3) 
Each metric determines a volume 2-formds = g'I2dg ' A d l  
and a complex structure compatible with the metric 

where E ~ ,  = E~~ = 0, E , ~  = - E ~ ,  = 1. With this complex 
structure are associated harmonic coordinates z and z; z is 
determined from the solution of the Beltrami equation: 

In these coordinates the metric takes on the conformal form: 

For infinitesimal conformal transformations Sp = Spp and 
general coordinate transformations z +z + ~(z,?) ,  the vari- 
ation of the metric is 

and its norm in the sense of Eq. (2.3) equals 

Here and henceforth d 2l should be understood as ( I /  
2)idz A&. 

To separate in the sum (2.1) the volume of the group of 
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general coordinate and conformal gauge transformations it 
is necessary, according to Ref. 5, to change over from an 
integration over theg,, (6) to an integration with respect to 
q, and E. For these fields the norms in function space are, 
taking account of the scalar nature of q7 and of the vector 
field character of E: 

From Eqs. (2.8) and (2.9) we find that3' 

Bg,, (g) =det (-p-2a$)a9!B~Bg.bL. (2.10) 

In this formula gg;, denotes integration with respect to 
those directions in the function space of the metrics which 
are "orthogonal" to the variations (2.7). To prove the exis- 
tence of such directions we consider the infinitesimal vari- 
ation of the metric Sg* [not to be confused with Sg in Eq. 
(2.7)]: 

From the orthogonality condition 

we obtain 

The variations of the metric which are orthogonal to the 
orbits of the gauge group, i.e., satisfy the condition (2.12), 
are called holomorphic quadratic differentials. It is known 
that for a surface of genusp>2 the complex dimension of the 
linear space Vof such differentials is 3p - 3 (i.e., 1 forp = 1 
and 0 forp = 0). Thus, the integration with respect to gg;, 
is in fact an integration over the finite-dimensional space Mp 
of complex structures of Riemann surfaces with genusp (the 
moduli space), related to the variations of the metric of the 
form (2.12). 

Complex-analytic coordinates are introduced in the 
space M, in the following manner.6 We choose a basis f,, ... , 
f ,,, in V and a dual basis v' ,  ... ,173p3 in the space of Bel- 
trami differentials4': 

j qkjj d2E=6F. (2.13) 

Then any complex structure Jclose to the structure J,  which 
is compatible with the metricpdzdi can be parametrized by 
means of the complex parameters y,,  ... , y,,, , and is compa- 
tible with the metric 

where the coordinate u is determined by the Beltrami equa- 
tion 

and has a holomorphic dependence on the y, .6 

The conditions (2.13 ) determine vk up to a total deriv- 
ative 

however, complex structures corresponding to Sy, qk  and 
Sy, ik and which are infinitesimally close to J, coincide. The 
arbitrariness (2.16) is fixed by the condition of orthogona- 
lity (2.14) of the metric to the variations (2.7), leading to 
the choice 

Consequently 

IlS~uLl12=SyiSfi (N2-l) ik 

and 
DgObL= (det N2) -'ddB, 

(2.18) 
dQ= (i/2)3p-3dvll\dG, dv=dylA . . . A d ~ 3 ~ - j  

We now substitute (2.18) into (2.10) , carry out in 
(2.1) the Gaussian integration with respect to X, (6) (tak- 
ing into account the zero mode X F' (6) = const) and sepa- 
rate the infinite volume of the group of general coordinate 
and conformal transformations $ DED~,. After this the prob- 
lem reduces to the calculation of the following integral over 
the moduli space Mp : 

det N, tlct' A ,  

J ddB erp W(yi, iji) (det N.)-". (2.19) 

Here Aj = - p' ap -?a is the Laplace operator acting in 

the space of j-differentials (i.e., tensors @ +,+ , trans- 

forming like (dz) -j), and 

is the matrix of the inner products of the zero modes @, of 
the operator A j .  We note that det N, does not depend on p 
and det N- , is missing in Eq. (2.19), since forp22 the oper- 
ator A_,  has no zero modes. On account of the cancellation 
of the conformal anomaly5 the product of the remaining 
terms in (2.19) is also independent ofp and can thus be only 
a function ofy, ,Ji . One can convince oneself of this by use of 
the f o r m ~ l a ~ ~ ' ~ , ~ ~  

det' Aj Cj 
60 log ktt Nj det Ni-j = - - j 6 p p - ~ d ~ ( l ( l o g p ) d 2 ~ ,  6n (2.21) 

where det N, is set equal to 1 by definition if A, has no zero 
modes. [In Eq. (2.21 ) 637- appears in place of the usual 24r, 
sinceaJ= (1/4)A!]. 

3. THE HOLOMORPHY OF F(Y )  

We now prove that exp W( y, , J, ) in Eq. (2.19) is the 
square of the absolute value of a holomorphic function of the 
y,. For this we have to calculate the variation of W for an 
infinitesimal variation of the complex structure engendered 
by a variation of the metric having the form 
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The function exp W (  y, , Ji ) will be the absolute square of a 
holomorphic function if (and only if) the second variation of 
W does not contain terms in ~ 7 7 :  

6,6-,W=O. (3 .2)  

We shall show below that 

6,s: log = - 2 j p - z [ ~ j  at+j f  a> log p l a 2 ~ ,  
det N j  det Nl-,  6n 

and Eqs. (3.81, (3.91, we find that the action in the integral 
( 3 .  l o ) ,  to the required accuracy, has the expression 

so that the measure (3.1 1 ) equals 

118hl l .1=~ 16(Dj(z , i )  12(1+( j -2)qq)p1- j id~Adz/2 .  (3.12)  

Thus 

f ~ p 4 ,  ( 3 . 3 )  We first calculate the second variation of log det N, . For this 
purpose we introduce some notation. Let A' denote the space 

whence, taking account of (2.19)s the result (3 .2)  follows- of j-differentials, Pj the projector onto the subspace I$ of 
The analytic anomaly (3 .3)  cancels and therefore holomorphicj-differentials (the zero modes of A, ), (@,O"} is 

exp W(yit gi) = ( F ( y i )  1'. (3 .4)  a basis in HJ which we choose as having a holomorphic de- 
pendence on the yj . This is possible, since it follows from Eq. 

Moreover, from ( 3 . 3 )  it follows that any expression of the (3 .9)  that the equation &, = 0 satisfied by @, does not 
form depend on the pi. Let, in addition, the index of the symbol Tr 

denote the space over which the trace is calculated. Then it 

( det z:e?N,-j n1 
( 3 ' 5 )  follows from Eq. (3.12)  that 

will be the absolute square of a holomorphic function on M, log det N j  = Trn1(j-2)qq 

provided + j p'-j(am:t ( h e " '  ) (N,-') d z A a z / z .  2 Cjnj=O. (3 .6)  (3.14)  
f 

We make use of the fact that SG;) = 8~:)  = 0.  The vari- 
We now go on to prove Eq. ( 3.3 1. Assume that after the ,tion 6@, can be determined from the equation 

variation (3 .1)  the metric has a conformal form in terms of 
the coordinates u ,  Zi.  Then (Aj+6Aj)  (@f' +6@:" ) =0. 

g r = p  ( u ,  i i )  dudl=p ( u ,  Z) u,l:l dz It is orthogonal to H' and has the expression 

+ (ui lu , )  dZ)==p ( z ,  z )  dzdT 

+pq (dz)2+psi(dz)  2, 

whence As a result we have 

ui=quZ, P ( Z ,  Z ) = p  ( u ,  iE) uZEi ( I+qq) i  
1  MZ 

( 3 . 8 )  66 log det Nj = Tr.1 ( j -2)  q q  + T ~ ~ I ~ A ,  ( - - ) -- 6Pi, 
A j  M2+Aj 

where u, -au/dz, etc. In addition, 

( 3 . 9 )  where we have regularized A; ' and have made use of the 
hermiticity - of A,; SA, denotes the term in (3.13)  which is 

We now represent the determinant as a functional integral in linear in T .  

the coordinates u,  ii: Now everything is ready for the calculation of the vari- 
ation of the determinant. We regularize it a la Pauli-Villars 

(detr  AI(u) ) - I =  "@j exp [ - 5 ~ - ~ ~ ~ @ i ~ i @ j ~  d i ~ ~ d ~ l ' ]  and keep track only of the terms which do not depend on the 
( 3.10) regulator mass M: 

where the measure is defined by means of the integral 
M2 

66 log[detf Ajldet(M2+Aj) ]= TrAf ( l -P i )  (2- j )  qq- 
M2+A, 

II6QljllUZ = J Gj 6 m j  pi-'i duAdGl2 .  (3.11)  M 2  + TrAl-) (1-Pi-j) (]+I) q q A x  
In order to find out how the operator Aj has changed, 

we transform in Eqs. ( 3 .  l o ) ,  (3.11 ) to the coordinates z, 2. + 6 Tr,fpi-' ( l -Y, - j )  (pj-Id) -'. 
Taking into account the fact that 

mi ( u ,  E) = ( u z )  -loj ( z l  2 ) -  

MZ M'" 
X -  

ll!lZ+A, ( I -PA= T r ~ l ( 2 - I )  ~ r l  Mq 
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ML The quantity Yin Eq. (3.18) can be calculated similar- 
+ T~AI -1  ( I  + 1 ) 'lfl Mx, ly. A complication arises only through the fact that one must 

expand in z, i not only p ,  but also 7 and i ,  retaining not only 
+ (j-2) TrH1qij- (I+ 1) Tr l I~ -~qT  the terms a7277 but also the terms linear in q, of the type 

77dp&, rli6'&p, etc. [In Eq. (3.18) there appears also a term 
M" + T ~ ~ I ~ A ~  (-A) T 6 P l  a p ~ p V i ,  but if the coefficients of all the other terms are 

A, M +A, known, its coefficient is fixed by the general covariance re- 
1 MZ quirement. ] After tedious calculations we find: 

+ T E H ~ + ~ . A ~ - ~  ( - =) =I 6Pi-, 

M' 1 y = -  61'-61+1 j (gq dq+d;l  13v q+i  gT dq+qq d q  dp) 
+ T w p 3 - I  (6 a,-,) - p-J (6%) - (3.16) 6n 

Mz+Al-, Mz+A, ' 1 
xd';-- J q i i a ~ q k g  (3.22) 

where 62, - - 7a - j ( d 7 ) .  We denote the last term by Y 631 
and making use of the equations (3.15) and of 

61'-6j 
66 log de&,, A, = - --J l l ? i d r p d ' j + ~  

6n 

Equation (3.17) is derived in the following manner. We 
calculate the trace choosing in the space A' the basis formed 
by the "functions" 

Substituting into Eq. (3.18) we arrive at (3.3). With the 
help of Eq. (3.17) it is also easy to verify Eq. (2.21 ) . 

Summarizing; we have proved Eq. (3.2) and the mea- 
sure in Eq. (2.19) is indeed, up to the factor (det N, ) - I 3  the 
square of the modulus of a holomorphic function, provided 
that the basis in the space of holomorphic l-differen- 
tials is chosen so as to have a holomorphic dependence on the 
y,  . This can be realized in the following manner. We choose 
on the surfaceSof genusp a symplectic basis consisting of 2p 
closed, noncontractible, oriented paths a i ,  b , ,  i = 1, ... , p 
such that 

6(g-E0) = j e r p [ i ( p ~ + ~ z )  1, where aob denotes the algebraic number of intersections 
(the intersections are counted with their natural signs). It is 

wherez = ( 6  - g o )  I + i ( l -  6 0 1 2  is a coordinate in the vi- known that the space of holomorphic 1-differentials (Abe- 
cinity of t,; and 2p = p ,  + ip,. For an arbitrary operator lian differentials of the first kind) has complex dimensionp, 
V(6) we have and that one can select in it a basis w,  (z) = @ll'(z)dz of 

d'p 
Tr  V ( Z )  = S d2l0l V.(Eo, P, P ) ,  

where in the neighborhood of each point f, we have passed 
to the momentum representation 

V ( g )  =V(Eo, z, Z; d , a )  

=V(Eo, ialap, idlap; ip,  ip)  

= V ' ( E o ,  P ,  P ) .  (3.20) 

In Eq. (3.17) the unique term which does not depend on M 
contributes to expansion of A, a term proportional to 
a& = 1 1 4 ~ ~ :  

A;(Eo, P ,  P )  = P ~ - ~ P P + P ~ - ~  [ (1-i) (a&) 
x ( ~ + ~ a , )  +(a&) (paT+ppa,aT) I+. . . , 

PO-p ( g o ) ,  ~ P = N ~ P .  (3.21) 

Therefore one can omit the remaining terms in Eq. (3.21) 
and we have 

x r)o"[ ( 1 - j )  ( I +  pd,) +pa,+pj d ,  ri,] 

Q.E.D. 

normalized differentials, such that 

1 

Then the matrix 

,cij =$aj (3.25) 
bl 

is called the period matrix of the surface S. In this basis 

Substituting into (2.19) and recalling Eq. (3.4), we obtain 
Eq. ( 1.3). The holomorphy and absence of zeros of the func- 
tion F ( y )  follows from the fact that the regularized determi- 
nants in Eq. (2.19) must not vanish on nondegenerate sur- 
faces (since the number of zero modes of each of them is 
constant: one zero mode for A, and no zero modes for A _ ,  ), 
nor do they become infinite.6' Consequently, we have proved 
property A of the measure, stated in the Introduction. 

We now briefly discuss the connection between holo- 
morphy of the measure and conformal invariance. The sec- 
ond variation 68 k of the effective action of the ghosts and 
fields X, can be expressed in terms of the correlation func- 
tions of the energy-momentum tensor operator 
T =  ghost 

PV pv + T,X,: 
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From the naive conservation law it follows that 
a- T+ + = a+ T- - = 0, hence, up to zero modes, 
(T+ + (6) T- - (6 ' )  ) = 0. On account of the conformal 
anomaly this is not separately true for the ghosts and X, 
fields, so that a-(T++) =d+(T-+) and (T-+)#O. 
However, for D = 26 the anomaly cancels, which has as a 
consequence (T+ + (6) T- - (6 ') ) = 0 up to zero modes; 
taking the latter into account, we are again led to the result 
(3.3). 

We now go over to an analysis of the behavior of the 
measure at the point at infinity D of the space Mp , where the 
surfaces degenerate, and shall prove property B). 

4. DIVERGENCES 

In this section it will be convenient to deal not with 
determinants, but with functional integrals. We shall study 
the divergences of the following integral: 

where p is a complex scalar field, E is the complex ghost 
vector field,J; is a basis in the space of quadratic holomor- 
phic differentials, related to the deformations of the complex 
structure 

by the relation 

q k  d21=8?, 

they, are complex coordinates in the moduli space M, de- 
fined in a neighborhood of the given complex structure dz by 
Eq. (4.2). The inner product is 

Eq. (4.1 ) is also valid forp = 1. The measure in the expres- 
sion of Zp diverges in two cases. 

Case I. The surface of genusp degenerates into two sur- 
faces of genus q and p - q with removed points, with the 
surfaces glued together at these points (Fig. 1 ). The set of 
such surfaces in the moduli space Ep will be denoted by D, , 
q =  1,2, ... , [p/21. 

Case 11. The surface of genus p degenerates into a sur- 
face of genusp - 1 with two points glued together-the rem- 
nant of a degenerate handle (Fig. 2) .  1n ap such surfaces are 
situated on a manifold denoted by Do. We determine the 
codimensions (i.e., dim Mp - dim D, ) of D, and Do in a,. 

FIG. 2. 

For this we make use of the fact that the complex dimension 
of the moduli space of a surface of genusp> 1 with n distin- 
guished points equals 3p - 3 + n [the n coordinates of 
points of a polygon in the Lobachevsky plane + (6p - 6) 
parameters of the polygon], therefore the dimensions of D, 
and Do are 

dim D,=3q-3+1+3 (p-q)  -3+1=3p-4, 

dim D,=3(p-1) -3+2=3p-4. (4.5) 

Thus, all the D, have complex codimension 1 in aP 
and do indeed complete the moduli space of nonsingular sur- 
faces Mp making is a compact space a,. For the analysis of 
the behavior of the measure in Zp in a neighborhood of 
D = DoUD, U ... U D L  we choose in this neighborhood 
the coordinate y, transverse to D and the coordinates y,, ..., 
y,,, along D, so that locally D is given by the equation 

We study the measure as a function ofy, for fixed y,, ..., y,, 
, . One can show that in a neighborhood of y, = 0 by means 
of a conformal transformation of the metric one can trans- 
form a degenerating strangulation into a very long cylinder7' 
(Fig. 3). This representation is convenient for the investiga- 
tion of asymptotic behavior. Recall that the measure in Zp is 
independent of the choice of conformal metric. 

In both cases we shall consider the surface S, as glued 
together from a cylinder and one (case I )  or two (case 11) 
"lids" (Fig. 4). We choose the coordinates on the cylinder as 
indicated in Fig. 5. To the surfaces in D corresponds the limit 
T-+ cc in which we are interested. It will be seen in what 
follows that the "natural" coordinate y, is 

where 6 is the rotation angle of the right-hand edge of the 
cylinder K relative to the left edge, when glued to the lid. 

We first estimate the functional integrals. For this we 
must fix the boundary conditions on the loops T,, T, and I?,, 
I?,, calculate the integrals with prescribed boundary condi- 
tions, after that multiply them and integrate over all bound- 
ary conditions. In the case I )  we obtain for the scalars 

I .  = exp ( - ag 3, d2g)  
S~ 

= 5 a q  (0, 0 1 9 9  (T, o) exp {-vi [q  ( 0 , ~ )  I J 

FIG. 1. 
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FIG. 4. 

xG[cp(O,o),cp(T,o) ]exp{-v~[cp(T,o) I ) ,  (4 .8)  Thus, in the case I we must find the asymptotic behavior 

where 

Similarly one determines exp{ - v2 [ p  ( T,u) 1) and 
exp{ - v, [ p  (O,o), g, (T ,u)  1) for the case 11. The same holds 
for the ghosts, however the action is not J aGapd 2g, but 
J p ~ & d  '6. 

Since on the cylinder K we have p = 1, the expression 
for G is the same for the scalars and for the ghosts: 

where S,, is the classical action evaluated for the solution of 
the Laplace equation dzp  = 0 with the boundary conditions 

r (0, o) = 9. (0)  ein: cp (T, o) = z rp. (T )  eina, 

and det,, A, is the determinant of the Laplace operator with 
Dirichlet boundary conditions on the cylinder K. After un- 
complicated calculations we find 

for T -  co of the following expression: - + ~rn 

For T -  co one can neglect in S,, the vanishing terms, if only 
this does not lead to additional degeneracies in the quadratic 
form v ,  + ScI + v,, i.e., to independence of the expression on 
pn ( 0 )  orp ,  (TI .  

From Eq. (4.12) for G it can be seen that 

Where ... denotes exponentially small terms. We have re- 
tained Ip,(O) - p,( T )  I2/T since there are scalar zero 
modes on V ,  and V2 and v ,  and v2 do not depend on p,(O) 
and po( TI. One may neglect the exponentially small terms if 
v ,  does not degenerate on any vector of the form 

and v2 does not degenerate on vectors of the form 

We prove that this is indeed so. Let us assume the contrary. 
In this case there is a solution g, * of the equation zg, = 0 on 
V ,  which on r , becomes equal to 

Let us now imagine that the cylinder K extends to the right 
to infinity ( T > O )  and the metricp on it differs from one and 
equals e - *' = p*. In the coordinates 

U=e-(r+'a)=e-. 

the cylinder O < u < 2 ~ ,  O<T becomes the disk lu I < 1 with con- 

K r r  stant unit metric 

FIG. 5. 
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With this disk the surface V ,  is glued into a compact surface However, E now is not a scalar, but a vector. In the coordi- 
V :  of genus q )  1. nates u 

The solution q, * can be extended to the cylinder main- du 
taining its holomorphy: c"(u) = ..(z) - =Le.(z) u = -z 

dz 
" G O  

vanishes for u = 0. Consequently for the glued surface V f  
there exists a holomorphic nonconstant vector field E* (z) . 

Consequently on the surface V r  there exists a holomorphic But we know that suchfields do not exist if the genus of the 

function q, * which is dzfferent from a constant. It is known, surface is equal to or larger than one. Moreover, for q > 1 
there are no holomorphic vector fields at all, and for q = 1 however, that such functions do not exist. This contradic- 

tion proves our assertion. there exists one holomorphic nowhere vanishing vector 

Summarizing, the form v ,  has no zero vectors of the field. From this we conclude that v ,  does not admit null 

type 
vectors of the type 

Similarly v2 has no zero vectors of the type 

and it is indeed legitimate to neglect in S,, the exponentially 
small terms. Therefore 

As should have been expected, there remains an integral 
over the zero mode-the volume of the "Universe." In the 
sequel we shall set it equal to one. There remains 

Io(T) ( - eTI6 (on D,, @(I). (4.16) 
T-. 00 

We now deal with the integral over the ghosts 

The only difference compared to the scalars consists in the 
fact that in S,, in Eq. (4.10) one need not regain 
JE"(O) - E" ( T) 1 '/T, since now v ,  has no zero vectors of the 

Since in this case one need not retain in S,, the term 
I E ~ ( O )  - E ~ ( T )  12/T, the whole leading part of the T-depen- 
dence is determined by det,,, A,( T) in G: 

I-,  ( T )  I - T-'eT/' (on D,, P O ) .  (4.18) 
T+oo 

The ratio of functional integrals appearing in the measure 
Zp behaves as8' 

I = 1 - TeZT (on Dq, q#O). (4.19) 
1-1 T - r m  

The case I1 is treated in exactly the same manner, only 
V,  is glued up with two disks--one on the right and one on 
the left. The only difference is the fact that now one may 
neglect the term Iq,,(O) - q,,( T) 12/TinSc, in the case ofthe 
scalar field. This is related to the fact' that for v, the zero 
mode is the sum q,,(O) + q,,(T) and not the terms q,,,(O) 
and q,,(T) separately, as was the case with v ,  + v2 in case I .  

Thus I , - I ,  in case I1 and the ratio of the functional 
integrals is 

(on D o ) .  (4.20) 

We still need to estimate the volume form 

form 
For this we use the fact that with the variation of T there is 

anexnu associated a Beltrami differential which is constant on K. 
,LGO Indeed, the variation of the complex structure generated by 

(n<O, and not < 0, as was the case for scalars!), and v2 has such a differential: dz-dz + a&, may be considered as a 

none of the form transformation z-2 = z + a2, which maps the rectangle 
O<u<2.rr, O<r<T (z = r + iu) into a parallelogram. The 

bneIn0. 
new value of the coordinate ( T + i6)/277i in the space Mp is 

n>O 
the complex ratio of the periods of this parallelogram 

To prove this we again assume that the opposite is true, Z(T) T Ta 
like in the scalar case. Then on the surface V ,  there exists a 
solution E* of the equation & which is continued to the cyl- 
inder K by the holomorphic function whencea = d ( T  + i6)/2T. Consequently, to the coordinate 

j ,  = T + i6 in the moduli space Gp corresponds the Bel- 
E' (r+is) = zane71(T+1a1.  

n 4 0  
trami differential 77' = 1/2T, since to a shift by d j ,  in GP 
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corresponds, as we just showed, a variation of the complex 
structure 

From Eq. (4.3) we find that the quadratic differential9' f, on 
K is equal to one. The coordinate j ,  has a direction trans- 
verse to D. The other quadratic differentials can be chosen so 
that ( f,, f, ) - 1 and the corresponding coordinates are 
along D. In this case 

where 

The surface D is given by the equation y,  (D) = 0. This coor- 
dinate is good in the sense that, as can be seen from (4.12), 
the ratio of determinants can be expanded in a series in y,  
andJ, and the divergences which seem to be exponential will 
be powers in the coordinates y ,  ... . 

Collecting Eqs. (4.19)-(4.22) we find the asymptotic 
behavior of the measure in the neighborhood of D, , q#O: 

and in the neighborhood of Do: 

In order to determine the order of the pole of the form 
F(y)dv from Eqs. (1.3) and (3.4) one still has to estimate 
the period matrix ( 3.25 ) in the neighborhood of the surface 
D. In the case I of the decomposition into two surfaces S, 
and Sp-, of genera q and p-q, thep holomorphic 1 -differen- 
tials mi, Eq. (3.24) go over into the holomorphic l-differen- 
tialso;,a = 1 ,..., qonS, andw;,p= 1 ,..., p-qonS,,. 
The period matrix ? then takes on a block form and 
det Im P(y) has a finite limit for y ,  -0. Thus, in a neighbor- 
hood of D, , q # 0, 

det I & ( ~ )  I -+ drt  1nl;l.tlct Im 2, 
! / 1 4  

(4.25) 

where ?' (respectively ?" ) is the period matrix ofS, (respec- 
tively S, ). In order to estimate the period matrix in the 
case 11-degeneracy of the handle-we choose the basis of 
cycles (3.23 ) in such a manner that the cycle a, should pass 
transversely to the cylinder K in Fig. 4,1I, and the cycle 6, 
should be along the cylinder. We select on K the coordinate 
z = r + i a  (Fig. 5). Then from the relation 

$ .,=a,, 
1 

and the holomorphy condition gw, = 0, it follows that for 
T% 1 all differentials except w, decay exponentially on the 
cylinder: 

and w, = 1 / 2 ~ i  for 7% 1, T - r % 1. Hence the only matrix 
element which diverges for T- cc is 

b p  

and in a neighborhood of Do we have''' 

det1rn;l - T - l o g ( f / l y , ( ) .  (4.26) 
vt-0 

Substituting (4.25), (4.26) into Eq. (1.3) and compar- 
ing, respectively, with Eqs. (4.23), (4.24), we find that the 
form F(y)dv has a pole of second order on D: 

Thus, we have proved for the measure the property B formu- 
lated in the Introduction. 

We now show that the condition that there be no zeros 
in M, and Eq. (4.27) determines the form F(y)du uniquely, 
up to a constant factor. Indeed, the ratio of two forms F' and 
F " satisfying these conditions is a meromorphic function on 
mp and does not vanish or become infinite except possibly at 
the intersections of the components Di of the surface D (i.e., 
at those points where the coefficient ofy, in Eq. (4.27) can 
have singularities). This implies that either F'/FV = const, 
or that the variety of zeros and poles of the function F'/FV 
has complex dimension 2 in Up. It is however known that 
the variety of zeros and poles of a nonconstant meromorphic 
function on a compact algebraic manifold has complex di- 
mension 1. Consequently F '/F " = const. 

The asymptotic behaviors (4.23) and (4.24) have a 
very simple meaning. If one considers string theory as the 
theory of an infinite number of interacting particles, then K 
in Fig. 5 can be interpreted as the propagator in the proper 
time representation (with proper time T) and the integral of 
the measure with respect to dTin the case I1 can be written in 
the form 

divll = j dSpy j d ~  exp[- (p:+m.l) TI V 3  (r ,  p.) , ZP 
0 (4.28) 

where the summation is over all the particles corresponding 
to different excited states of the string ( p, is the momentum 
flowing along the loop). For large Tin the momentum inte- 
gral in (4.28) small pi  are important, and the measure in 
(4.28) has the asymptotic behavior 

from which it follows that the leading contribution to the 
integral (4.28) for large times T comes from tachyons and 
massless states: 
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We now recall that on a closed bosonic string the ground 
state is a tachyonz2 with mi = - 2 (in our normalization), 
and all the excited states have mf 2 0  (the multiplet of mass- 
less excitations contains the graviton g"", the tensorApv and 
the dilaton @), then, taking into account the fact that 
9 = 26, we obtain from Eq. (4.30) the asymptotic behavior 

coinciding with Eq. (4.24). Note that for 9 > 2 the massless 
states do not contribute to the divergences of the integral 
(4.30). 

In the case I the particles propagate between the ver- 
tices Vl and V, (Fig. 4, I )  with zero momentum, and in place 
of Eq. (4.30) we obtain 

and the leading contribution to the divergence in Eq. (4.3 1 ) 
is again related to a tachyon and has the form 

which coincides with Eq. (4.23). It is, however, clear that 
there also exists a divergence related to the massless dilaton 
( f v  and A@" are not created from the vacuum) which pre- 
sumably leads to a renormalization of the Regge slope. 

Summarizing, the order y of the pole of the form F(y)dv 
equals 

The results obtained here allow one to assume that the 
model is renormalizable, and that there are only two renor- 
malizations: that of the slope, and of the tachyon-vacuum 
vertex (the tachyon tadpole). 

5. THE BOSONIC STRING MEASURE AND MUMFORD'S 
THEOREM 

In this section we give a mathematically rigorous refor- 
mulation of the results obtained above and discuss their rela- 
tion to Mumford's theorem.' It follows from Eqs. (2.19) and 
(3.4) that F(y)  is not a function, but a section of a line bun- 
dle (i.e., a vector bundle in which the complex dimension of 
the fiber is one) E over Mp . More precisely, F(y)  is the con- 
tribution to the measure from the left-moving excitations of 
the string: 

F ( y )  =det d-, . (det d;;)-13, (5.1) 

where 3, acts on the space ofj-differentials; det 3 is a section 
of a line bundle2, with the fiber generated by the form*' 

where the @:' form a basis in the space Ker 2, of holomor- 
phic j-differentials, - and @:-I) is a basis in (CoKer 
Jj ) * =; Ker ~3 ,-, . Thus, E is a tensor product of two line bun- 
dles over Mp 

where F is the bundle of (3p-3,O) forms with fiber genera- 
ted by dv = dy, A ... A dy,,-, , andR is the bundle of modular 
forms with fiber generated by wl A ... A wp, where {mi) is a 
basis in the space of holomorphic 1-forms. We have chosen it 
as at the end of Sec. 3. The bundle1 is not trivial, since as one 
goes around a loop y in Mp the basis of cycles may change. 
The section F(y) is well-defined only if the gravitational 
anomalies in Eq. (5.1). This does indeed occur18 
and the condition of cancellation of the gravitational anoma- 
ly is in fact equivalent19 to the condition of cancellation of 
the conformal anomaly in the ratio det A- ,/(det A,). l 3  

A theorem1 " proved by Mumford7 by means of a calcu- 
lation of the Chern class cl (El of the bundle E, asserts that 
this bundle is trivial over Mp (which reflects, in particular, 
the absence of topological obstructions to anomaly cancella- 
tions). Moreover, the calculation of cl (E) implies that E 
admits a holomorphic nonvanishing section F over Mp 
which has a second order pole at infinity (the point D)  . Fur- 
thermore, Wolpert's theorem14 on the independence of the 
components Do, ... ,DL of the infinity D in the homology 
group H ,,, (mp,  Q) of the space E, allows one to conclude 
that any holomorphic nonvanishing section of E over Mp 
differs from F by a constant factor. As was noted by Beilin- 
son and Drinfel'd, the absolute square of the section Fallows 
one to define a measure on Bp : 

def 

where (wi, 61,) = (i/2)Swi A q ,  and det(wi, w,) forms a 

natural hermitian metric on2  and coincides in the basis cho- 
sen at the end of Sec. 3 with det Im F. We have thus proved 
the following. 

Theorem. The integration measure in the theory of 
closed bosonic strings is the absolute square of a global holo- 
morphic section without zeros over Mp of the bundle 
X e R  -I3, divided by the 13th power of the natural metric 
of1. 

Since the holomorphic structure on the moduli space 
arises out of its algebraic structure, any holomorphic object 
on this space, and in particular, the section f which appears 
in string theory, is algebraic (according to the GAGA prin- 
~ i ~ l e ~ ~ ) .  The following conjecture generalizes our results: 

Conjecture. The multiloop amplitudes (not only the 
vacuum amplitudes) of any conformally invariant string 
theory (such as the bosonic string in D = 26 or the SS and 
HS in D = 10) can be expressed in terms of algebraic objects 
(functions or sections of holomorphic bundles) over the 
moduli space of Riemann surfaces. 

Thus, quantum geometry is the complex geometry of 
the space E p .  
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6. MULTILOOP AMPLITUDES AND THETA FUNCTIONS 

In this section we list the explicit formulas for the mea- 
sure in the cases p = 2 and p = 3 obtained in Ref. 10, and 
formulate a conjecture on the form of the measure forp = 4. 
It is possible to write simple formulas for the generap = 2, 3 
because in these cases there exists an explicit parametriza- 
tion of the space Mp by means of the period matrices, para- 
metrization which we describe below. 

On an arbitrary Riemann surface Sp of genusp one can, 
in terms of the symplectic basis of cycles (closed loops) ai, 
b, = 1, ... , p  

introduced at the end of Sec. 3, and the dual basis of holo- 
morphic 1-differentials wi : 

%k = $ U k ,  

bl 

construct the period matrix, which satisfies the Riemann 
relations2' 

These relations are consequences of the formula 

where w and o' are arbitrary holomorphic 1-differentials, 
and of the fact that the squared norm of the nonvanishing 
differential w is positive 

i l l w l l z  = o A B>O. 
S~ 

Torelli's theorem asserts that a complex structure is unique- 
ly determined up to a diffeomorphism by the period matrix. 
Thus, complex structures can be parametrized by means of 
the matrices B. However, infinitely many matrices B may 
correspond to one and the same surface. Indeed, the basis 
{a,  ,b, ) is not uniquely determined by the conditions (6.1 ) . 
We can select a different basis: 

b,'=A,kbkf Btlak, alr=Clkbk+Dtkak, (6.5) 

which will satisfy the conditions (6. I ) ,  if the integer-valued 
matrices A,  B, C, D satisfy the conditions: 

i.e., the matrix 

The group T, is called the Siegel modular group of degreep 
(after C .  L. Siegel). Under the transformations (6.5) the 
basis of differentials (6.2) goes over into 

from where it follows that the period matrix ?' has, in the 
basis ( 6.5 ) the form 

Thus, in order to avoid counting the same surface sever- 
al times, we must restrict our attention to the quotient space 

where Rp denotes the space of all symmetricp ~p matrices 
with positive-definite imaginary part, and is called the Siegel 
upper half-plane. The modular group Tp acts on it by the 
Mijbius transformations (6.8). The manifold Gp has com- 
plex dimension p (p + 1 ) /2, which for p = 1, 2, 3 coincides 
with the dimension of the space Mp. Indeed, in these cases 
Gp and Mp coincide. To summarize: for generap = 1, 2, 3 
the space Mp may be parametrized by means of the period 
matrices ranging over the fundamental domain G, of the 
group rp  in the Siegel upper half-plane ,r(;, . 

It follows from Eqs. ( 1.1) and ( 1.3) that in the cases 
p = 2, 3 the measure must have the form1' 

i 
2, = S n , d r k j  r\ d i k j  1 xI2-,, (f) I-2 (det hi)-Is. (6.9) 

GP kh'sj 

One can prove2"hat the natural modular-invariant 
measure on Gp is 

Furthermore, it follows from Eq. (6.6) that 

det Im ̂ t'= I det (c;+D) 1 -' det Im G. (6.10) 

Therefore, the condition that the measure (6.9) should be a 
measure on Gp, i.e., should be modular-invariant, has the 
form 

x k ( ; ' )  = [det (c;+D) Ikxk (r), k=12-p (6.11) 

[forp = 3 Eq. (6.11 ) requires some explanation, cf. infra]. 

Furthermore, the form n dr,, has in the component Do of 
i Q' 

the point at infinity (Im 7, , + w ) a first-order pble, and in 
the component Dl  (forp = 2,3 there are no further compo- 
nents), where .i takes on a block form, it has a zero of order 
p - 2. Therefore, the property B) in the Introduction and 
Eq. (6.1 1 ) imply that X ,  (?) is a parabolic modular form of 
weight k = 12 - p  on Gp, and on D l  it has a zero of orderp. 
A (Siegel) modular form of weight k on Gp is defined to be a 
function B holomorphic on with the transformation property 
(6.1 1 ) . For odd p, k is necessarily even. A modular form 
which vanishes on Do is called parabolic. If bothp and k are 
odd, the form must be defined by an additional multiplica- 
tion by a character of the group T p ,  since under a simulta- 
neous change of signs of A ,  B, C, and D in Eq. (6.8) ?' re- 
mains unchanged, whereas the right-hand side of Eq. (6.1 1 ) 
changes sign. 

For p = 1, 2, the space Gp of modular forms is thor- 
oughly studied. Thus, forp = 1, all forms are linear combi- 
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nations of forms of weight 4 and 6, and their number is deter- 
mined by the formula. .. 

where d,, ( p )  denotes the number of linearly independent 
modular forms of weight 2k on Gp . Forp = 2 the situation is 
analogous, albeit more ~omplicated.'~ If one restricts one's 
attention to forms of even weight, then there are 4 funda- 
mental forms with weights 4, 6, 10, and 12: 

In Ref. 29 one can find the expressions for the fundamental 
forms in terms of Eisenstein series and the theta-constants. 
In the same paper it is proved that there exists a unique para- 
bolic form of weight 10. This form must, consequently, coin- 
cide with the formx,, from Eq. (6.9) and has on Dl  a sec- 
ond-order zero, which is easily seen with the help of the 
equation29 

where the theta-constants 19, (?) are defined as 

(6.15) 
0, (i) -0, (0 ;  j ,  m- (m', mu), 

and the components of the vectors m', m" of the characteris- 
tic m take on the values 0, 1. The quantity 

e (m) = (m'm") (mod 2) (6.16) 

is called the parity of the characteristic m, and in Eq. (6.14) 
the product is taken only over even characteristics. For ge- 
nus p there exist 2P-' (2P - l )  odd characteristics. If 
e(m) = 1, then y,,, ( 0 ; ~ )  = 0. It follows from Eqs. (6.14) 
and (6.15) that for r , > - O  

as required. It also follows from the results of Ref. 21 that 
xlo(?) does not have zeros in the interior of G,. The trans- 
formation properties of the theta functions (6.15) with re- 
spect to the group r, are described in detail in Ref. 30. 

The formulas (6.9), (6.14) solve the problem of deter- 
mining the measure forp = 2." Forp = 3 the space of mo- 
dular forms has a more complicated structure. However, it is 
known that up to weight 10 it is generated by forms of the 
weights 4,6, and 10, just like forp = 2, i.e., there exist only 5 
linearly independent forms: 

The expressions of the forms $, of weight k in terms of the 
6,  (?) are listed in Ref. 3 1, where one can also find the asser- 
tion that there are no parabolic forms of weight < 12. What 

is specific about the casep = 3 is the fact that we need a form 
of odd weight 9, i.e., with values in a character of the group 
Tp . Its squarex; = x,, is an ordinary complex-valued form 
of weight 18. The formx,, must be parabolic and must have 
in Do a second-order zero, and in Dl  a sixth-order zero. In 
addition, one can show that the measure dp, in Eq. (6. lo),  
for a correct definition of the integration domain, has a zero 
on the manifold of hyperelliptic surfaces D., and therefore 
xis must also vanish on D. and can have no other zeros. 
Such a form exists and has the form3' 

where the product runs over all 36 even characteristics. 
Since the modular form is determined uniquely by the posi- 
tion and order of its zeros, up to a constant factor, we con- 
clude that Eq. (6.19) is the form which is the square of the 
formx, in the measure (6.9). As a result of this we have'' 

In our opinion it makes sense to complement the equa- 
tions (6.9), (6.14) and (6.19), (6.20) with formulasfor the 
scattering amplitudes of tachyons. For this we need, follow- 
ing Ref. 5, to calculate the Gaussian integral: 

1 J oxbc exp [ - ~ X ~ I I X ,  d 2 ~ ]  

det N I 
= (-4) " [ - , j ax.,. TX*,,, d 2 5 ]  

dct A,  

detNo l 3  ( -  x(p1. . . . ? p N ; i ) ?  
det' A,  

wherex;, (6) is the solution of the equation 

On account of the momentum conservation law 

the solution of (6.22) is easily expressed in terms of the theta 
functions (6.15): 
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where m is any odd characteristic. The argument of z(g)  in 
Eq. (6.24) is the integral of the vector o = ( a , ,  ... ,ap  ) 
formed of holomorphic Abelian differentials along a vector 
path joining the point 6 to a fixed l,,: 

.cu= I.. 
Eo 

Regulating the function (6.24) at 6 = 6, as in Ref. 5, we find 
that on the mass shell p" 2 the dependence on p in Eq. 
(6.21 ) cancels, and after simple calculations the factor 
K (  p, ,?) reduces to the form 

,. 
x1j-0m (zij;  T) exp ( - n  Im zijT) ( I m  ~j ( I m  z i j ) ,  

where zij =z(Ci ) - z(C, ) and the 1-differential x, (6)  has 
the form 

The expression (6.26) does not depend on the choice of the 
odd characteristic m and it can be substituted into the mea- 
sure for the determination of the amplitudes: 

For the case p = 1 one can reproduce by means of Eqs. 
(6.26) and ( 1.2) the known result of Ref. 8. 

We now consider the case p = 4. The complex dimen- 
sion of G, is by one larger than the dimension of a 4 ,  there- 
fore the matrix ? is subject to only one relation. It is called 
the Schottky relation32 and consist in the condition that 
some parabolic form J ,  of weight 8 should vanish: 

Strictly speaking, Schottky has proved that any matrix T ofa 
Riemann surface of genus 4 satisfies (6.29), whereas the 
converse was proved only re~en t ly~~-a  paper to which we 
refer the reader for a formula expression J ,  in terms of 
8, (?). The results of Ref. 33 allow one to formulate the 
following conjecture. 

Conjecture 1. The measure forp = 4 has the form 

2 4  = 1 dp4 1 6 (J.)  1. (det Iln i)-' - - def 
B. 

x 1 res dvJ.-l (?)*A res du J ~ ' ( T )  (det Irn ?)-I3 

A[. 
(6.30) 

7. DISCUSSION: STRUCTURE OF THE MEASURE FOR A 
SUPERSTRING 

In this section we discuss the structure of the measure 
for the theory of closed orientable superstrings (SS) ' and for 
the heterotic string (HS) model.' The results of the preced- 
ing sections and of the one-loop calculations of Refs. 1, 2, 
allow us to assume that in the casep > 1 the measure has the 
following form: 

2,'" dQ IF ( y )  I Z  / x sSS(y )  I ' ( d e t  ~ r n ? ) - ' ,  (7.1) 
M P - 

ZJHS = j  d Q ( F ( y )  I ' ~ P ' ( y ) f . ~ ( y )  ( d e t 1 m ~ ) - ' ,  (7.2) 
YP 

where F(y)x?(y) is the contribution to the measure of the 
Green-Schwarz left-movers, and F(y)  f 7S(y) is the contri- 
bution of the right-moving excitations of the heterotic string 
obtained by compactification of a bosonic string into an ap- 
propriate torus.2 In effect Eq. (7.2) is the most general form 
of the measure for a ten-dimensional string theory with non- 
interacting left-movers and right-movers. We shall explain 
below that, apparently, there are only three such theories: 
the SS, the HS, and the theory with the measure (7.2), where 
X? is replaced by f y, with Xy and f r fixed uniquely by 
some natural conditions. 

An important role in the derivation of Eqs. (7.1 ) and 
(7.2) is played by the circumstance that, in order to single 
out the supersymmetric sector in the Neveu-Schwarz string, 
we were forced to sum over the boundary conditions im- 
posed independently on the right-handed and left-handed 
fermions (while taking only those conditions for which there 
are no fermion zero modes). This is why the absolute square 
appears in Eq. (7.1 ), rather than the sum of the squares, and 
the right-moving and left-moving sectors decouple com- 
pletely, allowing the HS construction. 

Since the ground state of the SS is massless1 and the 
right-mover sector ofthe HS contains a tachyon, the analysis 
at the end of Sec. 3 and the condition of modular invariance 
of (7.1) and (7.2) imply that: 

a )  Xy and f are modular forms of weight 8 on np ; 
b) XT is a parabolic form vanishing on D. 
As a consequence of b )  the tachyon does not contribute 

to the divergences in the right-hand side of the measure, 
since J d 2yy-' ( J )  -' = 0. 

The fact that the conditions a )  and b)  determine the 
forms X? and f rS uniquely can be seen''' already on the 
examples o fp  = 1, 2, 3. In these cases Mp = Gp, and it fol- 
lows from Eqs. (6.12), (6.13), and (6.18) that there exists a 
unique form of weight 8. I t  is not parabolic and must coin- 
cide with f fs. It then follows from b)  that 

There exist two representations for the form f r: 

where N is some normalizing factor and the summation is 
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only over even characteristics. The representations (7.4) 
correspond to the groups E8 XE, and S0(32), respectively. 
This can be shown in the following manner. After fermioni- 
z a t i o n ' ~ ~ ~  the contribution of the right-movers to the HS 
measure differs from their contribution to the measure of the 
bosonic string by the factor 

for the group S0(32) ,  and 

f?""" = {kz [det. !?I,, (det a,) ' t z ] 8 )  ' (7.6) 
m 

for the group Ex xE,. The characteristic m = (mi, m") of 
the determinant det, a, ,, parametrizes the fermion bound- 
ary conditions: after surrounding a cycle ai the fermion field 
acquires a factor ( - 1 )"' + I, and after surrounding bi it 
acquires the factor ( - 1 )"I+ '. In both cases one needs to 
sum only over even characteristics (as in the case of the left- 
movers). The product of the determinants in the square 
brackets in Eqs. (7.5) and (7.6) is anomaly-free and the 
following formula holds for itI3' 

det, & (det zo) '"=em (;) , (7.7) 

is valid for arbitrary genusp. In the case of odd characteristic 
g,,, acquires a zero mode XZ, where x, is defined in Eq. 
(6.27) (one can prove that the square root can be extracted) 
and (7.7) vanishes. Substituting (7.7) into (7.5) and (7.6) 
we obtain Eq. (7.4), with the equality 

valid forp = 1,2, 3 is a nontrivial identity and follows from 
the fact that for these values ofp there is only one form of 
weight 8 on ap. 

The relation of Eq. (7.4) to the groups E, @Ex and 
SO(32) appears in the following manner. We consider a lat- 
tice A in R" and relate it to the following theta-series: 

where each of the vectors r,, a = 1, ... , p runs over the 
lattice A, and 

The series (7.9) converges and determines a modular form 
of weight n/2 on Gp if and only if the lattice A is even and 
self-dual, i.e., the matrixg;, = ei ej of scalar products of the 
generating vectors e;, i = 1, ..., n is a positive-definite in- 
teger-valued matrix with even principal diagonal and 
det g, = 1. Such lattices exist only for n = 8k, k E Z, and for 
the weight n/2 = 8 there are exactly two such lattices: 
r, 8 r, and r,, (Ref. 35); r, is the weight lattice of the 
group Ex and TI, is obtained by taking the union of the 
weight lattice of the group SO(32) with the same lattice 
shifted by some spinor weight. It is easy to show that for 
arbitraryp the following identities hold 

expressing the equivalence of the fermion and boson repre- 
sentations of the right-moving excitation sector of the HS. 

We now consider the casep > 3. For this case the space 
of modular forms has not been sufficiently studied. More- 
over, there is the additional complication related to the fact 
that forp > 3 Gp no longer coincides witha,, and the spaces 
of modular forms on Gp and aP will, in general, be different. 
Nevertheless, the following conjectures seem to us to be cor- 
rect. 

Conjecture 2. For p>4 there are exactly two forms of 
weight 8 on Gp : Brwer8 and 

Conjecture 3. For arbitrary p the forms 6," ,-" 
coincide on and there are no other modular forms Mp . 

Since neither Br8 r, nor are parabolic forms, (7.3) 
follows from conjecture 3 for arbitrary p, i.e., the vacuum 
diagrams on the theory of closed orientable superstrings and 
heterotic strings vanish to any order. 

Another consequence of the conjectures 3 and 2 is the 
proportionality condition: 

forp = 4. Here J, is the Schottky parabolic form mentioned 
in Section 6. The left-hand side of (71.2) does not identically 
vanish on G4 (Ref. 3 1 ), as was the case for p(3, but is a 
parabolic form. We also note that the validity of conjecture 2 
forp> 17 follows from Theorem 1.3 of Freitag's paper (Ref. 
36) ,  which asserts that each modular form of weight k on Gp 
forp > 2k is a linear combination of theta series (7.9) with 
even, self-dualI4' lattices A. We hope that the conjectures 1- 
3 will be proved soon. 

In conclusion of this section we would like to make the 
following remark in relation to the one-loop calculations in 
SS and HS theories. In the covariant approach5 to the model 
of the fermion string two of the ten fermions +" : $' and $9 
cancel against the fermionic ghosts. One can show that sum- 
mation over nonperiodic boundary conditions (imposed 
separately on the right-handed and left-handed +" ) of the 
contributions from the eight remaining fermions $' , i = 1, ... 
, 8, is equivalent to going over to the fermions SA in the 
spinor representation of S0 (8 ) ,  but withperiodic boundary 
conditions. The operators $'= qi (@; ) in the vertex opera- 
tors are replaced by S f  S f a  YB (L-R ), where L, R denote 
the two-dimensional chirality. For a fermion S f (S $ ) on a 
torus with periodic boundary conditions there are 8 zero 
modes and the functional integral with respect to S: vanish- 
es if the total number of operators S f  at the vertices is 
smaller than 8 (i.e., if the number of gravitons N < 4). This is 
exactly the circumstance expressed by the trace identities of 
Ref. 1. For N = 4 the one-loop correction is finite.' 

This, together with the preceding arguments about the 
vanishing of all vacuum loops forces one to believe in the 
hypothesis1 that superstring theory is finite. 
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We would like to express our profound indebtedness to 
A. BeYlinson and V. Drinfel'd for multiple discussions of 
various mathematical questions related to this work and to 
making more precise our working hypothesis on the holo- 
morphy of the measure, which has stimulated a study of its 
singularities. The rigorous mathematical formulation (Sec. 
5 )  of the assertion proved in this paper also belongs to them. 

We are also grateful to A. Zamolodchikov, 0 .  Ogie- 
vetskii, A. Polyakov, B. Feigin, and V. Shekhtman for stimu- 
lating discussions. 

"When the point Qis added to Mp the latter becomes a compact mani- 
fold, denoted by M (see Ref. 9) .  

"See also the pioneering papers Ref. 17. 
"In the case of generalp>2 considered here the operator - p-'dpa has 

no zero modes, and therefore the usual "prime" may be omitted from 
the determinant. 

"A Beltrami differential is a quantity ~ ( z , ? )  whose relation to the com- 
plex structure J i s  defined by following expression of the metric compa- 
tible with J: g =p(dz  + ~d;il! 

''In_ Eq. (3.17) we have not written the divergent terms of the type 
77M log M'. One can get rid of them by making use of several regulat- 
ing masses. This does not affect the magnitude of the M-independent 
terms. 

"In principle, Eq. (3.2) does not exclude the possibility that F(y)  in Eq. 
(3.4) should acquire a nonzero phase when one goes arocnd any closed 
path y in Mp , and thus that it is a function defined not on Mbut on some 
covering of this space. However, if F(y)du is a meromorphic form 
(which will be proved by proving assertion B ) ,  then the path y must be 
noncontractible. But is is known (Refs. 7, 21) that such paths do not 
exist: H I  (M,Z) = 0, and therefore this possibility is excluded. The auth- 
ors are indebted to A. Yu. Morozov who has brought this circumstance 
to their attention. 

7'We choose along the cylinder of length T the coordinate r, O<r<T. 
Then for T> 1 the multiplication of the flat metric of the cylinder by the 
conformal multiplier A = exp( - 27) + exp(2r - 2T) converts it into 
two disks of unit radius connected at the centers by a "strangulated 
tube" of radius e " r ly, 19 1. More rigorously, the complex structure 
of the degenerate surface at the strangulation point is constructed in the 
same manner as the "strangulation" of the hyperbola uu = y,  in C', 
which for y ,  -0 degenerates into two planes u = 0 and u = 0 which 
intersect transversally at the point u = u = 0. The metric = Idu/u12 
transforms the "strangulation" of the hyperbola into a cylinder of 
length T-log( l/ly, 1 ). In effect, u = 0, and u = 0 have the meaning of 
the equations of those surfaces into which the initial surface decom- 
poses. 

"The case when the genus of V :  is zero (compactification by a lid) was 
discussed by A. Polyakov, to whom we are indebted for explanations. In 
this case I,,, does not depend on T. 

"We recall that Eqs. (4.2) and (4.3) are thedefinitions of the directions 
7' of the corresponding coordinates 6y, in M, in the basisf; . 

""In this case the degenerate surface can be imagined as a surface of genus 
p - 1 with two removed points R and Q. The cycle a, surrounds one of 
them and the cycle b, surrounds the other one. The differential w, is a 
normalized Abelian differential of the third kind with poles at R and Q. 
For a detailed discussion, see the paper by Alessandrini.I7 

' "The puzzling coincidence of the number 13 in Mumford's theorem with 
the number 26/2 in string theory was pointed out by Yu. I. Manin.'s We 
are grateful to him for calling to our attention the work of Ref. 7. 

"'Forp = 1 the form F(y)du is a form of weight 14, which is compensated 
by the extra power of (Im r) - ' in Eq. ( 1.2). which appears on account 
of the integration over the zero mode of the ghost field E,, = const in Eq. 
(4.1). The weights of X:S and f Fs remain 8, as before. 

'"The proof together with formulas for the correlation functions of the 
fermions will be published. 

I4'The authors are grateful to A. N. Andrianov, for communicating this 
theorem to them. 

*'Translator's note: In the original the authors call this expression a vec- 
tor. This is true to the extent that the fiber is a one-dimensional vector 
space; however, it was felt that the term "form" is more appropriate for 
this object. 
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