

Общероссийский математический портал

А. А. Белавин, В. Г. Дринфельд, О решениях классического уравнения Янга—Бакстера для простых алгебр Ли, Φ ункц. анализ и его прил., 1982, том 16, выпуск 3, 1–29

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 77.236.39.2

1 февраля 2020 г., 22:12:31

Функциональный анализ и его приложения, 1982, т. 16, вып. 3, 1—29.

УДК 517.43+519.46

О РЕШЕНИЯХ КЛАССИЧЕСКОГО УРАВНЕНИЯ ЯНГА— БАКСТЕРА ДЛЯ ПРОСТЫХ АЛГЕБР ЛИ

А. А. Белавин, В. Г. Дринфельд

§ 1. Введение

1.1. Классическим уравнением Янга — Бакстера называется функциональное уравнение

$$[X^{12} (u_1, u_2), X^{13} (u_1, u_3)] + [X^{12} (u_1, u_2), X^{23} (u_2, u_3)] + + [X^{13} (u_1, u_3), X^{23} (u_2, u_3)] = 0$$
 (1.1)

относительно функции X (u_1 , u_2), принимающей значения в $\mathfrak{g} \otimes \mathfrak{g}$, где \mathfrak{g} — алгебра Ли. Поясним смысл обозначений типа X^{13} (u_1 , u_3). Зафиксируем ассоциативную алгебру A с единицей, содержащую \mathfrak{g} . X^{13} (u_1 , u_3) — это, по определению, образ X (u_1 , u_3) при линейном отображении \mathfrak{q}_{13} : $\mathfrak{g} \times \mathfrak{g} \to A \otimes A \otimes A$, заданном формулой \mathfrak{q}_{13} ($a \otimes b$) = $a \otimes 1 \otimes b$. Аналогичный смысл имеют обозначения X^{12} (u_1 , u_2) и X^{23} (u_2 , u_3) (отметим липь, что \mathfrak{q}_{12} ($a \otimes b$) $\stackrel{\text{def}}{=} a \otimes b \otimes 1$, \mathfrak{q}_{23} ($a \otimes b$) $\stackrel{\text{def}}{=} 1 \otimes a \otimes b$). Легко видеть, что каждое из трех слагаемых левой части (1.1) принадлежит $\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$ и не зависит от выбора A. Уравнение (1.1) играет важную роль в теории классических и квантовых интегрируемых систем (см. [1], [5]).

Заметим, что если X (u_1 , u_2) — решение уравнения (1.1), а φ (u) — функция со значениями в Aut \mathfrak{g} , то \widetilde{X} (u_1 , u_2) $\stackrel{\text{def}}{=}$ (φ (u_1) \otimes φ (u_2)) X (u_1 , u_2) тоже является решением (1.1). Решения X и \widetilde{X} мы будем называть эквивалентными. Прежде, чем формулировать еще один способ размножения решений уравнения (1.1), введем следующее

О пределение. Функция $X(u_1,u_2)$ называется инвариантной относительно $g \in A$ и \mathfrak{g} , если $(g \otimes g) \ X(u_1,u_2) = X(u_1,u_2)$. Множество всех таких g называется группой инвариантности функции $X(u_1,u_2)$. Функция $X(u_1,u_2)$ называется инвариантной относительно $h \in \mathfrak{g}$, если $[h \otimes 1 + 1 \otimes h, \ X(u_1,u_2)] = 0$ (т. е. если она инвариантна относительно $e^{t \cdot adh}$ при любом t).

Второй способ размножения решений уравнения (1.1) заключается в следующем: если $X(u_1,u_2)$ — решение уравнения (1.1), инвариантное относительно подалгебры $\mathfrak{h} \subset \mathfrak{g}$, а тензор $\mathfrak{h} \otimes \mathfrak{h}$ удовлетворяет уравнениям

$$[r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0,$$
 (1.2)

$$r^{21} = -r^{12}, (1.3)$$

то функция $X(u_1, u_2) \stackrel{\text{def}}{=} X(u_1, u_2) + r$ тоже является решением (1.1). В этом легко убедиться прямым вычислением. Заметим, что если алгебра \mathfrak{h} абелева, то уравнение (1.2) выполняется автоматически.

Часто на решения уравнения (1.1) налагают следующие дополнительные условия:

а) так называемое условие унитарности $X^{12}\left(u_{1},\,u_{2}
ight)=-X^{21}\left(u_{2},\,u_{1}
ight),$

б) требование, чтобы функция $X(u_1, u_2)$ зависела только от $u_1 - u_2$ (в этом случае мы будем, допуская некоторую вольность, писать $X(u_1 - u_2)$ вместо $X(u_1, u_2)$).

Ясно, что свойство а) сохраняется при обоих рассмотренных выше способах размножения решений, а свойство б) сохраняется при втором способе, но не всегда при первом. Если $X(u_1-u_2)$ — решение уравнения (1.1), то, вообще говоря, неясно, существует ли непостоянная функция $\varphi(u)$ со значениями в Aut \mathfrak{g} такая, что функция $X(u_1,u_2)\stackrel{\mathrm{def}}{=} (\varphi(u_1)\otimes \varphi(u_2))$ $X(u_1-u_2)$ зависит только от u_1-u_2 . Если, однако, группа инвариантности G решения $X(u_1-u_2)$ недискретна, то можно положить $\varphi(u)=e^{uP}$, где P — любой элемент алгебры Ли группы G. Например, если решение $X(u_1-u_2)$ инвариантно относительно $h \in \mathfrak{g}$, то можно положить $\varphi(u)=e^{u\cdot adh}$.

Отметим, что для функций $X(u_1, u_2)$, зависящих только от $u_1 - u_2$, уравнение (1.1) записывается в виде

$$[X^{12}(u), X^{13}(u+v)] + [X^{12}(u), X^{23}(v)] + [X^{13}(u+v), X^{23}(v)] = 0, (1.4)$$

а условие унитарности — в виде $X^{12}(u) = -X^{21}(-u)$.

1.2. В настоящей работе уравнение (1.4) исследуется в предположении, что \mathfrak{g} — конечномерная простая алгебра Ли над С. Кроме того, мы будем искать решения X(u) в классе мероморфных функций, заданных в некотором круге $U \subset \mathbb{C}$ с центром в нуле и удовлетворяющих одному из следующих трех условий, эквивалентность которых будет доказана в § 2:

А) определитель матрицы, образованной координатами тензора

X(u), не равен нулю тождественно;

 $\ddot{\mathbf{B}}$) функция \ddot{X} (u) имеет хотя бы один полюс, и не существует подал-

гебры Ли $\mathfrak{g}'\subset\mathfrak{g}$ такой, что $X(u)\subset\mathfrak{g}'\otimes\mathfrak{g}'$ при любом u;

В) функция X (u) имеет при u=0 полюс первого порядка с вычетом вида $c\sum_{\mu}I_{\mu}\otimes I_{\mu}$, где $c\in \mathbb{C}$, $\{I_{\mu}\}$ — ортонормированный базис в \mathfrak{g} относительно формы Киллинга.

Такие решения уравнения (1.4) будем называть невырожденными.

Наш первый основной результат заключается в следующем.

Теорема 1.1. Любое невырожденное решение X (и) уравнения (1.4) удовлетворяет также условию унитарности и мероморфно продолжается на всю комплексную плоскость. Все полюса X (и) простые. Они образуют дискретную подгруппу $\Gamma \subset \mathbb{C}$. Существует гомоморфизм A: $\Gamma \to \mathrm{Aut}$ \mathfrak{g} такой, что для любых $w \in \mathbb{C}$, $\gamma \in \Gamma$ X ($u + \gamma$) = $(A \ (\gamma) \otimes \mathbb{C})$ X (u) = $(1 \otimes A \ (\gamma)^{-1})$ X (u). Если Γ имеет ранг 2, то ограничение A на некоторую подгруппу конечного индекса $\Gamma' \subset \Gamma$ тривиально, так что X (u) — эллиптическая функция. Если Γ имеет ранг 1, то X (u) эквивалентно решению X (u) вида f (e^{ku}), где f — рациональная функция. Если $\Gamma = 0$, то X (u) эквивалентно рациональному решению.

Эта теорема доказывается в § 4 с помощью полученного в § 3 аналога классической теоремы Вейерштрасса о функциях, обладающих алгебраической теоремой сложения. В § 5 доказывается, что невырожденные решения уравнения (1.4) в эллиптических функциях существуют только при $\mathfrak{g}=sl(n)$ и что все они исчерпываются решениями, найденными в [1]. В § 6 мы находим все невырожденные решения уравнения (1.4) вида $X(u)=f(e^{ku})$, где f — рациональная функция (такие решения мы называем тригонометрическими). Оказывается, что с точностью до описанных в пункте 1.1 способов размножения решений и таких тривиальных преобразований, как умножение решения на число и замена u на cu, число невырожденных тригонометрических решений уравнения (1.4) конечно.

Кроме того, мы показываем, что простейшие тригонометрические решения явля отся классическими *r*-матрицами (в смысле [5], с. 141), соответствующими цепочкам Тоды — Богоявленского [40].

К сожалению, нам не удалось получить существенных результатов о рациональных решениях уравнения (1.4). Даже задача нахождения рациональных решений, не имеющих полюса на бесконечности, представляется весьма сложной. Нам удалось найти лишь некоторые способы построения таких решений. Эти способы приведены в § 7.

§ 2. Эквивалентность трех определений невырожденности

2.1. Напомним, что $\mathfrak g$ обозначает конечномерную простую алгебру Ли над $\mathfrak C$. Зафиксируем невырожденную инвариантную билинейную форму на $\mathfrak g$. Выберем в $\mathfrak g$ базис $\{I_{\mu}\}$, ортонормированный относительно этой формы, и положим $t=I_{\mu}\otimes I_{\mu}$ (здесь и в дальнейшем подразумевается суммирование по одинаковым индексам). Легко видеть, что t не зависит от выбора $\{I_{\mu}\}$. Пусть X(u) — мероморфное решение уравнения (1.4), определенное в некотором круге $U \subset \mathfrak C$, содержащем 0.

Предложение 2.1. Допустим, что 1) функция X (и) имеет хотя бы один полюс, 2) не существует подалгебры Ли $\mathfrak{g}' \subset \mathfrak{g}$, отличной от \mathfrak{g} и такой, что X (и) $\subset \mathfrak{g}' \otimes \mathfrak{g}'$ при любом и. Тогда \mathfrak{a}) все полюсы X(и) простые, \mathfrak{g}) функция X (и) имеет полюс при u=0 с вычетом вида \mathfrak{c} t, $\mathfrak{c} \subset \mathfrak{C} \setminus \{0\}$

`Д́ о казательство. Пусть X (u) имеет при $u=\gamma$ полюс порядка k, положим $\tau=\lim_{k\to\gamma}(u-\gamma)^k~X~(u)$. Умножив обе части уравнения (1.4) на $(v-\gamma)^k$ и устремив v к γ , получим

$$[X^{12}(u), \tau^{23}] + [X^{13}(u + \gamma), \tau^{23}] = 0.$$
 (2.1)

Точно так же, устремив в уравнении (1.4) и к у, получим

$$[\tau^{12}, X^{13} (v + \gamma)] + [\tau^{12}, X^{23} (v)] = 0.$$
 (2.2)

Лемма. $[\tau^{12}, \tau^{13}] \neq 0$.

Доказательство. Пусть $V \subset \mathfrak{g}$ — наименьшее векторное пространство такое, что $\tau \in V \otimes \mathfrak{g}$. Положим $\mathfrak{g}' = \{x \in \mathfrak{g} \mid [x,V] \subset V\}$. Ясно, что $\mathfrak{g}' \subset \mathfrak{g}$ — подалгебра Ли. Так как $[X^{13} (u+\gamma), \tau^{23}] \in \mathfrak{g} \otimes V \otimes \mathfrak{g}$, то из (2.1) следует, что $[X^{12}, \tau^{23}] \in \mathfrak{g} \otimes V \otimes \mathfrak{g}$, т. е. $X(u) \in \mathfrak{g} \otimes \mathfrak{g}'$. Точно так же из (2.2) выводится, что $X(v+\gamma) \in \mathfrak{g}' \otimes \mathfrak{g}$ при любом v. Таким образом, $X(u) \in \mathfrak{g}' \otimes \mathfrak{g}'$ при любом u. Следовательно, $\mathfrak{g}' = \mathfrak{g}$, т. е. $[\mathfrak{g}, V] \subset V$. Отсюда и из простоты \mathfrak{g} следует, что $V = \mathfrak{g}$. Поэтому $[\tau^{12}, \tau^{13}] \neq 0$.

Из леммы следует, что функция X (u) имеет при u=0 полюс порядка не меньше, чем k: в противном случае, устремив в равенстве (2.2) v к нулю, имели бы $[\tau^{12}, \tau^{13}] = 0$. Остается доказать, что порядок полюса X (u) при u=0 не превосходит единицы и $\lim uX$ (u) = ct.

Пусть

$$X(u) = \frac{\theta}{u^l} + \frac{A}{u^{l-1}} + \sum_{i=2-l}^{\infty} X_i u^i, \quad \theta \neq 0.$$

Если l > 1, то зафиксировав v и приравняв к нулю коэффициент при u^{1-l} ряда Лорана в точке u = 0 левой части (1.4), получим

$$[A^{12}, X^{13}(v) + X^{23}(v)] + \left[\theta^{12}, \frac{dX^{13}(v)}{dv}\right] = 0.$$

Устремив теперь v к нулю, получим $[\theta^{12}, \theta^{13}] = 0$, что противоречит лемме. Итак, l = 1.

Положив в равенстве (2.1) $\gamma = 0$, $\tau = \theta$, получим

$$[X^{12}(u) + X^{13}(u), \theta^{23}] = 0. (2.3)$$

Точно так же из (2.2) следует, что

$$[\theta^{(2)}, X^{13}(u) + X^{23}(u)] = 0. (2.4)$$

Положим $\mathfrak{g}' = \{x \in \mathfrak{g} \mid [x \otimes 1 + 1 \otimes x, \theta] = 0\}, \ \mathfrak{g}' -$ подалгебра Ли \mathfrak{g} в Равенства (2.3) и (2.4) означают, что $X(u) \in \mathfrak{g}' \otimes \mathfrak{g}'$ при любом u. Поэтому $\mathfrak{g}' = \mathfrak{g}$, т. е. $[x \otimes 1 + 1 \otimes x, \theta] = 0$ при любом $x \in \mathfrak{g}$. Отсюда следует, что θ пропорционально t.

Итак, мы доказали, что из условия Б), сформулированного в пункте 1.2, следует В). Ясно, что из В) следуют А) и Б). Поэтому для доказательства эквивалентности всех трех условий остается доказать, что не существует решения X(u) уравнения (1.4), голоморфного в U, такого, что при некотором u тензор X(u) невырожден. Это будет сделано в оставшейся части параграфа.

2.2. Предложение 2.2. Пусть решение X (и) уравнения (1.4) голоморфно в U и существует $u_0 \subseteq U$ такое, что тензор X (u_0) невырожден. Тогда тензор X (0) тоже невырожден.

Доказательство. Положив в соотношении (1.4) v=0, получим

$$[X^{12}(u), X^{13}(u)] + [X^{12}(u) + X^{13}(u), X^{23}(0)] = 0.$$

Пусть X $(u) = K^{\mu} \otimes I_{\mu}$. Тогда

 $[K^{\mu}(u),\,K^{\nu}(u)]\otimes I_{\mu}\otimes I_{\nu}+K^{\lambda}(u)\otimes [I_{\lambda}\otimes \mathbf{1}+\mathbf{1}\otimes I_{\lambda},X(0)]=0,$ откуда

$$[K^{\mu}(u), K^{\nu}(u)] = C^{\mu\nu}_{\lambda} K^{\lambda}(u), \qquad (2.5)$$

где $C_{\lambda}^{\mu\nu}$ находятся из соотношения $C_{\lambda}^{\mu\nu}I_{\mu}\otimes I_{\nu}=[X\ (0),\ I_{\lambda}\otimes 1\otimes I_{\lambda}].$ По условию, векторы $K^{\mu}\ (u_0)$ образуют базис в \mathfrak{g} . Поэтому для любого $u\in U$ существует ровно один линейный оператор $\phi_u\colon \mathfrak{g}\to \mathfrak{g}$ такой, что $\phi_u\ (K^{\mu}\ (u_0))=K^{\mu}\ (u).$ При этом ϕ_u голоморфно зависит от u. Надо доказать, что $\det \phi_0\neq 0$. Из соотношения (2.5) следует, что ϕ_u — эндоморфизм \mathfrak{g} как алгебры Ли.

 ${\mathbb J}$ е м м а. ${\it Пусть}\ \phi$ — эндоморфизм ${\mathfrak g}$ как алгебры ${\it Лu}$. ${\it Torda}\ \det\ \phi$ \equiv

 $\in \{0, 1, -1\}.$

Доказательство. Допустим, что $\phi \neq 0$. Из простоты \mathfrak{g} следует, что тогда ϕ — автоморфизм и, следовательно, сохраняет форму Киллинга. Поэтому $\det \phi = \pm 1$.

Так как $\varphi_u = 1$ и φ_u голоморфно зависит от u, то из леммы следует

что $\det \varphi_u = 1$ при любом u. В частности, $\det \varphi_0 = 1$.

Ясно, что если X(u) — решение (1.4), голоморфное при u=0, то тензор $r \stackrel{\text{def}}{=} X(0)$ удовлетворяет соотношению (1.2).

 Π редложение 2.3. Пусть $r \in \mathfrak{g} \otimes \mathfrak{g}$ — невырожденное реше-

ние уравнения (1.2). Тогда г удовлетворяет также (1.3).

Доказательство. Пусть $r=K^{\mu}\otimes I_{\mu}=I_{\mu}\otimes L^{\mu}$. Невырожденность r означает, что $\{K^{\mu}\}$ и $\{L^{\mu}\}$ — базисы в \mathfrak{g} . Определим $C_{\lambda}^{\mu\nu}$ из соотношения $C_{\lambda}^{\mu\nu}I_{\mu}\otimes I_{\nu}=[r,I_{\lambda}\otimes 1+1\otimes I_{\lambda}]$. Рассуждая так же, как при доказательстве предыдущего предложения, получим

$$[K^{\mu}, K^{\nu}] = C^{\mu\nu}_{\lambda} K^{\lambda}, \qquad (2.6)$$

$$[L^{\mu}, L^{\nu}] = -C^{\mu\nu}_{\lambda} L^{\lambda}. \tag{2.7}$$

Из (2.6) следует, что $C_{\lambda}^{\mu\nu}+C_{\lambda}^{\nu\mu}=0$, откуда $[r^{12}+r^{21},\ I_{\lambda}\otimes \mathbf{1}+\mathbf{1}\otimes I_{\lambda}]=0$. Поэтому $r^{12}+r^{21}=at,\ a\in \mathbb{C}$. Это означает, что

$$K^{\mu} + L^{\mu} = aI_{\mu}. \tag{2.8}$$

Пусть φ : $\mathfrak{g} \to \mathfrak{g}$ — линейный оператор такой, что φ (K^{λ}) = $-L^{\lambda}$. Из равенств (2.6) и (2.7) следует, что φ — автоморфизм \mathfrak{g} как алгебры Ли. Равенство (2.8) можно переписать в виде

$$(1 - \varphi)K^{\mu} = aI_{\mu}. \tag{2.9}$$

Нам надо доказать, что a=0. Если $a\neq 0$, то из (2.9) следовало бы, что $\det (\phi-1)\neq 0$. На самом же деле для любого $\phi\in \mathrm{Aut}\,\mathfrak{g}$ существует ненулевое $x\in\mathfrak{g}$ такое, что $\phi(x)=x$. Действительно, если ϕ имеет конечный порядок, то это следует из леммы 1 работы [3]. Если же ϕ имеет бесконечный порядок, то надо применить к циклической подгруппе, порожденной ϕ , следующую лемму.

 Π е м м а. Π усть $H \subset \mathrm{Aut} \ \mathfrak{g}$ — бесконечная абелева подгруппа. Тогда

существует ненулевое $x \in \mathfrak{g}$ такое, что gx = x при любом $g \in H$.

Доказательство. Обозначим через \overline{H} наименьшую алгебраическую подгруппу в Aut \mathfrak{g} , содержащую H, а через \mathfrak{h} — алгебру Ли группы \overline{H} . Так как $|\overline{H}| = \infty$, то $\mathfrak{h} \neq 0$. Алгебра Ли группы Aut \mathfrak{g} совпадает \mathfrak{g} , поэтому \mathfrak{h} можно рассматривать как подалгебру в \mathfrak{g} . В качестве x можно взять любой ненулевой элемент \mathfrak{h} .

2.3. Остается доказать, что система уравнений (1.2), (1.3) не имеет

невырожденных решений.

 Π редложение 2.4. Пусть $r=r^{\mu\nu}I_{\mu}\otimes I_{\nu}$ — невырожденный кососимметричный тензор, (S_{kl}) — матрица, обратная κ $(r^{\mu\nu})$, B — билинейная форма на \mathfrak{g} с матрицей (S_{kl}) . Для того, чтобы выполнялось соотношение (1.2), необходимо и достаточно, чтобы форма B была 2-коциклом, m. e. чтобы выполнялось тождество

$$B([x, y], z) + B([y, z], x) + B([z, x], y) = 0, x, y, z \in \mathfrak{g}.$$
 (2.10) Доказательство. Соотношение (1.2) эквивалентно равенству

$$C^{\alpha}_{ij}r^{i\beta}r^{j\gamma} + C^{\beta}_{ij}r^{\alpha i} r^{j\gamma} + C^{\gamma}_{ij}r^{\alpha i}r^{\beta j} = 0,$$

где C_{ij}^{α} — структурные константы **g**. Это равенство, в силу кососимметричности r, можно переписать в виде

$$C_{ij}^{\alpha}r^{i\beta}r^{j\gamma} + C_{ij}^{\beta}r^{i\alpha}r^{i\gamma} + C_{ij}^{\gamma}r^{i\alpha}r^{j\beta} = 0.$$
 (2.11)

Умножив обе части (2.11) на $S_{\alpha k}S_{\beta l}S_{\gamma m}$, получим

$$C_{lm}^{\alpha}S_{\alpha k}+C_{mk}^{\beta}S_{\beta l}+C_{kl}^{\gamma}S_{\gamma m}=0,$$

что эквивалентно (2.10).

Покажем теперь, что билинейная кососимметрическая форма B на \mathfrak{g} , являющаяся 2-коциклом, вырождена. Действительно, так как \mathfrak{g} проста, то всякий коцикл является кограницей, т. е. B(x, y) = l([x, y]), где $l \in \mathfrak{g}^*$. Образ l при изоморфизме $\mathfrak{g}^* \xrightarrow{\sim} \mathfrak{g}$, определяемом формой Киллинга, обозначим через z. Легко видеть, что z принадлежит ядру B.

Эквивалентность условий А) — В) доказана.

§ 3. Теорема типа Вейерштрасса

Классическая теорема Вейерштрасса утверждает, что если функция f(u), мероморфная на $\mathit{ece}\check{u}$ комплексной плоскости, удовлетворяет функциональному уравнению вида

$$P(f(u), f(v), f(u+v)) = 0,$$
 (3.1)

где P — ненулевой многочлен, то функция f либо эллиптическая, либо рациональная, либо имеет вид φ (e^{kz}), где φ — рациональная функция. Предположим, теперь, что функция f определена лишь в некоторой окрестности нуля $U \subset \mathbb{C}$ и принимает векторные значения, а многочлен P в соотношении (3.1) тоже векторнозначен. Мы покажем, что тогда, при некоторых дополнительных предположениях, функция f имеет вид $f(u) = \overline{f}(ua)$, где \overline{f} — квазиабелева функция на \mathbb{C}^n (т. е. либо абелева функция, либо вырождение абелевых), $a \in \mathbb{C}^n$.

Перейдем к точным формулировкам. Напомним, что мероморфная функция φ на ${\bf C}^n$ называется абелевой, если она имеет 2n периодов, ли-

нейно независимых над R.

О п р е д е л е н и е. Мероморфная функция ф на n-мерном комплексном векторном пространстве L называется κ вазиабелевой, если существуют система координат z_1, \ldots, z_n в пространстве L, целые числа $p, q, r \geqslant 0$, p+q+r=n и векторы $\gamma_1, \ldots, \gamma_{2r} \in L$ такие, что

1) при фиксированных z_{p+q+1}, \ldots, z_n $\varphi (z_1, \ldots, z_n)$ является рацио-

нальной функцией от $z_1, \ldots, z_p, e^{z_{p+1}}, \ldots, e^{z_{p+q}};$

2) векторы γ_i являются периодами ϕ ;

3) векторы $\overline{\gamma}_i \in \mathbf{C}^r$, образованные последними r координатами векторов γ_i , линейно независимы над \mathbf{R} .

Пусть f(u) — мероморфная функция со значениями в \mathbb{C}^m , заданная в некотором круге $U \subset \mathbb{C}$ с центром в нуле. Обозначим через U' дополнение множества полюсов f. Предположим, что выполнены тождества

$$P_{j}(f(u), f(v), f(u + v)) = 0, \quad j = 1, 2, ..., N,$$

где P_j — многочлены от 3n переменных. Обозначим через S множество точек $(u,v) \in U' \times U'$ таких, что система уравнений

$$P_{j}(f(u), f(v), x) = 0, \quad j = 1, 2, ..., N$$

относительно неизвестного $x \in \mathbb{C}^m$ имеет не более одного решения (ясно, что если $u+v \in U'$, то хотя бы одно решение у этой системы существует). Обозначим через T множество точек $(u,w) \in U' \times U'$ таких, что система уравнений

$$P_{j}(x, f(v), f(w)) = 0, \quad j = 1, 2, \ldots, N$$

имеет не более одного решения.

T е o p е м а 2.1. Если S и T имеют непустые внутренности, то существуют натуральное число n, вектор $a \in \mathbb{C}^n$ и квазиабелева функция f на \mathbb{C}^n такие, что

a) $f(u) = \overline{f}(ua)$,

б) выполнены тождества P_j (\bar{f} (u), \bar{f} (v), \bar{f} (u+v)) $=0,\ j=1,2,\ldots,N.$

Доказательство. Пусть $X \subset \mathbb{C}^m$ — замыкание по Зарисскому множества точек вида $f(u), u \subset U'$. Пусть $\Gamma \subset X \times X \times X$ — замыкание по Зарисскому множества точек вида (f(u), f(v), f(u+v)), где $u, v, u+v \subset U'$. Ясно, что многообразия X и Γ неприводимы.

 Π е м м $ext{a}$. Bce mpu npoекции $\Gamma o X imes X$ являются бирациональны-

ми изоморфизмами.

Доказательство. Рассмотрим, например, проекцию π_{12} множества Γ на произведение первых двух сомножителей. Пусть $W \subset X^2$ — непустое открытое по Зарисскому подмножество такое, что слои отображения π_{12} над точками W имеют одинаковую мощность k. Положим $A = \{(u,v) \in U' \times U' \mid (f(u),f(v)) \in W\}$. Ясно, что A всюду плотно в $U' \times U'$. Поэтому $A \cap S \neq \phi$, откуда $k \leqslant 1$. С другой стороны, A содержит хотя бы одну точку (u,v) такую, что $u+v \in U'$. Поэтому $k \geqslant 1$

Таким образом, π_{12} — бирациональный изоморфизм. Для остальных двух проекций доказательство аналогично. ■

Так как π_{12} — бирациональный изоморфизм, то Γ — график рационального отображения μ : $X \times X \to X$, которое можно рассматривать как «операцию» на X. Ясно, что эта «операция» коммутативна. Так как π_{13} и π_{23} — бирациональные изоморфизмы, то для нее существует обратная «операция». Покажем, что «операция» μ ассоциативна. Обозначим через V множество точек $(x_1, x_2, x_3) \in X^3$, для которых имеют смысл выражения μ (x_1, x_2) , μ $(\mu$ (x_1, x_2) , $x_3)$, μ (x_2, x_3) , μ $(x_1, \mu$ (x_2, x_3)). Положим $R \stackrel{\text{def}}{=} \{(f(u_1), f(u_2), f(u_3)) \mid u_1, u_2, u_3, u_1 + u_2, u_2 + u_3, u_1 + u_2 + u_3 \in U'\}$. Легко видеть, что если $(x_1, x_2, x_3) \in V \cap R$, то μ $(\mu$ (x_1, x_2) , $x_3) = \mu$ $(x_1, \mu$ (x_2, x_3)). Так как $V \cap R \subset X$ всюду плотно по Зарисскому, то отсюда следует ассоциативность μ .

Итак, X является «бирациональной группой» в смысле А. Вейля. Известно ([16], [17]), что такая группа бирационально изоморфна настоящей алгебраической группе, которая определена однозначно. Итак, мы доказали, что существуют связная коммутативная алгебраическая группа G, рациональная функция $f: G \to \mathbb{C}^m$ и мероморфное отображение $\phi: U \to G$ такие, что

$$P_{j}(\tilde{f}(g_{1}), \tilde{f}(g_{2}), \tilde{f}(g_{1}+g_{2})) = 0, \quad j = 1, 2, ..., N,$$

$$\varphi(u+v) = \varphi(u) + \varphi(v).$$
(3.2)

Из (3.2) легко вывести, что ϕ голоморфно и, более того, продолжается до голоморфного гомоморфизма $\mathbf{C} \to G$.

По теореме Шевалле, любая связная коммутативная алгебраическая группа над С является расширением абелева многообразия при помощи прямого произведения конечного числа аддитивных и мультипликативных групп. Поэтому универсальная накрывающая группа для G изоморфна C^n , а рациональные функции на G переходят в квазиабелевы функции на G^n . Обозначим через \bar{f} квазиабелеву функцию на C^n , соответствующую \bar{f} . Гомоморфизм G: G однозначно поднимается до голоморфного гомоморфизма G: G однозначно поднимается до голоморфного гоморфизма G: G однозначно поднимается до голоморфного гоморфного гоморфизма G: G однозначно поднимается до голоморфного гоморфного гоморфного гоморфного гоморфизма G: G однозначно поднимается до голоморфного гоморфного гоморф

§ 4. Свойства невырожденных решений

4.1. Пусть X(u) — невырожденное решение уравнения (1.4), определенное в некотором круге $U \subset \mathbb{C}$, содержащем 0. Мы будем всегда предполагать, что $\lim_{u\to 0} uX(u) = t$ (согласно предложению 2.1, этого можно добиться, умножив X(u) на подходящее число).

Предложение 4.1. X (u) удовлетворяет условию унитарности. Доказательство. Имеем:

$$[X^{12}(u_1-u_2), X^{13}(u_1-u_3)] + [X^{12}(u_1-u_2), X^{23}(u_2-u_3)] + [X^{13}(u_1-u_3), X^{23}(u_2-u_3)] = 0.$$
 (4.1)

Поменяв местами u_1 и u_2 , а также первый и второй сомножители в тензорном произведении $\mathfrak{g}\otimes\mathfrak{g}\otimes\mathfrak{g}$, получим

$$[X^{21} (u_2 - u_1), X^{23} (u_2 - u_3)] + [X^{21} (u_2 - u_1), X^{13} (u_1 - u_3)] + [X^{23} (u_2 - u_3), X^{13} (u_1 - u_3)] = 0.$$
 (4.2)

Сложив (4.1) и (4.2), приходим к тождеству

$$[X^{12}(u_1-u_2)+X^{21}(u_2-u_1),\,X^{13}(u_1-u_3)+X^{23}(u_2-u_3)]=0.$$

Если теперь, зафиксировав u_1 и u_2 , устремить u_3 к u_2 , то получим $[X^{12} (u_1 - u_2) + X^{21} (u_2 - u_1), t^{23}] = 0$. Отсюда легко вывести, что $X^{12} (u_1 - u_2)$ $-u_{2})+X^{21}(u_{2}^{2}-u_{1})=0.$

 Π редложение 4.2. Существуют натуральное число n, вектор $a o C^n$ и квазиабелева функция: \overline{X} : $C^n o \mathfrak{g} \otimes \mathfrak{g}$, удовлетворяющая уравне-

нию (1.4), такие, что X (u) = \overline{X} (ua).

 $\dot{\Pi}$ оказательство. Положим $U'=U\mid\{0\}$. Можно считать, что функция X(u) голоморфна в U'. Согласно теореме 2.1, достаточно показать, что непустую внутренность имеют множества S и T, где S — множество точек $(u,v) \subset U' \times U'$ таких, что уравнение

$$[X^{12}(u) - X^{23}(v), Z^{13}] = 0$$
 (4.3)

относительно неизвестного $Z \subseteq \mathfrak{g} \otimes \mathfrak{g}$ имеет только нулевое решение, T- множество точек $(u,w) \subseteq U' \times U'$ таких, что уравнение $[Z^{12},\,X^{23}\,(v)+$ $+X^{13}(w)]=0$ имеет только нулевое решение. Так как X(u) удовлетворяет условию унитарности, то $(u,w) \in T \Leftrightarrow (w,-v) \in S$. Так как Sоткрыто, то достаточно доказать, что $S \neq \phi$. Покажем, что если $u \neq 0$ достаточно мало, то $(u, v) \in S$. При $v = u \neq 0$ уравнение (4.3) можно за писать в виде

$$[uX^{12}(u) - uX^{23}(u), Z^{13}] = 0. (4.4)$$

При u = 0 уравнение (4.4) принимает вид

$$[t^{12}-t^{23}, Z^{13}]=0.$$
 (4.5)

Покажем, что уравнение (4.5) имеет только нулевое решение. Отсюда будет следовать, что при всех достаточно малых u уравнение (4.4) имеет только нулевое решение. Равенство (4.5) означает, что при любом µ

$$[I_{\mu} \otimes 1 - 1 \otimes I_{\mu}, Z] = 0. \tag{4.6}$$

Отсюда следует, что

$$[[I_{\mu}, I_{\nu}] \otimes 1 + 1 \otimes [I_{\mu} \otimes 1 - 1 \otimes I_{\mu}, I_{\nu} \otimes 1 - 1 \otimes I_{\nu}], Z] = 0.$$
 (4.7)

Так как элементы вида $[I_{\mu},\ I_{\nu}]$ порождают ${\mathfrak g}$ как векторное пространство, то из (4.7) следует, что $[I_{\mu} \otimes 1 + 1 \otimes I_{\mu}, T] = 0$ при любом μ . Отсюда и из (4.6) вытекает, что $[I_{\mu} \otimes 1, Z] = 0$ и, следовательно, Z = 0.

Из предложения 4.2, в частности, следует, что X(u) продолжается до мероморфной функции на всем С. Обозначим через Г множество ее полюсов. Согласно предложению 2.1, все они простые.

Предложение 4.3. Пусть $\gamma \in \Gamma$. Тогда существует $A_{\nu} \in$ € Aut a makoe, umo

$$X (u + \gamma) = (A_{\gamma} \otimes 1) X (u). \tag{4.7a}$$

Доказательство. Положим $au=\lim \left(u-\gamma\right)X\left(u\right)$. Пусть

 A_{γ} : $\mathfrak{g} \to \mathfrak{g}$ — линейный оператор такой, что $\tau = A_{\gamma} (I_{\mu}) \otimes I_{\mu}$. Из равенства (2.2) и тождества $[t^{12}, r^{13} + r^{23}] = 0$, справедливого при любом $r \in \mathfrak{g} \otimes \mathfrak{g}$, следует, что

$$[\tau^{12}, X^{13} (v + \gamma)] = - (A_{\gamma} \otimes 1 \otimes 1) ([t^{12}, X^{23} (v)]) =$$

$$= (A_{\gamma} \otimes 1 \otimes 1) ([t^{12}, X^{13} (v)]). \quad (4.8)$$

Приравняв вычеты обеих частей (4.8) при v=0, получим $[\tau^{12}, \tau^{13}]==(A_{\gamma}\otimes 1\otimes 1)$ ($[t^{12}, t^{13}]$), т. е. $[A_{\gamma}(I_{\mu}), \ A_{\gamma}(I_{\nu})]\otimes I_{\mu}\otimes I_{\nu}=A_{\gamma}$ ($[I_{\mu}, I_{\nu}])\otimes I_{\mu}\otimes I_{\gamma}$. Это означает, что $A_{\gamma}([I_{\mu}, I_{\nu}])=[A_{\gamma}(I_{\mu}), \ A_{\gamma}(I_{\nu})]$, т. е. A_{γ} — эндоморфизм алгебры Ли \mathfrak{g} . Так как $A_{\gamma}\neq 0$, а алгебра \mathfrak{g} простая, то A_{ν} — автоморфизм. Применив к обеим частям (4.8) отображение $A_{\nu}^{-1} \otimes$ \otimes 1 \otimes 1 и воспользовавшись тем, что A_{γ}^{-1} — автоморфизм ${\mathfrak g}$ как алгебры Ли, получим равенство $[t^{12}, (A_{\nu}^{-1} \otimes 1)X^{13} (v + \gamma) - X^{13} (v)] = 0$, откуда $(A_{\nu}^{-1} \otimes 1) X (\nu + \gamma) = X (\nu). \blacksquare$

 Π редложение 4.4. 1) Γ — дискретная подгруппа в \mathbb{C} . 2) $A_{\nu_1+\nu_2}$ = $=A_{\gamma_1}A_{\gamma_2}$ das and X Y_1 , $Y_2 \subseteq \Gamma$; 3) X $(u+\gamma)=(1\otimes A_{\gamma}^{-1})$ X (u), $u \in \mathbb{C}$, $Y \subseteq \Gamma$; 4) $(A_{\gamma} \otimes A_{\gamma})X$ (u), $u \in \mathbb{C}$, $Y \subseteq \Gamma$.

Доказательство. Пусть γ , $\gamma' \in \Gamma$. Правая часть равенства (4.7) имеет полюс при $u=\gamma'$. Поэтому левая часть обладает тем же свойством, т. е. $\gamma + \gamma' \subset \Gamma$. Так как X (u) удовлетворяет условию унитарности, то $\gamma \in \Gamma \Rightarrow -\gamma \in \Gamma$. Таким образом, $\Gamma =$ подгруппа в C. Дискретность Γ и утверждение 2) очевидны. Утверждение 3) эквивалентно равенству X^{21} $(u+\gamma)=(A_{\gamma}^{-1}\otimes 1),~X^{21}$ (u), вытекающему из (4.7) и условия унитарности. Утверждение 4) следует из 3) и равенства (4.7).

4.2. Предложение 4.5. Пусть Γ имеет ранг 2. Тогда

а) не существует ненулевого $x \in \mathfrak{g}$ такого, что $A_v(x) = x$ при любом $\gamma \subseteq \Gamma$;

б) существует подгруппа конечного индекса $\Gamma' \in \Gamma$ такая, что $A_v = 1$

npu $\gamma \subset \Gamma'$.

Доказательство. а) Допустим, что $x \in \mathfrak{g}, x \neq 0, A_{\gamma}(x) = x$ при $\gamma \in \Gamma$. Пусть $X(u) = X_{\mu\nu}(u)I_{\mu} \otimes I_{\nu}$. Определим мероморфную функцию $\varphi \colon \mathbb{C} \to \mathfrak{g}$ формулой $\varphi (u) = \widecheck{X}_{\mu\nu} (I_{\mu}, x) \cdot I_{\nu}$ Легко видеть, что функция ϕ Γ -периодична, имеет при u=0 простой полюс и не имеет в параллелограмме периодов других полюсов. Полученное противоречие доказывает утверждение а).

б) Положим $H = \{A_{\gamma} \mid \gamma \in \Gamma\}$. Лемма из доказательства предложения 2.3 и уже доказанное утверждение a) показывают, что $|H| < \infty$.

Отсюда следует б).

Следствие. Если ранг Γ равен 2, то X(u) — эллиптическая

функция.

4.3. В этом разделе будут доказаны утверждения теоремы 1.1, относящиеся к случаю, когда ранг Γ равен 0 или 1. Пусть n и \overline{X} обозначают то же, что в предложении 4.2.

Предложение 4.6. Cуществуют (n-1)-мерное векторное $no\partial npocmpa$ нство $V \subset \mathbb{C}^n$ и голоморфный гомоморфизм $\varphi: V \to \mathrm{Aut} \mathfrak{g}$ такие, что при любых $z \in \mathbb{C}^n$, $h \in V$

$$\overline{X}(z+h)=(\varphi(h)\otimes 1)\overline{X}(z),$$
 (4.9)

$$(\varphi(h) \otimes \varphi(h)) \overline{X}(z) = \overline{X}(z). \tag{4.10}$$

Доказательство. Пусть \overline{X} (z) = Y (z)/f (z), где Y и f целые функции. Без ограничения общности можно предполагать, что жество $S \stackrel{\text{def}}{=} \{z \in \mathbb{C} \mid f(z) = 0, \ Y(z) \neq 0\}$ непусто. Пусть $h \in S$. Лемма. 1) Существуют $L(h) \in \text{Aut g}$ и $c(h) \in \mathbb{C} \mid \{0\}$ такие,

что

$$Y(h) = (c(h)L(h)I_{\mu}) \otimes I_{\mu}$$
 (4.11)

$$\overline{X} (\lambda + h) = (L (h) \otimes 1) \overline{X} (z), z \in \mathbb{C}^n.$$
 (4.12)

Доказательство. Пусть \overline{X} (z) $=K_{\mu}$ (z) $\otimes I_{\mu}$. же рассуждения, что при выводе формулы (2.2), показывают, ОТР $[Y^{12}(h), \ \overline{X}^{13}(z+h) + \overline{X}^{23}(z)] = 0,$ и следовательно,

$$[Y(h), K_{\mu}(Z+h) \otimes 1 + 1 \otimes K_{\mu}(Z)] = 0. \tag{4.13}$$

Обозначим через W множество таких $Z \subset \mathbb{C}^n$, что а) функция \overline{X} голоморфна в точках z и z+h, δ) тензоры \overline{X} (Z) и \overline{X} (z+h) невырождены. Пусть $z \subset W$. Обозначим через \mathfrak{a} подалгебру в $\mathfrak{g} \otimes \mathfrak{g}$, порожденную элементами K_{μ} (z+h) $\otimes 1+1 \otimes K_{\mu}$ (z). Тогда [Y(h), a]=0 для любого $a \subset \mathfrak{a}$. Так как векторы K_{μ} (z) и K_{μ} (z+h) образуют базисы в \mathfrak{g} , то обе проекции $\mathfrak{a} \to \mathfrak{g}$ сюръективны. Отсюда и из простоты \mathfrak{g} следует, что либо $\mathfrak{a} = \mathfrak{g} \times \mathfrak{g}$, либо существует $L \subset A$ и \mathfrak{g} такой, что $\mathfrak{a} = \{L x \otimes 1+1 \otimes x \mid x \subset \mathfrak{g}\}$. Первый случай невозможен, так как $[Y(h), \mathfrak{a}] = 0$, $Y(h) \neq 0$. Итак, мы доказали существование $L(z,h) \subset A$ иt \mathfrak{g} такого, что

$$K_{\mu}(z+h) = L(z,h)K_{\mu}(z).$$
 (4.14)

Из равенств (4.13) и (4.14) следует, что [(L (z, h) $^{-1}\otimes 1$) Y (h), $K_{\mu}(z)\otimes \otimes 1+1\otimes K_{\mu}$ (Z)] =0, откуда

$$Y(h) = (c(z, h)L(z, h)I_{\mu}) \otimes I_{\mu}.$$
 (4.15)

Из (4.15) вытекает, что c (z, h) и L (z, h) не зависят от z. Из (4.14) следует, что равенство (4.12) выполняется при $z \in W$, а значит, и при любом $z \in \mathbb{C}^n$.

Пусть $H \subset \mathbb{C}^n$ — подгруппа, порожденная S. Из леммы следует, что существует гомоморфизм $\varphi \colon H \to \operatorname{Aut} \mathfrak{g}$ такой, что равенство (4.9) выполняется при любых $h \in H$, $z \in \mathbb{C}^n$. Множество полюсов функции \overline{X} переходит в себя при сдвигах на элементы H. Поэтому $H \neq \mathbb{C}^n$. Так как H порождена аналитическим подмножеством $S \subset \mathbb{C}^n$ коразмерности 1, то S — открытое подмножество в объединении конечного или счетного числа параллельных друг другу аффинных гиперплоскостей, а H содержит (n-1)-мерное векторное подпространство $V \subset \mathbb{C}^n$, параллельное этим гиперплоскостям. Из равенства (4.11) следует, что L (h) голоморфно зависит от h. Поэтому отображение $\varphi \colon V \to \operatorname{Aut} \mathfrak{g}$ голоморфно.

Те же рассуждения, что при доказательстве предложения 4.1, показывают, что \overline{X} удовлетворяет условию унитарности. Отсюда и из (4.9)

вытекает (4.10) (см. доказательство предложения 4.4). 📓

 Π е м м а 4.1. Π усть а обозначает то же, что в предложении 4.2. Если $\tilde{a}-a \in V$, то функция $\tilde{X}(u) \stackrel{\text{def}}{=} \overline{X}(u\tilde{a})$ является решением уравнения (1.4), эквивалентным X(u).

 \mathcal{H} оказательство. Из формул (4.9) и (4.10) следует, что \widetilde{X} (u_1 — u_2) = $(\phi\ (u_1,\ h)\otimes\phi\ (u_2,\ h))X\ (u_1-u_2)$, где $h=\tilde{a}-a$, ϕ обозначает

то же, что в предложении 4.6.

Предложение 4.7. Если Γ имеет ранг 1, то X (и) эквивалентно решению \widetilde{X} (и) вида f (e^{ku}), где f — рациональная функция. Если $\Gamma=0$, то X (и) эквивалентно рациональному решению.

Доказательство. Пусть $p, q, r, z_1, \ldots, z_n, \gamma_1, \ldots, \gamma_{2r}$ обозначают то же, что в определении квазиабелевости (в нашей ситуации $\varphi(z) = \overline{X}(z)$). Обозначим через e_1, \ldots, e_n базисные векторы в \mathbb{C}^n , соответствующие системе координат z_1, \ldots, z_n , а через W — подпространство в \mathbb{C}^n , заданное уравнениями $z_{p+q+1} = \ldots = z_n = 0$. Представим γ_i в виде $\delta_i a + h_i$, $\delta_i \in \mathbb{C}$, $h_i \in V$. Ясно, что $\delta_i \in \Gamma$.

Предположим, что ранг Γ равен 0 или 1. Тогда $W \not\subset V$. Действительно, если бы $W \subset V$, то векторы $\gamma_1, \ldots, \gamma_{2r}$ порождали бы \mathbb{C}^n/V как векторное пространство над \mathbb{R} , так что $\delta_1, \ldots, \delta_{2r}$ порождали бы \mathbb{C} как векторное пространство над \mathbb{R} , а это невозможно, так как $\delta_1, \ldots, \delta_{2r} \in \Gamma$. Так как $W \not\subset V$, то существует $i \leqslant p+q$ такое, что $e_i \not\in V$. Тогда a можно представить в виде $ke_i + h, k \in \mathbb{C}, h \in V$. Положим $\widehat{X}(u) = \overline{X}(uke_i)$. Согласно лемме 4.1, $\widehat{X}(u)$ — решение уравнения (1.4), эквивалентное X(u).

Ясно, что если i < p, то X(u) — рациональная функция, а если i > p, то X(u) имеет вид $f(e^{ku})$, где f рациональна.

Множество полюсов \widetilde{X} (*u*) равно Γ . Поэтому если ранг Γ равен 1, то функция \widetilde{X} (*u*) не может быть рациональной, а если $\Gamma = \{0\}$, то \widetilde{X} (*u*) не может иметь вид f (e^{ku}), где f рациональна.

Теорема 1.1 полностью доказана. Решения вида $f(e^{ku})$, где f — ра-

циональная функция, назовем тригонометрическими.

4.4. Уже отмечалось, что всякое невырожденное решение уравнения (1.4), мероморфное в окрестности нуля, продолжается до мероморфной функции на всем С. Можно также показать, что всякое формальное ре-

шение уравнения (1.4) вида $X(u) = \frac{t}{u} + \sum_{i=0}^{\infty} X_i u^i$ сходится при достаточно малых $u \neq 0$.

§ 5. Эллиптические решения

5.1. Пусть $\Gamma \subset \mathbf{C}$ — дискретная подгруппа ранга 2, ω_1 и ω_2 — ее образующие. Пусть X (u) — невырожденное решение уравнения (1.4) с множеством полюсов Γ . Положим $A_1=A_{\omega_1},\ A_2=A_{\omega_2}$ (по поводу обозначения A_{γ} см. предложение 4.3). Ясно, что $A_1A_2=A_2A_1=A_{\omega_1+\omega_2}$. Согласно предложению 4.5, автоморфизмы A_1 и A_2 имеют конечный порядок, причем не существует ненулевого $x \in \mathfrak{g}$ такого, что A_1 (x) = A_2 (x) = x. В этом пункте будет доказано, что если A_1 , $A_2 \in A$ dut \mathfrak{g} коммутируют, имеют конечный порядок и не имеют общих неподвижных ненулевых векторов, то паре (A_1 , A_2) соответствует ровно одно невырожденное решение уравнения (1.4) с множеством полюсов Γ . Предварительно докажем лемму, справедливую для дискретной подгруппы $\Gamma \subset \mathbf{C}$ любого ранга.

 Π е м м а 5.1. Пусть $A:\Gamma \to {\rm Aut}\ {\mathfrak g}$ — гомоморфизм, X(u) — мероморфная функция на комплексной плоскости со значениями в ${\mathfrak g}\otimes {\mathfrak g}$ такая, что а) $X(u+\gamma)=(A_\gamma\otimes 1)X(u)$ при $u \in {\mathbb C}$, $\gamma \in \Gamma$ (здесь $A_\gamma\stackrel{{\rm def}}{=} A(\gamma)$); б) $X^{21}(u)=X^{12}(-u)$; в) $\lim_{u\to 0} u\ X(u)=t$; г) X(u) не имеет

полюсов при $u
otin\Gamma$. Положим

$$Y (u_1, u_2, u_3) = [X^{12} (u_1 - u_2), X^{13} (u_1 - u_3)] + [X^{12} (u_1 - u_2), X^{23} (u_2, u_3)] + [X^{13} (u_1 - u_3), X^{23} (u_2 - u_3)].$$
 (5.1)

Тогда 1) функция $Y(u_1, u_2, u_3)$ не имеет полюсов; 2) для любого $\gamma \in \Gamma$ $Y(u_1 + \gamma, u_2, u_3) = (A_{\gamma} \otimes 1 \otimes 1)Y(u_1, u_2, u_3),$ (5.2)

$$Y(u_1, u_2, u_3 + \gamma) = (1 \otimes 1 \otimes A_{\gamma}^{-1})Y(u_1, u_2, u_3). \tag{5.3}$$

Доказательство. Формула (5.2) проверяется непосредственно. Равенство (5.3) следует из (5.2) и тождества

$$Y^{321}(u_3, u_2, u_1) = -Y^{123}(u_1, u_2, u_3), (5.4)$$

вытека ющего из условия унитарности. Если множество P полюсов функции Y не пусто, то оно является объединением некоторых из плоскостей вида $u_i-u_j=\gamma$, $\gamma\in\Gamma$. Надо доказать, что никакая такая плоскость не содержится в P. Ввиду формул (5.2)-(5.4) и равенства Y^{213} $(u_2,u_1,u_3)=-Y^{123}$ (u_1,u_2,u_3) достаточно показать, что плоскость $u_1=u_2$ не содержится в P. Действительно, при фиксированных u_2 , u_3 имеем

 $\lim_{u_1\to u_2} (u_1-u_2)Y(u_1, u_2, u_3) = [t^{12}, X^{13}(u_2-u_3) + X^{23}(u_2-u_3)] = 0. \blacksquare$

Предложение 5.1. Пусть A_1 , A_2 — коммутирующие автоморфизмы $\mathfrak g$ конечного порядка, не имеющие общих неподвижных ненулевых векторов. Тогда существует ровно одна мероморфная функция $X: \mathbb C \to \mathfrak g \otimes \mathfrak g$ такая, что 1) $\lim_{u\to 0} u \ X(u) = t; 2) \ X(u+\omega_i) = (A_i \otimes 1) \ X(u)$, $i=1,2;3) \ X(u)$ не имеет полюсов при $u \not \in \Gamma$. Эта функция является решением уравнения (1.4).

Доказательство. Пусть $A_i^n=A_2^n=1$. Имеем: $g=\bigoplus_{k,l\in \mathbf{Z}/n\mathbf{Z}^{kl}} \mathbf{g}$, где $\mathbf{g}_{kl}=\{x\in \mathbf{g}\,|\,A_1\,(x)=\zeta^kx,\,\,A_2\,(x)=\zeta^lx\},\,\,\,\zeta=e^{2\pi i/n}.$ По условию, $\mathbf{g}_{00}=0$. Так как $(A_1\otimes A_1)t=(A_2\otimes A_2)t=t$, то $t\in \bigoplus_{k,l} (\mathbf{g}_{kl}\otimes \mathbf{g}_{-k,-l})$. Проекцию t на $\mathbf{g}_{kl}\otimes \mathbf{g}_{-k,-l}$ обозначим t_{kl} .

Если искомая функция X (u) существует, то $(A_1 \otimes A_1)X$ (u) = $(A_2 \otimes A_2)$ X (u) = X (u) (см. предложение 4.4). Поэтому X (u) надо искать в виде

$$X\left(u\right) = \sum_{\substack{k,\ l \in \mathbf{Z}/n\mathbf{Z} \\ (k,\ l) \neq (0,0)}} X_{k,\ l}\left(u\right), X_{kl}\left(u\right) \in \mathfrak{g}_{kl} \otimes \mathfrak{g}_{-k,\ -l}.$$

Для того, чтобы функция X(u) обладала свойствами 1)-3), необходимо и достаточно, чтобы функции $X_{kl}(u)$ удовлетворяли условиям 1') $\lim_{u\to 0} uX_{kl}(u) = t_{kl}; \quad 2'$) $X_{kl}(u+\omega_1) = \zeta^k X_{kl}(u), \quad X_{kl}(u_1+\omega_2) = \zeta^l X_{kl}(u); \quad 3'$) $X_{kl}(u)$ не имеет полюсов при $u \notin \Gamma$. Так как $(k, l) \ne (0, 0)$, то существует ровно одна мероморфная функция ϕ_{kl} такая, что $\lim_{u\to 0} u\phi_{kl}(u) = 1, \quad \phi_{kl}(u+\omega_1) = \zeta^k \phi_{kl}(u), \quad \phi_{kl}(u+\omega_2) = \zeta^l \phi_{kl}(u), \quad \phi_{kl}(u)$ не имеет полюсов при $u \in \Gamma$. Поэтому существует ровно одна функция X_{kl} , обладающая свойствами 1')—3'), а именно, $X_{kl}(u) = \phi_{kl}(u) \cdot t_{kl}$.

Функция $X(u) \stackrel{\text{def}}{=} \sum_{k,l} \varphi_{kl}(u) \, t_{kl}$ удовлетворяет условиям леммы 5.1 (например, условие унитарности следует из равенств $\varphi_{kl}(u) = -\varphi_{-k,-l}(-u)$, $\sigma(t_{kl}) = t_{-k,-l}$, где $\sigma: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ — перестановка сомножителей). Поэтому функция Y, определяемая формулой (5.1), является ограниченной целой функцией, и следовательно, константой (ограниченность следует из формул (5.2), (5.3) и очевидного тождества $Y(u_1+u, u_2+u, u_3+u) = Y(u_1, u_2, u_3)$). Пусть $Y(u_1, u_2, u_3) = y$. Из равенства (5.2) вытекает, что $(A_1 \otimes 1 \otimes 1)y = (A_2 \otimes 1 \otimes 1)y = y$, откуда y=0.

5.2. Итак, нахождение невырожденных эллиптических решений уравнения (1.4) сводится к описанию троек (\mathfrak{g} , A_1 , A_2), где \mathfrak{g} — простая алгебра Ли, A_1 и A_2 — коммутирующие автоморфизмы \mathfrak{g} конечного порядка, не имеющие общих неподвижных ненулевых векторов. Пример такой тройки: $\mathfrak{g} = sl$ (n), A_1 и A_2 — внутренние автоморфизмы, соответствующие матрицам

$$T_{1} = \begin{pmatrix} 1 & 0 \\ \zeta & \\ \vdots \\ 0 & \zeta^{n-1} \end{pmatrix}, \qquad T_{2} = \begin{pmatrix} 0 & 1 & 0 \\ \vdots & 0 & 1 & \\ \vdots & & \ddots & \vdots \\ \frac{1}{4} & \vdots & \ddots & \vdots & 0 \end{pmatrix}$$
 (5.5)

где ζ — первообразный корень степени n из единицы. Соответствующие решения уравнения (1.4) были найдены в [1]. Следующее предложение показывает, что других невырожденных эллиптических решений уравнения (1.4) не существует.

 Π редложение 5.2. Пусть A_1 и A_2 — коммутирующие автоморфизмы $\mathfrak g$ конечного порядка, причем не существует ненулевого $x \in \mathfrak g$

такого, что $A_1(x)=A_2(x)=x$. Тогда существует изоморфизм $\mathfrak{g}\approx sl(n)$, при котором A_1 и A_2 переходят во внутренние автоморфизмы, соответствующие матрицам (5.5).

Доказательство. Положим $\mathfrak{g}_0=\{x\in\mathfrak{g}\mid A_1\left(x\right)=x\}.$

Лемма 1. Алгебра до абелева.

Д о к а з а т е л ь с т в о. Известно, что если σ — автоморфизм конечного порядка полупростой алгебры Ли \mathfrak{a} , $\mathfrak{a}^{\sigma} \stackrel{\text{def}}{=} \{x \in \mathfrak{a} \mid \sigma(x) = x\}$, то 1) $\mathfrak{a}^{\sigma} \neq 0$, 2) \mathfrak{a}^{σ} — прямое произведение полупростой и абелевой алгебр (см. [3], лемма 1). Если бы алгебра \mathfrak{g}_0 была неабелевой, то, взяв в качестве \mathfrak{a} полупростую часть \mathfrak{g}_0 , а в качестве σ — ограничение A_2 на \mathfrak{a} , мы получили бы, что существует ненулевое $x \in \mathfrak{g}_0$ такое, что A_2 (x) = x, а это невозможно.

 Π е м м а 2. Действие \bar{H} на множестве вершин Δ транзитивно.

Доказательство. Согласно [3], каждой вершине δ графа Δ каноническим образом соответствует элемент $h_{\delta} \in \mathfrak{g}_0$; при этом векторы h_{δ} порождают \mathfrak{g}_0 и число этих векторов равно dim \mathfrak{g}_0+1 . Допустим, что множество вершин Δ можно представить в виде объединения H-инвариантных подмножеств S_1 и S_2 , где $S_1 \cap S_2 = \phi$, $S_1 \neq \phi$, $S_2 \neq \phi$. Положим $x = \sum_{\delta \in S_i} h_{\delta}$, i=1,2. Так как S_i — инвариантно, то A_2 (x_i) = x_i . Так как

 $x_i \in \mathfrak{g}_0$, то $A_1(x_i) = x_i$. Поэтому $x_i = 0$. Итак, $\sum_{\delta \in S_1} h_{\delta} = \sum_{\delta \in S_2} h_{\delta} = 0$, т. е. мы получили два независимых линейных соотношения между h_{δ} , а это

Из леммы 2 следует, что группа Aut Δ действует транзитивно на множестве вершин Δ . Поэтому Δ имеет тип $A_{n-1}^{(1)}$ (см. таблицы из [3]). Отсюда следует (см. [3], теорема 2), что $\mathfrak{g} \approx sl$ (n), а автоморфизм A_1 внутренний. Так как A_1 и A_2 играют одинаковую роль, то автоморфизм A_2 тоже внутренний.

Пусть A_1 : $sl\ (n) \to sl\ (n),\ A_2$: $sl\ (n) \to sl\ (n)$ — внутренние автоморфизмы, соответствующие матрицам $P_1,\ P_2 \Subset SL\ (n)$. Так как $A_1A_2 = A_2A_1$, то $P_1P_2P_1^{-1}P_2^{-1}$ — скалярная матрица. Таким образом, сопоставив элементу $(i,j) \Subset \mathbf{Z}^2$ оператор $p_1^ip_2^j$, мы получим проективное представление \mathbf{Z}^2 в пространстве \mathbf{C}^n . Это представление неприводимо: в противном случае существовала бы ненулевая матрица $B \Subset sl\ (n)$, коммутирующая с P_1 и P_2 , и тогда выполнялись бы равенства $A_1\ (B) = A_2\ (B) = B$. Для доказательства предложения осталось воспользоваться хорошо известной теоремой о том, что любое n-мерное неприводимое проективное представление группы \mathbf{Z} эквивалентно представлению, при котором элементу $(i,j) \Subset \mathbf{Z}^2$ соответствует оператор $T_1^iT_2^j$, где T_1 и T_2 определяются формулой (5.5.).

§ 6. Тригонометрические решения

При описании тригонометрических решений важную роль играют понятия кокстеровского автоморфизма и простых весов. Эти понятия вводятся в пунктах 6.1 и 6.2. В пункте 6.3 приводится формула для про-

стейщего тригонометрического решения и объясняется его связь с цепочками Тоды — Богоявленского. В пункте 6.4 сформулирована основная теорема, описывающая все невырожденные тригонометрические решения. Оставшаяся часть параграфа посвящена доказательству этой теоремы.

6.1. Напомним, что $\mathfrak g$ обозначает простую конечномерную алгебру Ли над $\mathfrak C$. Обозначим через $\operatorname{Aut}^0\mathfrak g$ связную компоненту единицы группы $\operatorname{Aut}\mathfrak g$. Элементы $\operatorname{Aut}^0\mathfrak g$ называются внутренними автоморфизмами. Известно, что $\operatorname{Aut}\mathfrak g/\operatorname{Aut}^0\mathfrak g$, где Δ — схема Дынкина $\mathfrak g$. В частности, порядок группы $\operatorname{Aut}\mathfrak g/\operatorname{Aut}^0\mathfrak g$ может равняться 1,2 или 6, причем последняя возможность реализуется только при $\mathfrak g=O(8)$ (в этом случае $\operatorname{Aut}\mathfrak g/\operatorname{Aut}^0\mathfrak g\simeq S_3$). Пусть $\mathfrak o \in \operatorname{Aut} \Delta$, $K_{\mathfrak o}$ — соответствующий смежный класс группы $\operatorname{Aut}\mathfrak g$ по подгруппе $\operatorname{Aut}^0\mathfrak g$.

Определение. Автоморфизм $A \subseteq K_{\sigma}$ называется кокстеровским, если выполняются следующие условия:

а) алгебра $\mathfrak{g}^A \stackrel{\mathrm{def}}{=} \{x \in \mathfrak{g} \mid Ax = x\}$ абелева;

б) A имеет наименьший порядок среди автоморфизмов $A' \subset K_{\sigma}$ таких, что алгебра $\mathfrak{g}^{A'}$ абелева.

Из результатов [3] следует, что для любой пары (\mathfrak{g} , σ) кокстеровский автоморфизм C единствен с точностью до сопряжения внутренними автоморфизмами (в терминах [3] кокстеровский автоморфизм соответствует градуировке типа (1, 1, . . . , 1)). Порядок h автоморфизма C называется числом Кокстера пары (\mathfrak{g} , σ). Приведем таблицу для чисел Кокстера, за-имствованную из [11].

Тип (9,σ)	$A_n^{(1)}$	$A_{2n}^{(2)}$	$A_{2n+1}^{(2)}$	$B_n^{(1)}$	$C_n^{(1)}$	$D_n^{(1)}$	$D_n^{(2)}$	$D_3^{(4)}$	$E_6^{(1)}$	$E_6^{(2)}$	E ₇ ⁽¹⁾	$E_8^{(1)}$	F (1)	$G_{2}^{(1)}$
h	n+1	4n+2	4n + 2	2n	2n	2n-2	2n	12	12	18	18	30	12	6

В этой таблице подразумевается, что (\mathfrak{g}, σ) имеет, скажем, тип $D_n^{(2)}$, если \mathfrak{g} имеет тип D_n , а порядок σ равен 2 (отметим, что σ определяется своим порядком однозначно с точностью до сопряжения).

Приведем способ построения кокстеровского автоморфизма. Выберем в \mathfrak{g} систему образующих Вейля $\{X_i, Y_i, H_i\}$, где i пробегает множество вершин Δ (см. [8], часть III, глава VI, \S 4). Обозначим через C автоморфизм \mathfrak{g} такой, что C (H_i) = $H\sigma$ (i), C (X_i) = $e^{2\pi i/h}X_{\sigma(i)}$, C (Y_i) = $e^{-2\pi i/h}Y_{\sigma(i)}$. Из результатов [3] следует, что автоморфизм C кокстеровский.

Наконец, укажем явный вид кокстеровских автоморфизмов классических алгебр. Обозначения: C — кокстеровский автоморфизм, m — порядок σ , S — матрица c единицами на побочной диагонали и нулями на остальных местах, $\omega = e^{2\pi i/h}$, где h — число Кокстера пары (\mathfrak{g}, σ) . Для алгебр o (n) и sp (n) используются не вполне стандартные реализации, а именно: o $(h) \stackrel{\mathrm{def}}{=} \{X \in \mathrm{Mat}\ (n, \mathbf{C}) \mid X^t = -SXS^{-1}\}$, sp $(2n) = \{X \in \mathrm{Mat}\ (n, \mathbf{C}) \mid X^t = -BXB^{-1}\}$, где $B = (b_{ij}), b_{ij} = -b_{ji}, b_{ij} = 0$ при $i+j \neq 2n+1$, $b_{ij} \neq 0$ при i+j = 2n+1. Кокстеровские автоморфизмы классических алгебр Ли таковы:

1) если $\mathfrak{g} = \mathfrak{sl}$ (n), m = 1, то h = n, $C(X) = TXT^{-1}$, где $T = \operatorname{diag}(1, \omega, \ldots, \omega^{n-1})$;

2) если $\mathfrak{g}=sl\ (2n+1),\ m=2,\ \text{то}\ h=4n+2,\ C\ (X)=-TX^tT^{-1},$ где $T=S\cdot \mathrm{diag}\ (1,\ \omega,\ldots,\ \omega^{2n});$

3) если $\mathfrak{g}=sl\ (2n),\ m=2,\ \text{то}\ h=4n-2,\ C\ (X)=-TX^tT^{-1},\ \text{где}\ T=S\cdot \mathrm{diag}\ (1,\ \omega,\ldots,\ \omega^{n-2},\ \omega^{n-1},\ \omega^n,\ldots,\ \omega^{2n-2});$

- 4) если $\mathfrak{g} = \sup_{\omega} (2n),$ = diag $(1, \omega, \ldots, \omega^{2n-1});$ TO h = 2n, $C(X) = TXT^{-1}$,
- $\mathfrak{g}=o~(2n+1),$ то $h=2n,~C~(x)=TXT^{-1},$ = diag $(1, \omega, ..., \omega^{2n-1}, 1);$
- 6) если $\mathfrak{g}=O(2n),\ m=1,\ \text{то}\ h=2n-2,\ C(X)=TXT^{-1},\ \text{где}$ $T=\mathrm{diag}\ (1,\ \omega,\ldots,\ \omega^{n-2},\ \omega^{n-1},\ \omega^n,\ldots,\ \omega^{2n-3},\ 1);$ 7) если $\mathfrak{g}=o\ (2n),\ m=2,\ \text{то}\ h=2n,\ C(X)=TXT^{-1},\ \text{где}$

6.2. 3афиксируем о $\in \mathrm{Aut}\Delta$ и кокстеровский автоморфизм $\mathit{C} \in \mathit{K}_{\sigma}.$ Положим $\mathfrak{h}=\{x\in\mathfrak{g}\mid Cx=x\},\ \mathfrak{h}$ — абелева подалгебра в \mathfrak{g} . Положим $\omega=e^{2ni/h}$, где \hat{h} — число Кокстера пары (\mathfrak{g} , σ). Разложим \mathfrak{g} по собственным значениям C: $\mathfrak{g}=\bigoplus_{j\in \mathbf{Z}/h\mathbf{Z}}\mathfrak{g}_j$, где $\mathfrak{g}_j=\{x\in \mathfrak{g}\mid Cx=\omega^jx\}$ (в частности, $\mathfrak{g}_0=\mathfrak{h}$). Для любого $\alpha \in \mathfrak{h}^*$ обозначим через \mathfrak{g}_j^k множество таких $x \in \mathfrak{g}$, что $[a,\,x]=\alpha$ $(a)^x$ при любом $a \in \mathfrak{h}$. Согласно [3], $\mathfrak{g}_j=\oplus \mathfrak{g}_j^\alpha$ и dim $\mathfrak{g}_j^\alpha \leqslant$

 \leqslant 1 при lpha
eq 0. Положим $\Gamma = \{lpha \in \mathfrak{h}^* \mid \mathfrak{g}_1^lpha
eq 0\}$ элементы Γ называются nростыми весами (так как C — кокстеровский автоморфизм, то из результатов [3] следует, что это определение простых весов эквивалентно определению, приведенному в [3]). Согласно [3], $0 \notin \Gamma$, так что для любого $lpha \in \Gamma$ dim $\mathfrak{g}_1^lpha = 1$. Взаимное расположение простых весов удобно описывать при помощи схемы Дынкина. Схема Дынкина пары $(\mathfrak{g}, C) = -$ это граф, вершины которого взаимно однозначно соответствуют простым весам, а характер соединения вершин A и B, соответствующих простым весам α и β, определяется следующими правилами: а) число отрезков, соединяющих α и β , равно $\frac{4(\alpha,\beta)^2}{(\alpha,\alpha)(\beta,\beta)}$; б) если $\frac{(\alpha,\alpha)}{(\beta,\beta)} > 1$, то эти отрезки снабжены стрелкой, указывающей на B. (Отметим, что изоморфизм $\mathfrak{h} \to \mathfrak{h}^*$, определяемый скалярным произведением в $\mathfrak{h},$ позволяет перенести это скалярное произведение в \mathfrak{h}^* .) Схемы Дынкина всех пар (\mathfrak{g}, C) приведены в [3].

6.3. Так как $(C\otimes C)t=t$, то $t\in \bigoplus_{j\in \mathbf{Z}/h\mathbf{Z}}(\mathfrak{g}_j\otimes \mathfrak{g}_{-j})$. Проекцию t на $\mathfrak{g}_j\otimes$

 \otimes \mathfrak{g}_{-i} обозначим t_i . Положим

$$\xi(\lambda) = \frac{t_0}{2} + \frac{1}{\lambda^h - 1} \sum_{i=0}^{h-1} t_i \lambda^i, \quad X(u) = \xi(e^{u/h}). \tag{6.1}$$

 Π редложение 6.1. Функция X (u), определенная формулой (6.1), является решением уравнения (1.4) с множеством полюсов $2\pi i \mathbf{Z}$ и вычетом t в нуле.

Доказательство. Легко проверить, что X ($u+2\pi i$) = ($C\otimes$ \otimes 1)X(u), $X^{21}(u) = -X^{12}(-u)$, $\lim_{n \to \infty} uX(u) = t$, множество полюсов X (u) равно $2\pi i {f Z}$. Таким образом, из леммы 5.1 следует, что функция

$$Z\;(\lambda,\;\mu) \stackrel{\text{def}}{=} \left[\,\xi^{\,12}\;(\lambda),\;\xi^{\,13}\;(\lambda\mu)\right] \,+\, \left[\,\xi^{\,12}\;(\lambda),\,\xi^{\,23}\;(\mu)\right] \,+\, \left[\,\xi^{\,13}(\lambda\mu),\;\xi^{\,33}\;(\mu)\right]$$

не имеет полюсов при $\lambda \neq 0, \infty, \, \mu \neq 0, \infty$. Так как ξ (λ) не имеет полюсов при $\lambda = 0, \infty$, то Z ($\lambda, \, \mu$) не имеет полюсов также при $\lambda = 0, \infty$ и при $\mu = 0, \infty$. Поэтому Z ($\lambda, \, \mu$) — константа. С другой стороны, $\lim_{\lambda, \, \mu \to \infty} Z$ ($\lambda, \, \mu$) =

=0, так как $t_0\in\mathfrak{h}\otimes\mathfrak{h}$, а алгебра \mathfrak{h} абелева. \blacksquare

Замечания. 1) Легко видеть, что группа инвариантности G решения (6.1) состоит из тех и только тех автоморфизмов \mathfrak{g} , которые коммутируют с C. Ясно, что G содержит подгруппу H, порожденную C и автоморфизмами e^{ada} , $a \in \mathfrak{h}$. Можно показать, что G(H) — это группа автоморфизмов схемы Дынкина (\mathfrak{g} , C).

2) Предложение 6.1 останется в силе, если C заменить любым автоморфизмом конечного порядка A таким, что алгебра $\mathfrak{g}^A \stackrel{\text{def}}{=} \{x \in \mathfrak{g} \mid Ax = x\}$ абелева. Оказывается, однако, что решение, соответствующее любому такому A, эквивалентно решению, соответствующему C.

В [10] было изучено уравнение

$$\ddot{\varphi} = -\left(\operatorname{grad} U\right)(\varphi), \, \varphi\left(t\right) \stackrel{\cdot}{=} \mathfrak{h}, \quad U\left(\varphi\right) = \sum_{\alpha \in \Gamma} e^{2\alpha(\varphi)}. \tag{6.2}$$

В частности, для него была найдена (L, A)-пара вида

$$L(\lambda) = \dot{\varphi} + \lambda e^{ad\varphi}I + \lambda^{-1}e^{-ad\varphi}J, \quad A(\lambda) = \lambda^{-1}e^{-ad\varphi}J - \lambda e^{ad\varphi}I, \quad (6.3)$$

где $I \in \mathfrak{g}$, $J \in \mathfrak{g}_{-1}$. Следующее предложение показывает, что решение (6.1) уравнения (1.4) является классической r-матрицей ([5], с. 141), соответствующей оператору L вида (6.3).

Предложение $6.2.~\{L(\lambda),~L'(\mu)\}=2~[L(\lambda)\otimes 1+1\otimes L(\mu),$

 $\xi (\lambda/\mu)$], где ξ определяется формулой (6.1).

Поясним, что L (λ) и L (μ) рассматриваются как \mathfrak{g} -значные функции от ϕ и ϕ , а их скобка Пуассона — это функция от ϕ и ϕ со значениями в $\mathfrak{g}\otimes\mathfrak{g}$.

Доказательство. Пусть $I = \sum_{\alpha \in \Gamma} I_{\alpha}$, $J = \sum_{\alpha \in \Gamma} J_{\alpha}$, где $I_{\alpha} \in \mathfrak{g}_{1}^{\alpha}$, $J_{\alpha} \in \mathfrak{g}_{-1}^{-\alpha}$ (из инвариантности скалярного произведения в \mathfrak{g} следует, что $\mathfrak{g}_{-1} = \bigotimes_{\alpha \in \Gamma} \mathfrak{g}_{-1}^{-\alpha}$). Обозначим через α^* образ α при изоморфизме $\mathfrak{h}^* \cong \mathfrak{h}$, определяемом скалярным произведением в \mathfrak{h} . Имеем

$$\begin{split} \{L\left(\lambda\right),L\left(\mu\right)\} &= \{\dot{\varphi},\mu e^{ad\varphi}I + \mu^{-1}e^{ad\varphi}J\} + \{\lambda e^{ad\varphi}I + \lambda^{-1}e^{-ad\varphi}J,\dot{\varphi}\} = \\ &= \sum_{\alpha\in\Gamma} \left(\{\dot{\varphi},\mu e^{\alpha(\varphi)}\,I_{\alpha} + \mu^{-1}e^{\alpha(\varphi)}\,I_{\alpha}\} + \{\lambda e^{\alpha(\varphi)}\,I_{\alpha} + \lambda^{-1}e^{\alpha(\varphi)}\,J_{\alpha},\,\dot{\varphi}\}\right) = \\ &= \sum_{\alpha\in\Gamma} e^{\alpha(\varphi)}\left(\mu\alpha^{*}\otimes I_{\alpha} + \mu^{-}/\alpha^{*}\otimes J_{\alpha} - \lambda I_{\alpha}\otimes\alpha^{*} - \lambda^{-1}J_{\alpha}\otimes\alpha^{*}\right). \end{split}$$

C другой стороны, так как $[\phi \otimes 1 + 1 \otimes \dot{\phi}, \, \xi \, (\lambda/\mu)] = 0,$ то

$$\begin{split} \left[L\left(\lambda \right) \otimes \mathbf{1} + \mathbf{1} \otimes L\left(\mu \right), \xi \left(\frac{\lambda}{\mu} \right) \right] = \\ = \sum_{\alpha \in \Gamma} e^{\alpha(\phi)} \left[\lambda I_{\alpha} \otimes \mathbf{1} + \mathbf{1} \otimes \mu I_{\alpha} + \lambda^{-1} J_{\alpha} \otimes + \mathbf{1} \otimes \mu^{-1} J_{\alpha}, \xi \left(\frac{\lambda}{\mu} \right) \right]. \end{split}$$

Остается проверить, что

$$\left[\lambda I_{\alpha} \otimes 1 + 1 \otimes \mu I_{\alpha}, \xi\left(\frac{\lambda}{\mu}\right)\right] = \frac{1}{2} \left(\mu \alpha^* \otimes I_{\alpha} - \lambda I_{\alpha} \otimes \alpha^*\right), \tag{6.4}$$

$$\left[\lambda^{-1}J_{\alpha}\otimes 1 + 1\otimes \mu^{-1}J_{\alpha}, \xi\left(\frac{\lambda}{\mu}\right)\right] = \frac{1}{2}\left(\mu^{-1}\alpha^{*}\otimes J_{\alpha} - \lambda^{-1}J_{\alpha}\otimes \alpha^{*}\right), \quad (6.5)$$

Докажем (6.4). Из равенства $[I_{\alpha} \otimes 1 + 1 \otimes I_{\alpha}, t] = 0$ вытекает, что $[1 \otimes I_{\alpha}, t_j] + [I_{\alpha} \otimes 1, t_{j-1}] = 0, \ j \in \mathbf{Z}/h\mathbf{Z}$. Поэтому

$$\left[\lambda I_{\alpha} \otimes \mathbf{1} \otimes \mu I_{\alpha}, \xi\left(\frac{\lambda}{\mu}\right)\right] = \left[\lambda I_{\alpha} \otimes \mathbf{1} + \mathbf{1} \otimes \mu I_{\alpha}, \frac{t_{0}}{2}\right] - \left[\mathbf{1} \otimes \mu I_{\alpha}, t_{0}\right] = \\
= \frac{\mu}{2} \left[t_{0}, \mathbf{1} \otimes I_{\alpha}\right] - \frac{\lambda}{2} \left[t_{0}, I_{\alpha} \otimes \mathbf{1}\right] = \frac{\mu}{2} \alpha^{*} \otimes I_{\alpha} - \frac{\lambda}{2} I_{\alpha} \otimes \alpha^{*}.$$

Точно так же доказывается (6.5). 🔳

Те же рассуждения, что при доказательстве предложения 6.2, показывают, что решение (6.1) уравнения (1.4) является классической r-матрицей, соответствующей двумерному обобщению уравнения (6.2) (см. [6], [12]).

6.4. Пусть X(u) — невырожденное тригонометрическое решение уравнения (1.4). Без ограничения общности можно считать, что множество полюсов X(u) — это $2\pi i \mathbf{Z}$. Пусть A — автоморфизм \mathfrak{g} такой, что $X(u+2\pi i)=(A\otimes 1)\,X(u)$. Обозначим через σ автоморфизм схемы Дынкина Δ алгебры \mathfrak{g} , определяемый A. В этой ситуации будем говорить, что решение X(u) соответствует σ . Заметим, что если X(u) заменить эквивалентным решением, то A заменится на $T_1AT_2^{-1}$, где T_1 и T_2 принадлежат одной и той же связной компоненте $\operatorname{Aut}\mathfrak{g}$, и поэтому класс сопряженности σ не изменится.

Перейдем к описанию общего вида тригонометрических решений, соответствующих фиксированному $\sigma \in \operatorname{Aut} \Delta$. Зафиксируем кокстеровский автоморфизм $C \in K_{\sigma}$. Пусть h, Γ , t_j , . . . обозначают то же, что в пунктах 6.1-6.3. Дискретным параметром, от которого зависит решение, служит тройка $(\Gamma_1, \Gamma_2, \tau)$, где $\Gamma_1, \Gamma_2 \subset \Gamma$, τ — взаимно однозначное отображение Γ_1 на Γ_2 такое, что а) для любых α , $\beta \in \Gamma$ (τ (α), τ (β)) = (α, β) , τ (τ) для любого τ (τ) для любого τ (τ) имеет смысл только если τ (τ) τ (τ). Отметим, что выражение τ (τ) имеет смысл только если τ (τ), . . . , τ (τ) не имеет смысла при достаточно больших τ τ . Тройку (τ), τ , удовлетворяющую условиям a) и τ 0, будем называть допустимой.

Пусть (Γ_1 , Γ_2 , τ) — допустимая тройка. Непрерывным параметром, от которого зависит решение, служит тензор $r \in \mathfrak{h} \otimes \mathfrak{h}$, удовлетворяющий системе уравнений

$$r^{12} + r^{21} = t_0, (6.6)$$

$$(\tau \alpha \otimes 1)(r) + (1 \otimes \alpha)(r) = 0, \ \alpha \in \Gamma_1.$$
 (6.7)

Поясним, что если $r=\sum\limits_{i=1}^k h_i\otimes h_i^{'}, h_i, h_i^{'}\in \mathfrak{h}, \alpha\in \mathfrak{h}^*,$ то

$$(\alpha \otimes 1)(r) \stackrel{\text{def}}{=} \sum_{i=1}^{k} \alpha(h_i) h_i^{'}, (1 \otimes \alpha)(r) \stackrel{\text{def}}{=} \sum_{i=1}^{k} \alpha(h_i^{'}) h_i.$$

Л е м м а 6.1. Система уравнений (6.6), (6.7) совместна. Решениями соответствующей однородной системы являются кососимметрические тензоры из $\mathfrak{h}_0 \otimes \mathfrak{h}_0$, где $\mathfrak{h}_0 \stackrel{\text{def}}{=} \{a \in \mathfrak{h} | \forall \alpha \in \Gamma_1, \ \alpha \ (a) = (\tau \alpha) \ (a) \}$ и только эти тензоры.

Доказательство этой леммы, как и лемм 6.2—6.4 будет приведено в пункте 6.6.

Обозначим через \mathfrak{a}_i (i=1,2) подалгебру в \mathfrak{g} , порожденную подпространствами \mathfrak{g}_1^{α} , $\alpha \in \Gamma_i$. Напомним, что $\mathfrak{g} = \bigoplus_{j,\alpha} \mathfrak{g}_j^{\alpha}$.

 Π е м м а 6.2. \mathfrak{a}_i является суммой некоторых из подпространств \mathfrak{a}_i^{α}

Согласно лемме 6.2, существует единственный проектор $P\colon \mathfrak{g} \to \mathfrak{a}_1$ такой, что $P(\mathfrak{g}_j^\alpha)=0$, если $\mathfrak{g}_j^\alpha \not\subset \mathfrak{a}_1$. Для любого $\alpha \in \Gamma_1$ зафиксируем изоморфизм векторных пространств $\mathfrak{g}_1^\alpha \simeq \mathfrak{g}_1^{\tau(\alpha)}$ (напомним, что $\dim \mathfrak{g}_1^\alpha = \dim \mathfrak{g}_1^{\tau(\alpha)} = 1$).

И е м м а 6.3. Изоморфизмы $\mathfrak{g}_1^{\alpha} \simeq \mathfrak{g}_1^{\tau(\alpha)}$, $\alpha \in \Gamma_1$, продолжаются до изоморфизма алгебр Ли θ : $\mathfrak{a}_1 \simeq \mathfrak{a}_2$.

Определим линейный оператор $\tilde{\theta}$: $\mathfrak{g} \to \mathfrak{g}$ формулой $\tilde{\theta}$ $(x) = \theta$ (P(x)). Лем ма 6.4. Оператор $\tilde{\theta}$ нильпотентен.

Положим
$$\psi = \frac{\tilde{\theta}}{1-\tilde{\theta}} = \tilde{\theta} + \tilde{\theta}^2 + \dots$$

Теорем а 6.1. 1) Пусть $r \in \mathfrak{h} \otimes \mathfrak{h}$ удовлетворяет системе уравнений (6.6), (6.7). Тогда функция

$$X(u) = r + \frac{1}{e^{u} - 1} \sum_{j=0}^{h-1} e^{ju/h} t_{j} - \sum_{j=1}^{h-1} e^{ju/h} (\psi \otimes 1) t_{j} + \sum_{j=1}^{h-1} e^{-ju/h} (1 \otimes \psi) t_{-j}$$
 (6.8)

является решением уравнения (1.4) с множеством полюсов $2\pi i {\bf Z}$ u вычетом t в нуле. При этом X ($u+2\pi i$) = ($C\otimes 1$)X(u).

2) Всякое тригонометрическое решение уравнения (1.4) с множеством полюсов $2\pi i \mathbf{Z}$ и вычетом t в нуле, соответствующее автоморфизму $\sigma \in \mathrm{Aut} \, \mathbf{Z}$, эквивалентно решению вида (6.8).

Доказательству этой теоремы посвящены пункты 6.5-6.7.

3 амечание. 1) Решение (6.1) соответствует случаю, когда $\Gamma_1=\Gamma_2=\phi,\ r=t_0/2.$

 $\tilde{2}$) Легко видеть, что решение (6.8) \mathfrak{h}_0 -инвариантно, где \mathfrak{h}_0 обозначает то же, что в лемме 6.1. Поэтому, прибавив к этому решению любой кососимметрический тензор из $\mathfrak{h}_0 \otimes \mathfrak{h}_0$, мы получим снова решение уравнения (1.4) (см. пункт 1.1). Согласно лемме 6.1, этим способом можно все решения, соответствующие фиксированной тройке $(\Gamma_1, \Gamma_2, \tau)$, получить, исходя из одного решения. Далее, нетрудно показать, что изменение изоморфизмов $\mathfrak{g}_1^{\alpha} \simeq \mathfrak{g}_1^{\tau(\alpha)}$, $\alpha \in \Gamma_1$ от их выбора зависят θ , ψ и, следовательно, X (u) приводит к замене X (u) на $(e^{ada} \otimes e^{ada})$ X (u), $a \in \mathfrak{h}$. Таким образом, из теоремы 6.1 следует, что, с точностью до описанных в пункте 1.1 способов размножения решений и таких тривиальных преобразований, как умножение решения на число и замена u на cu, число невырожденных тригонометрических решений уравнения (1.4) конечно.

3) Можно показать, что если решения X(u) и $\widetilde{X}(u)$ вида (6.8) эквивалентны, то $\widetilde{X}(u) = (g \otimes g)X(u), g \in G$, где G обозначает то же, что в за-

мечании 1 после предложения 6.1.

4) Из предыдущего замечания и замечания 1 после предложения 6.1 следует, что а) если решения X (u) и \widetilde{X} (u) вида (6.8), соответствующие тройкам (Γ_1 , Γ_2 , τ) и ($\widetilde{\Gamma}_1$, $\widetilde{\Gamma}_2$, $\widetilde{\tau}$) эквивалентны, то ($\widetilde{\Gamma}_1$, $\widetilde{\Gamma}_2$, $\widetilde{\tau}$) получается применением к (Γ_1 , Γ_2 , τ) некоторого автоморфизма схемы Дынкина пары (\mathfrak{g} , C); б) если ($\widetilde{\Gamma}_1$, $\widetilde{\Gamma}_2$, $\widetilde{\tau}$) получается применением к (Γ_1 , Γ_2 , τ) автоморфизма схемы Дынкина пары (\mathfrak{g} , C), то любое решение вида (6.8), соответствующее (Γ_1 , Γ_2 , τ), эквивалентно некоторому решению, соответствующему ($\widetilde{\Gamma}_1$, $\widetilde{\Gamma}_2$, $\widetilde{\tau}$).

 Π р и м е р ы. 1) $\mathfrak{g}=sl$ (2). У схемы Дынкина \mathfrak{g} есть только тождественный автоморфизм:

$$h = 2, \mathfrak{h} = \left\{ \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \middle| a \in \mathbf{C} \right\}, \ \mathfrak{g}_1 = \left\{ \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix} \middle| x, \mathbf{y} \in \mathbf{C} \right\}, \ \Gamma = \{\alpha_1, \alpha_2\}.$$

$$C(X) = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} X \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix},$$

где α_1 $(e_{22}-e_{11})=2$, $\alpha_2=-\alpha_1$ (здесь и в дальнейшем e_{ij} обозначает матрицу, у которой на пересечении i-ой строки и j-го столбца стоит единица, а остальные элементы равны нулю). Имеем: $\mathfrak{g}_1^{\alpha_1}=\mathbb{C}e_{21}$, $\mathfrak{g}_1^{\alpha_2}=\mathbb{C}e_{12}$. Схема Дынкина (\mathfrak{g},C) имеет вид

$$\alpha_1 \circ \alpha_2$$

Существуют две существенно различные допустимые тройки (Γ_1,Γ_2,τ) : а) $\Gamma_1=\Gamma_2=\phi$, б) $\Gamma_1=\{\alpha_1\}$, $\Gamma_2=\{\alpha_2\}$, τ $(\alpha_1)=\alpha_2$ (случай, когда $\Gamma_1=\{\alpha_2\}$, $\Gamma_2=\{\alpha_1\}$, можно не рассматривать ввиду замечания 4)). Имеем: $t_0=\frac{1}{2}$ $(e_{11}-e_{22})\otimes (e_{11}-e_{22})$, $t_1=e_{12}\otimes e_{21}+e_{21}\otimes e_{12}$. Система уравнений (6.6), (6.7) имеет и в случае а) и в случае б) единственное решение $r=t_0/2$. В случае б) имеем $\mathfrak{a}_1=\mathbb{C}e_{21}$, $\mathfrak{a}_2=\mathbb{C}e_{22}$; \mathfrak{g}_1 можно выбрать так, чтобы \mathfrak{g}_2 $(e_{21})=e_{12}$, тогда \mathfrak{g}_3 $(e_{21})=e_{12}$, \mathfrak{g}_3 $(e_{21})=\mathfrak{g}_3$ $(e_{21})=\mathfrak{g}_3$ $(e_{21})=\mathfrak{g}_3$ $(e_{21})=\mathfrak{g}_4$ $(e_{21})=\mathfrak{g}_5$ $(e_{21})=\mathfrak{g}_6$ $(e_{21})=$

a)
$$X_1(u) = \frac{e^u + 1}{4(e^u - 1)} (e_{11} - e_{22}) \otimes (e_{11} - e_{22}) + \frac{e_{12} \otimes e_{21} + e_{21} \otimes e_{12}}{e^{u/2} - e^{-u/2}}, (6.9)$$

6)
$$X_{2}(u) = X_{1}(u) + (e^{-u/2} - e^{u/2}) (e_{12} \otimes e_{12}). \tag{6.10}$$

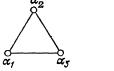
Оба решения хорошо известны. Более того, известны соответствующие решения квантового уравнения Янга — Бакстера: (6.9) соответствует тригонометрическому вырождению решения Бакстера (см. приложение к [5], формула П9), а (6.10) соответствует решению, найденному в [9] (с. 118, случай а)).

2) $\mathfrak{g}=sl$ (3). У схемы Дынкина \mathfrak{g} два автоморфизма. Соответствующие кокстеровские автоморфизмы таковы:

$$C_{1}\left(X\right) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{2\pi i/3} & 0 \\ 0 & 0 & e^{2\pi i/3} \end{pmatrix} X \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{2\pi i/3} & 0 \\ 0 & 0 & e^{4\pi i/3} \end{pmatrix}^{-1},$$

$$C_{2}\left(X\right) = - \begin{pmatrix} 0 & 0 & e^{2\pi i/3} \\ 0 & e^{\pi i/3} & 0 \\ 1 & 0 & 0 \end{pmatrix} \!\! X^{t} \! \begin{pmatrix} 0 & 0 & e^{2\pi i/3} \\ 0 & e^{2\pi i/3} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Схемы Дынкина пар (\mathfrak{g}, C_1) и (\mathfrak{g}, C_2) имеют вид



Во втором случае есть единственная допустимая тройка: $\Gamma_1 = \Gamma_2 = \phi$ (дело в том, что $(\beta_1,\ \beta_1) \neq (\beta_2,\ \beta_2)$). Соответствующее решение является классической r-матрицей для уравнения Жибера — Шабата [2]. Оно эквивалентно решению, приведенному в приложении к [5] (формула ППІ). Выпишем решения, соответствующие C_1 . В этом случае h=3, \mathfrak{g}_j — множество матриц (a_{kl}) из $sl\ (3)$ таких, что $a_{kl}=0$ при $k-l\not\equiv j\ (\text{mod }3)$. В частности, $\mathfrak{h}=\mathfrak{g}_0$ — множество диагональных матриц. Имеем: $t=\sum_{k-l\equiv j\ (\text{mod }3)}e_{kl}\otimes e_{lk}$ при $j\not=0$, $t_0=\frac{1}{3}\sum_{i\in l}(e_{ii}-e_{jj})\otimes (e_{ii}-e_{jj})$.

Простые веса α_1 , α_2 , α_3 на матрице diag (a_1, a_2, a_3) принимают значения, равные a_2-a_1 , a_3-a_2 , a_1-a_3 . При этом $\mathfrak{g}_1^{\alpha_1}=\mathrm{C} e_{21}$, $\mathfrak{g}_1^{\alpha_2}=\mathrm{C} e_{32}$, $\mathfrak{g}_{1}^{\alpha_{3}}=\mathbf{C}e_{13}.$ Допустимые тройки: а) $\Gamma_{1}=\Gamma_{2}=\phi$; б) $\Gamma_{1}=\{\alpha_{1}\},\ \Gamma_{2}=\alpha_{2},\ \tau\ (\alpha_{1})=\alpha_{2};\ \mathbf{B})\ \Gamma_{1}=\{\alpha_{1},\alpha_{2}\},\ \Gamma_{2}=\{\alpha_{2},\alpha_{3}\},\ \tau(\alpha_{1})=\alpha_{2},\ \tau\ (\alpha_{2})=\alpha_{3}.$ Рассмотрим случай в). В этом случае

$$\mathfrak{a}_{1} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ a & 0 & 0 \\ c & b & 0 \end{pmatrix} \middle| a, b, c \in \mathbf{C} \right\}, \quad \mathfrak{a}_{2} = \left\{ \begin{pmatrix} 0 & c & b \\ 0 & 0 & 0 \\ 0 & a & 0 \end{pmatrix} \middle| a, b, c \in \mathbf{C} \right\}, \\
\tilde{\theta} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & a_{31} & a_{32} \\ 0 & 0 & 0 \\ 0 & a_{21} & 0 \end{pmatrix}, \quad \psi \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & a_{31} & a_{32} + a_{21} \\ 0 & 0 & 0 \\ 0 & 0_{21} & 0 \end{pmatrix}, \\
r = \frac{1}{3} \sum_{i, j=1}^{3} r_{ij} e_{ii} \otimes e_{jj}, \quad (r_{ij}) = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}. \quad (6.11)$$

Аналогичным образом рассматриваются случаи а) и б). Ответы:

а)
$$X_1(u) = \sum_{i,\ j=1}^3 \rho_{ij} e_{ii} \otimes e_{jj} + Y(u)$$
, где $Y(u) = \frac{1}{e^u-1} \left[\frac{1}{3} \sum_{i < j} (e_{ii} - e_{jj}) \otimes (e_{ii} - e_{jj}) + e^{u/3} \sum_{i-j \equiv 1 (\text{mod } 3)} e_{ij} \otimes e_{ji} + e^{2u/3} \sum_{i-j \equiv 2 (\text{mod } 3)} e_{ij} \otimes e_{ji} \right],$ $(\rho_{ij}) = \begin{pmatrix} \frac{1}{3} & a & b \\ b & \frac{1}{3} & a \\ a & b & \frac{1}{3} \end{pmatrix}, \quad a+b = -\frac{1}{3}.$

б) $X_{2}\left(u
ight)=r+Y\left(u
ight)-e^{u/3}e_{32}\otimes e_{12}+e_{12}^{-u/3}e_{12}\otimes e_{32}$, где r определяется формулой (6.11);

B)
$$X_3(u) = X_2(u) - e^{u/3}e_{13} \otimes (e_{12} + e_{23}) - e^{2u/3}e_{12} \otimes e_{13} + e^{-u/3}(e_{12} + e_{23}) \otimes e_{13} + e^{-2u/3}e_{13} \otimes e_{12}$$
.

6.5. В качестве первого шага к доказательству теоремы 6.1 переведем задачу классификации тригонометрических решений на другой язык.

Пусть $X\left(u
ight)$ — тригонометрическое решение уравнения (1.4) с множеством полюсов $2\pi i \mathbf{Z}$ и вычетом t в нуле (такие решения будем называть нормированными). Имеем:

$$X\ (u+2\pi i)=(A\otimes 1)X\ (u)=(1\otimes A^{-1})\ X\ (u),\ A\in {
m Aut}\, {\mathfrak g}.\ (6.12)$$
 Так как существует k такое, что $X\ (u)$ — рациональная функция от e^{ku} , то A имеет конечный порядок m . Тогда $X\ (u)={\mathfrak p}\ (e^{u/m})I_{\mu}\otimes I_{\mu}$, где $\{I_{\mu}\}$ — ортонормированный базис в ${\mathfrak g},\ {\mathfrak p}$ — рациональная функция со значениями в пространстве линейных операторов ${\mathfrak g}\to {\mathfrak g}.$ Разложим ${\mathfrak p}\ (z)$ в ряд Лорана в окрестности точки $Z=\infty$: ${\mathfrak p}\ (z)=\sum_{i=-\infty}^n {\mathfrak p}_i z^i.$ Обозначим через ${\mathfrak g}\ [z,z^{-1}]$ алгебру многочленов вида $\sum_{i=1}^n x_i z^i,\ x_i\in {\mathfrak g}.$ Определим опера-

тор Φ : \mathfrak{g} $[z,z^{-1}] o \mathfrak{g}$ $[z,z^{-1}]$ формулой $\Phi\left(\sum_{i}xz^{i}\right) = \sum_{i} \varphi_{i}\left(x_{i}\right)z^{i}$. Определим в \mathfrak{g} [z,z^{-1}] инвариантное скалярное произведение формулой $(\sum x_iz^i,\sum y_jz^j)$ = $=\sum_i (x_i,\ y_{-i})$. Положим $\zeta=e^{2\pi i/m}$. Имеем: $\mathfrak{g}=\bigoplus_{i\in \mathbf{Z}/m\mathbf{Z}}\mathfrak{g}_i$, где $\mathfrak{g}_i\stackrel{\mathrm{def}}{=}\{x\in \mathbf{Z}/m\mathbf{Z}\}$

 $\in \mathfrak{g} \mid Ax = \zeta^i x \}$. Пусть $\Pi_i : \mathfrak{g} \to \mathfrak{g}$ — проектор на \mathfrak{g}_i . Определим проектор $\Pi\colon \mathfrak{g}\ [z,\,z^{-1}] o \mathfrak{g}\ [z,\,z^{-1}]$ формулой $\prod\left(\sum x_iz^i\right) = \sum \prod_i (x_i)z^i.$

Лемма 6.5. 1) Оператор Фобладает следующими свойствами:

a) $\Phi (\mathfrak{a}z^i) \subset \mathfrak{a}z^i$,

 $6) \Phi (\mathfrak{g} z^i) = 0 \text{ npu } i \gg 0,$

B) $\Phi = \Pi \Phi \Pi$,

 $\begin{array}{l} \stackrel{-}{\Gamma} \stackrel{-}{\Phi} + \stackrel{-}{\Phi^*} = \Pi, \\ \text{д.} \ [\Phi \ (w_1), \ \Phi \ (w_2)] = \Phi \ ([w_1, \ \Phi \ (w_2)] + [\Phi \ (w_1), \ w_2] - [\Pi w_1, \ w_2]), \end{array}$

 $w_1, w_2 \in \mathfrak{g}[z, z^{-1}].$

2) Построенное отображение из множества нормированных тригонометрических решений уравнения (1.4), удовлетворяющих соотношению (6.12), в множество линейных операторов Φ : $\mathfrak{g}[z,z^{-1}] \to \mathfrak{g}[z,z^{-1}]$, обладающих свойствами а) — д), биективно.

Доказательство. 1) Свойстваа) и б) очевидны. Из (6.12) следует, что $\varphi(z,\zeta)=A\varphi(z)=\varphi(z)A$, поэтому $\mathbf{\varphi}_i=\Pi_i\varphi_i=\varphi_i\Pi_i$, откуда следует в). Чтобы доказать г), воспользуемся равенством

$$\varphi_{i} = - \mathop{\rm res}_{z=\infty} z^{-i-1} \varphi(z) = \mathop{\rm res}_{z=0} z^{-i-1} \varphi(z) + \sum_{k=0}^{m-1} \mathop{\rm res}_{z=\zeta^{k}} z^{-i-1} \varphi(z).$$

=Так как $\mathop{\mathrm{res}}_{u=0} X\left(u\right) = t$, то $\mathop{\mathrm{res}}_{u=2\pi} X\left(u\right) = (A^k \otimes 1)$ t, откуда $\mathop{\mathrm{res}}_{z=\zeta^k} \varphi$ (z) =

 $1/mA^m \cdot \zeta^k$. Из условия унитарности следует, что $\varphi(z) = -\varphi(z^{-1})^*$. Таким образом,

$$\varphi_{i} = -\operatorname{res}_{z=0} z^{-i-1} \varphi(z-1)^{*} + \frac{1}{m} \sum_{k=0}^{m-1} \zeta^{-i_{k}} A^{k} = \Pi_{i} - \varphi_{-i}^{*}$$
 (6.13)

откуда следует г). Для доказательства д) воспользуемся уравнением (1.4). Имеем:

$$[X^{12}(u), X^{13}(u+v)] = [\varphi(z_1)I_{\mu}, \varphi(z_1, z_2)I_{\nu}] \otimes I_{\mu} \otimes I_{\nu},$$

где $z_1 = e^{u/m}, z_2 = e^{v/m}$. Далее,

$$[X^{12} (u), X^{23} (v)] = (\varphi (z_1) \otimes 1 \otimes 1)[t^{12}, X^{23} (v)] = = - (\varphi (z_1) \otimes 1 \otimes 1)[t^{12}, X^{13} (v)] = = - \varphi (z_1)[I_1, \varphi (z_2)I_2] \otimes I_2 \otimes I_3$$

$$=-\; \varphi\;(z_1) \; [I_{\mu},\;\; \varphi\;(z_2)I_{\mu}] \otimes I_{\mu} \otimes I_{\gamma}, \ [X^{13}\;(u\;+\;v),\,X^{23}\;(v)] = (\varphi\;(z_1,\,z_2) \otimes 1 \otimes 1) \; [t^{13},\,X^{23}\;(v)] =$$

$$= - (\varphi (z, z_2) \otimes 1 \otimes 1) [t^{13}, X^{21} (v)] =$$

$$= - (\varphi (z, z_2) \otimes 1 \otimes 1) [t^{13}, \varphi (z_2)^* I_{\mu} \otimes I_{\mu} \otimes 1] =$$

$$= \varphi (z, z_2) [\varphi (z_2)^* I_{\mu} \otimes I_{\mu} \otimes$$

 $= \varphi(z, z_2) [\varphi(z_2)^* I_{\mu}, I_{\nu}] \otimes I_{\mu} \otimes I_{\nu}.$

Поэтому из уравнения (1.4) следует, что

$$[\,\varphi\;(z_{\,1})\;I_{\,\mu},\;\varphi\;(z,\;z_{\,2})I_{\,\nu}]\,=\,\varphi\;(z_{\,1})\;[I_{\,\mu},\;\varphi\;(z_{\,2})\;I_{\,\nu}]\,-\,\varphi\;(z,\;z_{\,2})\;[\,\varphi\;(z_{\,2})*I_{\,\mu}I_{\,\nu}]\,.$$

Разложив обе части этого равенства в ряд Лорана в окрестности точки z_1 = $z_1=z_2=\infty$, приравняв коэффициенты при z_1^{i+j} z_2^j , и воспользовавшись формулой (6.13), получим

$$\phi_i I_{\mu}, \ \phi_j I_{\nu}] = \phi_{i+j} \left[I_{\mu}, \ \phi_j I_{\nu} \right] - \phi_{i+j} \left[\phi_{-j}^* I_{\mu}, \ I_{\nu} \right] =$$
 $= \phi_{i+j} \left(\left[I_{\mu}, \ \phi_j I_{\nu} \right] + \left[\phi_j I_{\mu}, \ I_{\nu} \right] - \left[\Pi_j I_{\mu}, \ I_{\nu} \right] \right),$ откуда следует д).

2) По оператору Φ однозначно восстанавливаются φ_i , φ (z) и, наконец, Х (и). Обратив рассуждения, использованные при доказательстве

утверждения 1), получим, что если Φ обладает свойствами а)—д), то X(u)— нормированное тригонометрическое решение уравнения (1.4).

Положим $G_i = \mathfrak{g}_i z^i$, $G = \bigoplus_{i \in \mathbf{Z}} G_i$. Ясно, что G — градуированная подалгебра Ли в $\mathfrak{g}[z, z^{-1}]$, а скалярное произведение в G невырождено. Пусть Φ обладает свойствами а) — д) (см. лемму 6.5). Из свойства в) следует, что $\Phi(G) \subset G$. Пусть $f: G \to G$ — ограничение Φ на G. Тогда

$$f(G_i) \subset G_i,$$
 (6.14)

$$f(G_i) = 0 \text{ при } i \gg 0, \tag{6.15}$$

$$f + f^* = 1, (6.16)$$

$$[f(w_1), f(w_2)] = f([w_1, f(w_2)] + [f(w_1), w_2] - [w_1, w_2]), w_1, w_2 \in G. (6.17)$$

Наоборот, любой линейный оператор $f: G \to G$, обладающий свойствами (6.14) - (6.17), однозначно продолжается до оператора $\Phi: \mathfrak{g}[z, z^{-1}] \to \mathfrak{g}[z, z^{-1}]$, обладающего свойствами а) — д).

Лемма б.б. Пусть линейный оператор $f:G\to G$ удовлетворяет условию (6.16). Положим $C_1={
m Im}\;(f-1),\,C_2={
m Im}\;f.$ Тогда

a)
$$C_1^{\perp} = \operatorname{Ker} f \subset C_1$$
, $C_2^{\perp} = \operatorname{Ker} (f - 1) \subset C_2$;

- б) отображение $\theta: C_1/C_1^{\perp} \to C_2/C_2^{\perp}$, переводящее смежный класс (f-1) w в смежный класс fw, корректно определено и является ортогональным изоморфизмом;
- в) для того, чтобы f удовлетворял условию (6.17) необходимо u достаточно, чтобы C_1 и C_2 были подалгебрами в G, C_1^{\perp} и C_2^{\perp} были идеалами в C_1 и C_2 , а θ являлось изморфизмом алгебр $\mathcal{J}u$.

Доказательство. Утверждения а) и б) проверяются непосредственно. Пусть / удовлетворяет (6.17). Тогда

$$[(f-1) w_1, (f-1) w_2] = (f-1) ([w_1, f(w_2)] + [f(w_1), w_2] - [w_1, w_2]).$$
(6.18)

Из (6.18) следует, что C_1 — подалгебра, а из (6.17) следует, что C_2 — подалгебра. Из инвариантности скалярного произведения в G вытекает, что $[C_1,\ C_1^\perp] \subset C_1^\perp,\ [C_2,\ C_2^\perp] \subset C_2^\perp.$ Формулы (6.17) и (6.18) показывают, что θ — изоморфизм алгебр Ли.

Пусть C_1 и C_2 — подалгебры в G (тогда C_1^\perp и C_2^\perp — идеалы в C_1 и C_2), а θ — изоморфизм алгебр Ли. Тогда для любых $w_1,\ w_2 \in G$ существуют $u \in G,\ v \in \mathrm{Ker}\ f$ такие, что

$$[f(w_1), f(w_2)] = f(u),$$
 (6.19)

$$[(f-1) w_1, (f-1) w_2] = (f-1) u + v. (6.20)$$

Вычитая из (6.19) равенство (6.20), получим

$$[f(w_1), w_2] + [w_1, f(w_2)] - [w_1, w_2] = u - v.$$
 (6.21)

Применив к обеим частям (6.21) оператор f и воспользовавшись тем, что $v \in \text{Ker } f$, получим (6.17).

Заметим, что переход от f к θ — это обобщение преобразования Кэли, связывающего кососимметричные и ортогональные операторы.

6.6. В этом пункте будут доказаны леммы 6.1-6.4 и утверждение 1) теоремы 6.1. Пусть (Γ_1 , Γ_2 , τ) — допустимая тройка.

 Π е м м а 6.7. Векторы $\tau \alpha - \alpha$, $\alpha \in \Gamma_1$ линейно независимы.

Доказательство. Пусть $\sum_{\alpha \in \Gamma_1} \lambda_{\alpha}$ ($\tau \alpha - \alpha$) = 0. Запишем это соотношение в виде $\sum_{\alpha \in \Gamma} \mu_{\alpha} \alpha = 0$. Тогда $\sum_{\alpha \in \Gamma} \mu_{\alpha} = 0$. С другой стороны, известно [3], что между простыми весами есть ровно одно линейное соотношение, причем соответствующие коэффициенты имеют одинаковый знак. Поэтому $\mu_{\alpha} = 0$ для любого $\alpha \in \Gamma$. Отсюда следует, что $\tau(S) = S$, где $S \stackrel{\text{def}}{=} \{\alpha \in \Gamma_1 \mid \lambda_{\alpha} \neq 0\}$. Из условия б) в определении допустимой тройки и равенства $\tau(S) = S$ вытекает, что $S = \phi$.

Лем м а 6.8. Пусть V — конечномерное векторное пространство, снабженное невырожденной симметрической билинейной формой. Пусть $e_1, \ldots, e_k, f_1, \ldots, f_k \subseteq V$, причем векторы e_1, \ldots, e_k линейно независимы. Для того, чтобы существовал линейный оператор $R: V \to V$ такой, что $R+R^*=1$ и $Re_i=f_i$ при $i=1,2,\ldots,k$, необходимо и достаточно, чтобы $(e_i,f_j)+(e_j,f_i)=(e_i,e_j)$ для любых $i,j\in\{1,2,\ldots,k\}$.

Доказательство леммы 6.1. Для любого $\alpha \in \mathfrak{h}^*$ обозначим через α^* образ α при каноническом изоморфизме $\mathfrak{h}^* \to \mathfrak{h}$. Положим $r = (R \otimes 1) t_0$, $R : \mathfrak{h} \to \mathfrak{h}$. Тогда уравнения (6.6) и (6.7) перепишутся в

виде

$$R + R^* = 1, (6.22)$$

$$R\alpha^* + R^* (\tau\alpha)^* = 0, \ \alpha \in \Gamma_1. \tag{6.23}$$

Ввиду (6.22), уравнение (6.23) можно переписать в виде

$$R\alpha^* + R^* (\tau\alpha)^* = 0, \alpha \in \Gamma_1. \tag{6.24}$$

Поэтому из лемм 6.7 и 6.8 следует, что для доказательства совместности системы уравнений (6.6), (6.7) достаточно для любых α , $\beta \in \Gamma_1$ проверить равенство ($\tau \alpha - \alpha, \tau \beta$) + ($\tau \beta - \beta, \tau \alpha$) = ($\tau \alpha - \alpha, \tau \beta - \beta$). Это равенство эквивалентно условию а) в определении допустимой тройки. Однородная система, соответствующая уравнениям (6.6) и (6.7), эквивалентна следующей системе:

$$r^{12}+r^{21}=0$$
, $(\tau\alpha\otimes 1)$ $(r)=(\alpha\otimes 1)$ (r) , $\alpha\in\Gamma_1$.

Ее решениями являются кососимметрические тензоры из $\mathfrak{h}_0 \otimes \mathfrak{h}_0$.

Выберем ненулевые векторы $e_{\alpha}^{+} \in \mathfrak{g}_{1}^{\alpha}$, $\alpha \in \Gamma_{1}$. Для любого $\alpha \in \Gamma$ обозначим через e_{α}^{-} элемент \mathfrak{g}_{-1} такой, что $(e_{\alpha}^{-}, e_{\beta}^{+}) = \delta_{\alpha\beta}$ при всех $\beta \in \Gamma$. Для любых α , $\beta \in \Gamma$ положим $A_{\alpha\beta} = \beta$ (h_{α}) , где $h_{\alpha} \stackrel{\text{def}}{=} 2\alpha */(\alpha, \alpha)$. Известно [3], что $A_{\alpha\beta} \in \mathbf{Z}$, $A_{\alpha\beta} < 0$ при $\alpha \neq \beta$. Кроме того, известно (см. [3], пункт 4, а также лемму 9 из [4]), что

$$[e_{\alpha}^{+}, e_{\beta}^{-}] = \delta_{\alpha\beta}h_{\alpha}, [h_{\alpha}, e_{\beta}^{+}] = A_{\alpha\beta}e_{\beta}^{+}, \quad [h_{\alpha}, e_{\beta}^{-}] = -A_{\alpha\beta}e_{\beta}^{-},$$
 (6.25)

 $(ade_{\alpha}^{+})^{1-A_{\alpha\beta}}e_{\beta}^{+}=(ade_{\alpha}^{-})^{1-A_{\alpha\beta}}e_{\beta}^{-}=0$ при $\alpha\neq\beta$. Пусть G и G_{j} обозначают то же, что в пункте 6.5, в ситуации, когда A=C, m=h. Положим $G^{+}=\bigoplus_{j=1}^{\infty}G_{j}$, $G^{-}=\bigoplus_{j=1}^{\infty}G_{-j}$. Известно [3], что алгебра G^{+} порождается элементами $e_{\alpha}^{+}z$, $\alpha\in\Gamma$, G^{-} — элементами $e_{\alpha}^{-}z^{-1}$, а $G_{0}=\mathfrak{h}$ — элементами h_{α} . Для любого $S\subset\Gamma$ обозначим через G_{s} (соответственно, G_{s}^{+}) подалгебру в G_{s} порожденную элементами $e_{\alpha}^{+}z$, h_{α} , $e_{\alpha}^{-}z^{-1}$, $\alpha\in S$ (соответственно, элементами $e_{\alpha}^{+}z$, $\alpha\in S$).

Лемма 6.9. Пусть $S \subset \Gamma$, $S \neq \Gamma$. Тогда

а) G_S — полупростая конечномерная алгебра Ли с образующими Вейля e^+_{α} z, $\tilde{e_{\alpha}}$ z^{-1} , k_{α} ;

б) $G_{\rm S}^+$ является суммой некоторых из подпространств $\mathfrak{g}_{j}^{\gamma}z^{j}$, $\gamma \in$ $\in \mathfrak{h}^* \mid \{0\};$

B)
$$G_S^+ \subset \bigoplus_{j=1}^{n-1} G_j$$
.

Доказательство. Из результатов [3] нетрудно вывести, что матрица $(A_{\alpha\beta})$, α , $\beta \in S$ является матрицей Картана полупростой конечномерной алгебры Ли. Отсюда и из (6.25) вытекает а). Так как $\dim \mathfrak{g}_1^{\gamma} =$ = 1 при $\gamma \neq 0$, то для доказательства б) достаточно показать, что если $m{\gamma} \in \mathfrak{h}^*, G^{^+\!}_{\mathbf{S}} \cap \, \mathfrak{g}^\gamma_j z^{_j}
eq 0,$ то $m{\gamma}
eq 0.$ Действительно, из а) следует, что в этом случае γ $(h_{\alpha}) \neq 0$ для некоторого $\alpha \in S$. Если бы $G_S^+ \subset \bigoplus^{h-1} G_j$, , то $G_S^+ \cap$ \bigcap $G_h
eq 0$, что противоречит б), так как $[\mathfrak{h}, G_h] = [\mathfrak{h}, \mathfrak{h}z^h] \stackrel{\text{'=-!}}{=} 0$.

Из леммы 6.9 немеделенно следует лемма 6.2 (\mathfrak{a}_i — это образ $G_{\Gamma_i}^+$ при каноническом гомоморфизме $G \to \mathfrak{g}$).

Пусть заданы допустимая тройка $(\Gamma_1, \Gamma_2, \tau)$ и изоморфизм $\varphi_\alpha \colon \mathfrak{g}_1^\alpha \xrightarrow{}$ $\widetilde{\to}$ $\mathfrak{g}_1^{\tau(\alpha)}$. Будем предполагать, что элементы e_{α}^+ , $\alpha \in \Gamma$ выбраны так, что $\varphi_{\alpha}\left(e_{\alpha}^{+}\right)=e_{\tau(\alpha)}^{+}$ при $\alpha\in\Gamma_{1}$ (такой выбор возможен ввиду условия б) из определения допустимой тройки). Из леммы 6.9 следует, что существует изоморфизм $T\colon G_{\Gamma_1}\stackrel{\sim}{\to} G_{\Gamma_2}$ такой, что $T\ (e^+_\alpha z)=e^+_{\tau(\alpha)}\,z,\ T\ (e^-_\alpha z^{-1})=e^-_{\tau(\alpha)}\,z^{-1}$, $T(h_{\alpha}) = h_{\tau(\alpha)}.$

Отсюда вытекает лемма 6.3.

Определим линейный оператор $ilde{T}\colon G^+ o G^+$ следующим образом: если $w \in G_{\Gamma_1}^+$, то $\widetilde{T}(w) = T(w)$; если же $\gamma \in \mathfrak{h}^*, j \in \mathbb{N}, \mathfrak{g}_i^{\gamma} z^j \subset G_{\Gamma_1}^+, \widetilde{T}(\mathfrak{g}_i^* z^j) = 0.$ Π е м м а 6.10. Оператор \widetilde{T} нильпотентен.

Доказательство. Допустим, что $w \in \mathfrak{g}_j^{\gamma}$, $z^j \subset G_{\Gamma_1}^+$, $w \neq 0$, причем для любого k > 0 T^k $(w) \in G_{\Gamma_1}^+$. Пусть T $(w) \in \mathfrak{g}_j^{\gamma'}z^j$. Ясно, что $\gamma = \sum_{\alpha \in S} n_{\alpha}$, α , где $n_{\alpha} > 0$, $S \subset \Gamma_1$, $\gamma' = \sum_{\alpha \in S} n_{\alpha} \cdot \tau$ $(\alpha) = \sum_{\alpha \in S'} n'_{\alpha} \cdot \alpha$, где $n'_{\alpha} > 0$, $S' \subset \Gamma_1$. При этом $\sum_{lpha \in S} n_lpha = \sum_{lpha \in S'} n_lpha' = j$. Так же как при доказательстве леммы 6.7, отсюда выводится, что $S' = \tau(S)$. Итак, $\tau^k(S) \subset \Gamma_1$ при любом k, что противоречит допустимости (Γ_1 , Γ_2 , τ).

Из леммы 6.10 следует лемма 6.4.

Приступим к доказательству утверждения 1) теоремы 6.1. Пусть $r \in$ $\in \mathfrak{h} \otimes \mathfrak{h}$ удовлетворяет (6.6), и (6.7), тогда $r = (R \otimes 1) \ t_0$, где $R \colon \mathfrak{h} \to \mathfrak{h}$ удовлетворяет (6.22) и (6.24). Определим $f_+ \colon G^+ \to G^+$ формулой $f_+ =$ $=\tilde{T}/(\tilde{T}-1)$. Определим $f_{-}\colon G^{-}\to G^{-}$ формулой $f_{-}=1-f_{+}^{*}$. Пусть f: $G \rightarrow G$ — линейный оператор, ограничения которого на G^+ , G^- , $\mathfrak h$ равны f_+ , f_- , R. Ясно, что f удовлетворяет условиям (6.14) — (6.16). Остается показать, что f удовлетворяет также условию (6.17) (легко видеть, что построенное по f решение уравнения (1.4) задается формулой (6.8)).

Рассмотрим тройку (C_1, C_2, θ) , соответствующую f' (см. лемму 6.6). Лемм а 6.11. 1) $Ecnu \ \underline{\alpha} \in \Gamma_i$, то $h_{\alpha} \in C_i$.

2) $\Pi y cmb \ \alpha \in \Gamma_1, \ \overline{h}_{\alpha} \ u \ \overline{h}_{\tau(\alpha)} - o \delta p a \beta b \ h_{\alpha} \ u \ h_{\tau(\alpha)} \ s \ C_1 \mid C_1^{\perp} \ u \ C_2 \mid C_2^{\perp}$ $Tor\partial a \; \theta \; (\overline{h}_{\alpha}) = \overline{h}_{\tau(\alpha)}.$

Доказательство. Из (6.24) и равенства $(\tau(\alpha), \tau(\alpha)) = (\alpha, \alpha)$ следует, что R $(h_{\tau(\alpha)}-h_{\alpha})=h_{\tau(\alpha)}$ при $\alpha\in\Gamma_1$. Отсюда легко вывести

Легко видеть, что $C_1=G_{\Gamma_1}+G^++V_1,~C_2=G_{\Gamma_2}+G^-+V_2,~$ где $V_1,~V_2$ — векторные подпространства в $\mathfrak h$. Отсюда следует, что C_1 и C_2 — подалгебры Ли в G, причем $C_i \mid C_i^\perp = G_{\Gamma_i} \otimes \mathfrak{p}_i$, где \mathfrak{p}_i — абелева алгебра,

состоящая из элементов степени 0. Покажем, что θ — изоморфизм алгебр Ли. Так как оператор θ ортогонален, то достаточно показать, что θ (w) $\hat{=}$ =T (w) при $w\in G_{\Gamma_1}$. Операторы θ и T ортогональны и сохраняют градуировку (ортогональность T следует из условия a) в определении допустимой тройки). Поэтому равенство $\theta(w) = T(w)$ достаточно доказать в случае, когда $w \in G_{\Gamma_1}$ — однородный элемент неотрицательной степени. При $w \in G_{\Gamma_1}^+$ это равенство проверяется непосредственно, а при $\deg w = 0$ оно следует из леммы 6.11.

6.7. В этом пункте используется система обозначений пункта 6.5 частности, автоморфизм A не предполагается кокстеровским). Пусть $f: G \to G$ удовлетворяет условиям (6.14) - (6.17). Имеем: G =

 $= \bigoplus G^{\lambda}$, где $G^{\lambda} \stackrel{\text{def}}{=} \bigcup \operatorname{Ker} (f - \lambda)^n$.

Лемма 6.12. Если $\lambda + \mu \neq 1$, то [G^{λ} , G^{μ}] $\subset G^{\nu}$, где $\nu = \lambda \mu/(\lambda + \mu)$

 $+ \mu - 1$). Ecau $\lambda + \mu = 1$, $\lambda \mu \neq 0$, mo $[G^{\lambda}, G^{\mu}] = 0$.

Доказательство. Если $\lambda + \mu \neq 1$, то положим $V = G^{\nu}$, $\nu = \lambda \mu/(\lambda + \mu - 1)$. Если $\lambda + \mu = 1$, $\lambda \mu \neq 0$, то положим V = 0. Надо показать, что если $(f-\lambda)^k x = 0$, $(f-\mu)^l y = 0$, то $[x, y] \in V$. Это утверждение доказывается индукцией по k+l при помощи тождества

$$[(f - \lambda) x, (f - \mu) y] = (f - \lambda) [x, (f - \mu) y] + (f - \mu) [(f - \lambda) x, y] + ((\lambda + \mu - 1) f - \lambda \mu) [x, y],$$

вытекающего из (6.17).

II емма 6.13. *Если* ψ —автоморфизм неразрешимой конечномерной алгебры Λu , то det $(\psi - 1) = 0$.

к случаю полупростой алгебры, Доказательство сводится а затем к рассмотренному при доказательстве предложения 2.3 случаю простой алгебры. 🛅

Положим $G' = \bigoplus G^{\lambda}$.

Лемма 6.14.~G' — конечномерная разрешимая подалгебра в G.

Доказательство. Из леммы $\hat{6}.15$ следует, что G'-подалгебра. Из (6.15) и (6.16) следует, что $G_i \subset G^0$ при $i \gg 0$, $G_i \subset G^1$ при $i \ll 0$, Поэтому $\dim G' < \infty$. Определим $\psi \colon G' \to G'$ формулой $\psi = f/(f-1)$ Тогда $\det \psi \neq 0$, $\det (\psi - 1) \neq 0$. Из (6.17) и (6.18) следует, что ψ — автоморфизм G' как алгебры Ли. Остается воспользоваться леммой 6.13.

Лемма $6.1\overline{5}$. 1) $(G^0)^{\perp}=G^0\oplus G'$, $(G^1)^{\perp}=G^1\oplus G'$. 2) $G^0\oplus G'$ $no\partial a$ лгебра в G, $a G^0 - u \partial e$ ал в $G^0 \oplus G^1$. 3) $G^1 \oplus G' - no\partial a$ лгебра в G, $a G^1 - g$

идеал в $G^1 \oplus G^1$.

Доказательство. Утверждение 1) следует из (6.16). Утверждения 2) и 3) вытекают из леммы 6.12.

Положим $\mathfrak{a}\stackrel{\text{def}}{=} \det G_0 = \mathfrak{g}_0$, $\mathfrak{a}^\lambda \stackrel{\text{def}}{=} \mathfrak{a} \cap G^\lambda$, $\mathfrak{a}' \stackrel{\text{def}}{=} \mathfrak{a} \cap G'$, $n^\lambda \stackrel{\text{def}}{=} \{x \in \mathfrak{a} | \times [x, \mathfrak{a}_\lambda] \subset \mathfrak{a}_\lambda\}$. Согласно лемме 1 из [3], алгебра \mathfrak{a} редуктивна в \mathfrak{g} .

Лемма 6.16. $f(n^{\lambda}) \subset n^{\lambda}$.

 $oxed{eta}$ оказательство. Индукцией по k докажем, что если x \in $f\in n^{\lambda},\ y\in \mathfrak{a},\ (f-\lambda)^{\kappa}y=0,\ ext{ то }\ [f(x),\ y]\in \mathfrak{a}^{\lambda}.$ Из (6.17) следует, что $[f(x), f(y)] = f([f(x), y]) \in \mathfrak{a}^{\lambda}$, а по предположению индукции $[f(x), (f-\lambda)y] \in \mathfrak{a}^{\lambda}$. Поэтому $(f-\lambda)[f(x), y] \in \mathfrak{a}^{\lambda}$, и следовательно, $[f(x), y] \subseteq \mathfrak{a}^{\lambda}.$

Предложение 6.3. Существуют противоположные борелевские nodane6pu $b_+, b_- \subset \mathfrak{a}$ makue, umo a) $f(b_+) \subset b_+, f(b_-) \subset b_-;$ $\subset b_+ \cap b_-, b_+ \supset \mathfrak{a}^0 \supset [b_+, b_+], b_- \supset \mathfrak{a}^1 \supset [b_-, b_-].$

Доказательство. $\mathfrak{a}^0 \subset (\mathfrak{a}^0)^\perp$, поэтому из критерия Картана следует разрешимость \mathfrak{a}^0 . Так как \mathfrak{a}^0 — идеал в $\mathfrak{a}^0 \oplus \mathfrak{a}'$, то из леммы 6.14 вытекает разрешимость $\mathfrak{a}^0\oplus\mathfrak{a}'$. Поэтому $\mathfrak{a}^0\oplus\mathfrak{a}'$ содержится в некоторой борелевской подалгебре b_+ . Точно так же доказывается, что $\mathfrak{a}^1\oplus\mathfrak{a}'$ содержится в некоторой борелевской подалгебре b_- . Так как $\mathfrak{a}^0\oplus\mathfrak{a}'\oplus\mathfrak{a}'=\mathfrak{a}$, то $b_++b_-=\mathfrak{a}$, т. е. b_+ и b_- противоположны. Так как $(\mathfrak{a}^0)^{\perp}=\mathfrak{a}^0\oplus\mathfrak{a}'\subset b_+$, то $\mathfrak{a}^0\supset b_+^{\perp}=[b_+,\ b_+]$ (здесь « \perp » обозначает ортогональное дополнение в \mathfrak{a}). Аналогично, $\mathfrak{a}^1\supset [b_-,b_-]$. Так как $b_+\supset\mathfrak{a}^0\supset [b_+,\ b_+]$, то $n^0=b_+$. Поэтому из леммы 6.16 следует, что $f(b_+)\subset b_+$. Аналогично, $f(b_-)\subset b_-$.

Положим $\mathfrak{h}=b_+\cap b_-$. \mathfrak{h} — картановская подалгебра в \mathfrak{a} , причем $f(\mathfrak{h})\subset \mathfrak{h}$. Ясно, что $\mathfrak{h}=\mathfrak{a}'\oplus \mathfrak{h}^0\oplus \mathfrak{h}^1$, где $\mathfrak{h}^0=\mathfrak{a}^0\cap \mathfrak{h}$, $\mathfrak{h}^1=\mathfrak{a}^1\cap \mathfrak{h}$.

При этом $\mathfrak{a}' \perp (\mathfrak{h}^0 \oplus \mathfrak{h}')$, а \mathfrak{h}^0 и \mathfrak{h}^1 изотропны.

Лемма 6.17. $[\mathfrak{h}, G^0] \subset G^0$, $[\mathfrak{h}, G^1] \subset G^1$, $[\mathfrak{h}, G^1] \subset G'$.

Д о к а з а т е л ь с т в о. Так как $[G^0 + G', G^0] \subset G^0$, то $[\mathfrak{h}^0 \oplus \mathfrak{a}', G^0] \subset G^0$. Выведем отсюда, что $[\mathfrak{h}, G^0] \subset G^0$. Известно (см. [3]), что $G = \bigoplus_{\alpha \in \mathfrak{h}^*} G_{\alpha}$, где $G_{\alpha} = \{w \in G \mid \forall a \in \mathfrak{h} \mid [a, w] = \alpha \ (a) \ w\}$, поэтому достаточно показать, что если $\alpha, \beta \in \mathfrak{h}^*$, $\alpha \neq \beta, G_{\alpha} \neq 0, G_s \neq 0$, то ограничение $\alpha - \beta$ на $\mathfrak{h}^0 \otimes \mathfrak{a}'$ не равно нулю. Действительно, если бы $(\alpha - \beta)$ $(\mathfrak{h}^0 \oplus \mathfrak{a}') = 0$, то $(\alpha - \beta, \alpha - \beta) = 0$, а это невозможно в силу пункта 5 работы [3].

Точно так же доказывается, что $[\mathfrak{h},G^1]\subset G^1$. Так как $G'=(G^0+G^1)^{\perp}$, то $[\mathfrak{h},G']\subset G'$.

Для любых $i \in \mathbf{Z}$, $\alpha \in \mathfrak{h}^*$ положим $G_i^{\alpha} = \{w \in G_i \mid \forall a \in \mathfrak{h}, [a, w] = \alpha(a) w\}$. Элементы множества $\Sigma \stackrel{\text{def}}{=} \{(\alpha, i) \mid G^* \neq 0\}$ называются весами. Имеем: $G = \bigoplus_{(\alpha, i) \in \Sigma} G_i^{\alpha} \cdot \text{Положим } \Sigma' = \{(\alpha, i) \in \Sigma \mid a \neq 0\}$. Каждому весу $(\alpha, i) \in \Sigma'$ сопоставим функционал $\lambda_i^{\alpha} \colon \mathfrak{h} \to \mathbf{C}$ по формуле λ_i $(a) = \mathbf{C}$

 $=\alpha$ (a)+i. В [3] показано, что функционалы λ_i^{α} , $(\alpha,i) \in \Sigma'$, образуют аффинную систему корней в смысле [7].

Пемма 6.18. 1) Существует камера Вейля K такая, что $G^0 = \emptyset^0 \oplus G^+$, $G^1 = \emptyset^1 \oplus G^-$, $G' = \mathfrak{a}'$, где $G^+ \stackrel{\text{def}}{=} \bigoplus_{(\alpha,i)\in\Sigma_+} G_i^{\alpha}$, $G^- \stackrel{\text{def}}{=} \bigoplus_{(\alpha,i)\in\Sigma_-} G_i^{\alpha}$, Σ_+ (соответственно Σ_-) — множество весов, положительных (отрицательных) относительно K.

2)
$$f(G^+) \subset G^+, f(G^-) \subset G^-.$$

Д о к а з а т е л ь с т в о. Пусть $(\alpha, i) \in \Sigma'$. Тогда $\dim G_i^{\alpha} = 1$ (см. [3]). Поэтому из леммы 6.17 следует, что либо $G_i^{\alpha} \subset G^0$, либо $G_i^{\alpha} \subset G^1$, либо $G_i^{\alpha} \subset G'$. Из (6.16) следует, что скалярное произведение на G' невырождено. Поэтому если бы $G_i^{\alpha} \subset G'$, то $G_{-i}^{-\alpha} \subset G'$ и, следовательно, G' содержало бы подалгебру, изоморфную sl (2) (см. лемму 2 из [3]), а это противоречит лемме 6.14. Таким образом, $G_i^{\alpha} \subset G^0$ или $G_i^{\alpha} \subset G^1$. Из изотропности G^0 и G' следует, что $G_i^{\alpha} \subset G^0 \Leftrightarrow G_{-i}^{-\alpha} \subset G^1$. Положим $S = \{(\alpha, i) \in \Sigma' \mid G_i^{\alpha} \subset G^0\}$. Мы показали, что $S \cup (-S) = \Sigma'$. Кроме того, из (6.15) следует, что если $(\alpha, i) \in \Sigma'$, $i \gg 0$, то $(\alpha, i) \in S$. Отсюда вытекает существование камеры Вейля K такой, что все простые относительно K веса принадлежат S. Тогда $G_i^{\alpha} \subset G^0$ при $(\alpha, i) \in \Sigma_+$, $G_i^{\alpha} \subset G^1$ при $(\alpha, i) \in \Sigma_-$, откуда следует утверждение 1). Для доказательства 2) достаточно заметить, что $G^+ = (G^1 + \mathfrak{h})^+$, $G^- = (G^0 + \mathfrak{h})^+$.

Обозначим через Γ множество простых весов, соответствующих K. Для любого $S \subset \Gamma$ обозначим через G_S подалгебру в G, порожденную подпространствами G_i^{α} и $G_{-i}^{-\alpha}$, $(\alpha, i) \in S$. Положим $G_S^+ = G_S \cap G^+$. Рассмот-

гим тройку (C_1, C_2, θ) , соответствующую f (см. лемму 6.6).

Лемма 6.19. Существуют подмножества $\Gamma_i \subset \Gamma$ и векторные подпространства $V_i \subset \mathfrak{h}$ $(i=1,\ 2)$ такие, что $C_1=G_{\Gamma_1}+G^++V_1,\ C_2=G_{\Gamma_2}+G^-+V_2.$

 Π о к а з а т е л ь с т в о. Так қак $C_1=I_m$ $(f-1) \supset \mathfrak{h}^0 \oplus \mathfrak{a}',$ то $[\mathfrak{h}^0 \otimes \mathfrak{a}', C_1] = C_1.$ Отсюда следует, что $[\mathfrak{h}, C_1] \subset C_1$ (см. доказательство леммы 6.17). Далее, $C_1 \supset G^0 \supset G^+.$ Отсюда и из результатов [3] следует, что C_1 имеет требуемый вид. Аналогично доказывается утверждение о $C_2.$

Из леммы 6.19 следует, что $C_i/C_i^{\perp} = G_{\Gamma_i} \otimes \mathfrak{p}_i$, где \mathfrak{p}_i —абелева алгебра. Изоморфизм θ отображает G_{Γ_1} на G_{Γ_2} , сохраняя градуировку, поэтому θ индуцирует биекцию τ : $\Gamma_1 \to \Gamma_2$.

 Π емма 6.20. T ройка $(\Gamma_1, \Gamma_2, \tau)$ допустима.

Докавательство. Определим $\psi \colon G^+ \to G^+$ формулой $\psi = f/(f-1)$. Так как $G^+ \subset G^0$, то определение ψ корректно и ψ нильпотентен. Легко проверить, что если $(\alpha, i) \in \Gamma_1$, $\tau(\alpha, i) = (\beta, j)$, то $\psi(G_i^\alpha) = G_j^\beta$; если же $(\alpha, i) \in \Gamma \setminus \Gamma_1$, то $\psi(G_\alpha^i) = 0$. Отсюда следует условие б) из определения допустимой тройки. Условие а) вытекает из ортогональности θ .

Для любого $(\alpha, i) \subseteq \Sigma$ обозначим через n (α, i) сумму коэффициентов разложения (α, i) по элементам Γ . Введем в G новую градуировку (назовем ее K-градуировкой), положив deg $G_i^{\alpha} = n$ (α, i) .

Лемма 6.21. f сохраняет K-градуировку.

Доказательство. Достаточно проверить, что оператор ψ из доказательства леммы 6.20 сохраняет К-градуировку, а этот факт следует из аналогичного свойства θ. ■

Пусть $\Gamma = \{(\alpha_0, i_0), \ldots, (\alpha_r, i_r)\}$. Согласно [3], функционалы α_0, \ldots α_r порождают \mathfrak{h}^* и между ними есть ровно одно линейное соотношение $\sum_{s=0}^r k_s \alpha_s = 0$. При этом коэффициенты k_s можно нормировать условием $\sum_{s=0}^r k_s i_s = m$ и тогда $k_s \in \mathbb{N}$, а $\sum_{s=0}^r k_s$ равна числу Кокстера h пары (\mathfrak{g}, σ) , где σ — автоморфизм схемы Дынкина \mathfrak{g} , соответствующий A. Поэтому существует ровно один элемент $a_0 \in \mathfrak{h}$ такой, что $\alpha_s(a_0) = \frac{1}{h} - \frac{i_s}{m}$, $s = 0, 1, \ldots, r$. Положим $C = A \cdot \exp(2\pi i \cdot ada_0)$. Легко видеть, что C - K кокстеровский автоморфизм. Положим $\omega = e^{2\pi i/h}$, $\mathfrak{g}_i^C = \{x \in \mathfrak{g} \mid Cx = \omega^j x\}$, $G^C = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j^C z^j$. Определим линейный оператор $\mathfrak{q}: G \to G^C$ следующим обра-

зом: если $x \in \mathfrak{g}$, $xz^j \in G_j^{\alpha}$, то $\varphi(xz^j) \stackrel{\mathrm{def}}{=} xz^{n(\alpha,j)}$. Легко видеть, что это определение корректно и φ — изоморфизм алгебр Ли, сохраняющий скалярное произведение и переводящий K-градуировку G в обычную градуировку G^C . Поэтому оператор $f \colon G^C \to C^C$, заданный формулой $f = \varphi f \varphi^{-1}$, удовлетворяет условиям (6.14) - (6.17). Обозначим через X(u) и X(u) решения уравнения (1.4), соответствующие f и f (см. пункт 6.5).

 Π е м м а 6.22. Решения X (u) и \widetilde{X} (u) эквивалентны.

 \mathcal{X} оказательство. Легко проверить, что \widetilde{X} $(u)=(e^{u\cdot ada_0}\otimes 1)$ X (u), $[a_0\otimes 1+1\otimes a_0,$ X (u)]=0.

Перейдем непосредственно к доказательству утверждения 2) теоремы 6.1. Пусть X (u) — нормированное тригонометрическое решение уравнения (1.4), удовлетворяющее (6.12), f: $G \to G$ — соответствующий оператор. Лемма 6.22 показывает, что, заменив X (u) эквивалентным решением, можно добиться, чтобы $i_0 = \ldots = i_r = 1$ и, тем самым, A = C. Легко видеть, что в этом случае оператор ψ из доказательства леммы 6.20 совпа-

дает с оператором T, о котором идет речь в лемме 6.10. Поэтому ограничение f на G^+ равно T (T — 1). Обращая доказательство леммы 6.11, получим, что ограничение f на $\mathfrak h$ удовлетворяет (6.22) и (6.24). Таким образом, наш оператор f совпадает с оператором f из пункта 6.6 и, следовательно, X (u) имеет вид (6.8).

§ 7. Радиональные решения, не имеющие полюса на бесконечности

7.1. Пусть X(u) — рациональное решение уравнения (1.4), не имеющее полюса на бесконечности и с вычетом t в нуле. Тогда

$$X(u) = \frac{t}{u} + r, \quad r \to \mathfrak{g} \otimes \mathfrak{g}.$$
 (7.1)

Легко проверить, что функция X(u), заданная формулой (7.1), является решением (1.4) тогда и только тогда, когда r удовлетворяет системе уравнений (1.2), (1.3). Задача полной классификации решений этой системы представляется нам безнадежной, так как она содержит подзадачу классификации коммутативных подалгебр в \mathfrak{g} (действительно, если \mathfrak{a} — коммутативная подалгебра в \mathfrak{g} и $r \in \mathfrak{a} \otimes \mathfrak{a}$, то r удовлетворяет (1.2)). Поэтому ограничимся тем, что приведем несколько способов построения решений системы уравнений (1.2), (1.3).

7.2. 1) Пусть $a, b \in \mathfrak{g}$, [a, b] = b. Тогда $r = a \otimes b - b \otimes a$ является решением системы (1.2), (1.3). Легко проверить, что при $\mathfrak{g} = sl$ (2) эта конструкция дает все ненулевые решения. Отметим, что если $a, b \in sl$ (2), [a, b] = b, то существует матрица $T \in SL$ (2), такая, что

$$a = T \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} T^{-1}, \quad b = T \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} T^{-1}.$$

- 2) Пусть A конечномерная коммутативная ассоциативная алгебра над C, $\mathfrak{a} \stackrel{\mathrm{def}}{=} A \otimes A^*$. Введем на \mathfrak{a} структуру алгебры Ли следующим образом; $[e_i, e_j] = 0$, $[e^i, e^j] = 0$, $[e_i, e^j] = \alpha^j_{ik} e^k$, где $\{e_i\}$ базис в A, $\{e^i\}$ двойственный базис в A^* , $e_i e_j = \alpha^j_{ij} e_k$. Легко проверить, что тензор $r = e_i \otimes e^i e^i \otimes e_i \in \mathfrak{a} \otimes \mathfrak{a}$ является решением системы (1.2), (1.3). Если, кроме того, задан гомоморфизм f: $\mathfrak{a} \to \mathfrak{g}$, то $(f \otimes f)$ (r) решение, принадлежащее $\mathfrak{g} \otimes \mathfrak{g}$. При A = C этот способ построения решений превращается в способ 1).
- 7.3. Пусть $r \in \mathfrak{g} \otimes \mathfrak{g}$ решение системы (1.2), (1.3). Обозначим через \mathfrak{a} наименьшее векторное подпространство в \mathfrak{g} такое, что $r \in \mathfrak{a} \otimes \mathfrak{a}$. Тогда \mathfrak{a} подалгебра Ли и тензор r невырожден как элемент $\mathfrak{a} \otimes \mathfrak{a}$. Пусть B билинейная форма на \mathfrak{a} , обратная по отношению к r (т. е. если $\{e_{\mu}\}$ базис в \mathfrak{a} , $r = r^{\mu\nu}e_{\mu} \otimes e_{\nu}$, $(S_{\mu\nu})$ матрица, обратная к $(r^{\mu\nu})$, то B $(e_{\mu}, e_{\nu}) = S_{\mu\nu}$). Согласно предложению 2.4, форма B является 2-коциклом (т. е. кососимметрична и удовлетворяет (2.10)). Наоборот, каждой паре (\mathfrak{a}, B) , где \mathfrak{a} подалгебра в \mathfrak{g} , B невырожденный 2-коцикл на \mathfrak{a} , соответствует решение системы (1.2), (1.3).

Напомним, что 2-коциклами являются, в частности, 2-кограницы, т. е. формы вида B(x,y)=l([x,y]), где $l\in\mathfrak{a}^*$. Назовем функционал $l\in\mathfrak{a}^*$ невырожденным, если форма l([x,y]) невырождена. Алгебры Ли \mathfrak{a} , на которых существуют невырожденные линейные функционалы, исследовались, например, в [13], [14], [15]. Такие алгебры называются фробениусовыми. Итак, по фробениусовой алгебре Ли \mathfrak{a} , невырожденному функционалу $l\in\mathfrak{a}^*$ и вложению $\mathfrak{a}\subset\mathfrak{g}$ строится решение системы

(1.2), (1.3). Это решение, по существу, не зависит от l, так как, согласно [15], все невырожденные функционалы на с получаются применением внутренних автоморфизмов а к фиксированному функционалу.

 Π р и мер. \mathfrak{a} — множество матриц размера n imes n, у которых нижние k строк равны нулю. Как сообщил нам А. $\hat{\Gamma}$. Элашвили, алгебра α фробениусова тогда и только тогда, когда n делится на k. Пусть это условие

выполнено. Тогда функционал $l\colon \mathfrak{a} \to \mathbb{C}$, заданный формулой $l(A) = \sum_{i=1}^{n-k} a_{i,\ i+k},$ где $A=(a_{ij})$, невырожден. Соответствующий тензор $r\in\mathfrak{a}\otimes\mathfrak{a}$, удовлет-

воряющий (1.2) и (1.3), имеет вид

$$r = \sum_{i=1}^k \sum_{j=1}^k \sum_{(a,\ b,\ c,\ d) \in S} (e_{i+ka,\ j+kb} \otimes e_{j+kc,\ i+kd} - e_{j+kc,\ i+kd} \otimes e_{i+ka,\ j+kb}),$$

матрица, у которой элемент на пересечении г-ой строки и s-го столбца равен 1, а остальные элементы равны нулю. Чтобы получить решение системы уравнений (1.2), (1.3), лежащее в $sl(n) \otimes sl(n)$, достаточно применить к r отображение $f \otimes f$, где f: $\mathfrak{a} \subset \mathfrak{sl}(n)$ задано формулой $f(A) = A - \frac{1}{N} (Tr A) \cdot E.$

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Белавин А. А. Дискретные группы и интегрируемость квантовых систем. Функц. анализ, 1980, т. 14, вып. 4, с. 18-26.
- Жибер А. В., Шабат А. Б. Уравнения Клейна Гордона с нетривиальной группой. ДАН СССР, 1979, т. 247, № 5, с. 1103—1107.
 Кац В. Г. Автоморфизмы конечного порядка полупростых алгебр Ли. Функц.
- анализ, 1969, т. 3, вып. 3, с. 94—96.
- Кай В. Г. Простые неприводимые градуированные алгебры Ли конечного роста.— Изв. АН СССР, сер. матем., 1968, т. 32, №6, с. 1323—1367.
 Кулиш П. П., Склянин Е. К. О решениях уравнения Янга Бакстера.— В сб.
- Дифференциальная геометрия группы Ли и механика,— Зап. научн. сем. ЛОМИ, 1980, т. 95, с. 129—160.
- 6. Лезнов А. Н., Савельев М. В., Смирнов В. Г. Теория представлений групп и интегрирование нелинейных динамических систем. Препринт ИФВЭ, 80-51, Серпу-
- хов: ИФВЭ, 1980.
 7. Макдональд И. Г. Аффинные системы корней и η-функция Дедекинда.— Математика, 1972, т. 16, вып. 4, с. 3—49.
 8. Серр Ж.-П. Алгебры Ли и группы Ли. М.: Мир, 1969.
 9. Чередник И. В. Об одном методе построения факторизованных S-матриц в элемен-

- тарных функциях. Теорет. и матем. физика, 1980, т. 43, № 1, с. 117—119.
 Вовоуаviensky O. I. On perturbations of the periodic Toda lattice. Comm. Math. Phys., 1976, v. 51, p. 201—209.
 Кас V. G. Infinite-dimensional algebras, Dedekind's η-function, classical Möbius
- function and the very strange formula.—Adv. in Math., 1978, v. 30, № 2, p. 85—136.
- 12. Michailov A. V., Olshanetsky M. A., Perelomov A. M. Preprint ITEP-64, Moscow: ITEP, 1980.
- 11 E1, 1360.
 12a. Bulgadaev S. A., Two-dimensional integrable field theories connected with simple Lie algebras. P. L., 1980, v. 96B, p. 151—153.
 13. Ooms A. I. On Lie algebras having a primitive universal envelopping algebra. J. of Algebra, 1975, v. 32, № 3, p. 488—500.
 14. Ooms A. I. On Lie algebras with primitive envelopes. Supplements, Proc. Amer Meth. Soc. Labert 4076.
- Math. Soc., July 1976, v. 58, p. 67—72. 15. Ooms A. I. On Frobenius Lie algebras.— Comm. in Algebra, 1980, v. 8 (1), p. 13—52
- 16. Weil A. Varietes abeliennes et courbes algebriques. Paris: Hermann, 1948. 17. Weil A. On algebraic groups of transformations, Amer. J. of Math., 1955, v. 77,
- p. 355-391.

Институт теоретической физики АН СССР им. Л. Д. Ландау Физико-технический институт низких температур АН УССР

Поступила в редакцию 24 декабря 1981 г.