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1. RG critical fixed points.

We are going to continue the discussion of general properties of RG flow.

At generic point in the space of quasi-local actions Σ the pattern of RG

flow is rather boring- it just flows. Something interesting is expected to

happen near singular points of the flow. The simplest and probably the

most important ones are the fixed points.

1.1. Critical fixed points.

By definition, the fixed point is an action A∗ which satisfy the equation

B(A∗) = 0

(1)

The corresponding RG trajectory is trivial:

Al = A∗, for all l.

(2)
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As the correlation length measured in the units Λ is

Rc(l) = exp (−l)Rc

(3)

for Al, this means that for A∗ we must have

either Rc = 0, or Rc = ∞.

(4)

By the definition, A∗ with Rc = ∞ belongs to the critical surface:

A∗ ∈ Σcrit, if Rc = ∞.

(5)

We call the fixed points A∗ with Rc = ∞ the critical fixed points.

1.2. RG flow topology around two critical points.

To illustrate the topological ideas related to the Wilson’s RG, we con-

sider the simplest possible form of topology. In the analysis of the topology

we will assume continuity of the RG flow, i.e. the functions B defining the

RG flow at some point

d

dl
Al = B(Al)

(6)

are continuous functions of their arguments. The general proof of this

statement is not avalable, but various examples support this assumption.

Assume there are only two fixed points, one with Rc = 0 and another

one with Rc = ∞. Denote them P0 and P∞.

As Rc(l) = exp (−l)Rc, any trajectory which starts at finite Rc will

approach the point P0 where Rc = 0. On the other hand trajectories which
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start on critical surface Σcrit will approach P∞. The only point where some

trajectory can leave Σcrit is P∞. So there must be a trajectory (let us call

it U) going from P∞ to P0.

Consider also a trajectory G which starts close to Σcrit. This one first

approaches P∞ while staying close to Σcrit, then spends very long time l

in the vicinity of P∞ (by continuity B(A) is small when A is close to P∞)

and then departs along some way close to U , finally going towards P0.

Now let us look for the space Σ(∞) in this picture. It is clear that

Σ(∞) is U with the points P∞, P0 included

Σ(∞) = U

(7)

Starting with any action A ∈ U one can go back along the trajectory

arbitrary amount of time l without leaving the space Σ (actually without

leaving U). The reason is that Rc = ∞ on U only at the point P∞. To reach

P∞ from any point on U with finite Rc takes infinite time l (when moving

backwards). Starting from other point in Σ and integrating backwards,

one generally leaves Σ in sufficient amount of time.

We see in this example the role played by critical points in the forma-

tion of Σ(∞). Therefore finding critical fixed points is of central

importance in the RG approach.

1.3. Vicinity of critical fixed point in 2d approximation.

Suppose A∗ is the critical fixed point:

B(A∗) = 0

(8)
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Then near this point

A = A∗ + δA

(9)

where δA is infinitesimal. It must be thought as a vector in the tangent

space TΣ taken at the point A∗

δA ∈ TΣ|A∗

(10)

The RG transformations can be linearized near the point A∗:

B(A∗ + δA) = K(δA) +O(δA2)

(11)

where K is a linear operator acting in this tangent space,

K : TΣ|A∗ → TΣ|A∗

(12)

As it is conventional in the theory of linear operators, we will write

K(δA) = KδA

(13)

The RG flow in this close vicinity of A∗ is described by the linear differential

equation

d

dl
(δA) = KδA. (14)

This equation can be easily solved provided one can find the eigenvectors

Ψα and associated eigenvalues of K:

KΨα = kαΨα.

(15)
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The solution then takes the form

δA(l) =
∑
α

Cα exp (kαl)Ψα, (16)

where Cα are determined by the initial vector δA(0) = δA0.

It is clear that the pattern of the RG flow near the A∗ is directly related

to the eigenvalues kα.

To illustrate this let us assume that there are only two eigenvalues (2

dim. approximation of Σ), one positive and one negative

k+ > 0, k− < 0.

(17)

There is a natural coordinate system on TΣ|A∗ associated with the eigen-

vectors Ψ+ and Ψ−. All trajectories starting at the Ψ− axis never leave

it; they flow towards the fixed point A∗. As the correlation lenght can

only decrease with l, the entire axis Ψ− must belong to Σcrit (where by

definition Rc = ∞). The trajectories starting at the Ψ+ also remain at

this axis, but flow away from the fixed point. For sufficiently large l these

trajectories leave the domain of validity the linear approximation (14) so

that (16) says nothing about their ultimate destination. The same is true

for any generic trajectory G starting at neither axis: at sufficiently large

l it leaves the vicinity of the fixed point and its fate cannot be predicted

within the linear approximation.

However there is an important difference between the generic trajec-

tories like G and any trajectory U that lies on the axis Ψ+. Starting at

any point on the axis Ψ+ one can integrate backward for indefinite neg-

ative l without leaving the vicinity of the critical fixed point A∗; in fact

corresponding A(−l) approaches A∗ as l → ∞. This is in contrast with

the negative time behaviour of generic trajectories. Associated A(−l) with
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sufficiently large l leave the vicinity of A∗ and the question if they remain

in Σ for l → ∞ cannot be answered within the linear approximation. On

the other hand the linear approximation is good enough to recognize in

this example at least one-dimensional component of the subspace Σ(∞)

associated with the point A∗. The axis Ψ+ is the linear approximation to

this component. Precise statement is

Ψ+ ∈ TΣ(∞)|A∗.

(18)

1.4. Vicinity of critical fixed point in general case, unstable manifold.

It is easy to generalize the conclusions obtained in the 2d example. Let

us define two special subspaces of the tangent TΣ|A∗: let F+ be the linear

subspace spanned by the eigenvectors of K with positive eigenvalues k:

F+ = ⊕α,kα>0RΨα.

(19)

Similarly

F− = ⊕α,kα<0RΨα.

(20)

This separation leaves aside very interesting possibility of having zero

eigenvalues we will discuss later. Also it is assumed here that all kα are

real. At this point this assumption looks arbitrary. We will see later that

complex kα contradict quantum mechanical interpretation of field theory.

Simple analysis of (16) shows that

1. The fixed point A∗ ∈ Σcrit and

F− = TΣcrit|A∗.

(21)
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2. The fixed point A∗ also belongs to some component of Sgm∞ and

F− ⊂ TΣ∞|A∗.

(22)

Let us define the subspace U(A∗) ⊂ Σ(∞) by the condition that all

points of U(A∗) lie on RG trajectories which, when integrated backward,

converge to the fixed point A∗, i.e.

A0 ∈ U(A∗) ⇒ Al → A∗ as l → −∞.

(23)

The subspace U(A∗) is called the unstable manifold of the fixed

point A∗. Obviously A∗ ∈ U(A∗). If we ignore the possibility of zero

eigenvalues then the tangent space to U(A∗) taken at the fixed point A∗

itself coincides with the space F+:

F+ = TU(A∗)|A∗.

(24)

The reason why A∗ can belong to the space Σ(∞) of dimensionality greater

than that of U(A∗) is illustrated by the following simple example.

Suppose we have two fixed points, the A∗ and A′
∗, such that A∗ ∈ U(A′

∗).

Then there must be at least one RG trajectory in U(A′
∗) which flows to A∗

(this is by definition of unstable manifold U). This trajectory has Rc = ∞
and therefore it simultaneously belongs to Σ(∞) and Σcrit. It follows that

the unstable manifold U(A∗) has at least one dimension less then U(A′
∗).

Understanding the global topological properties of the RG flow, like the

one illustrated in the above example are beyond the capabilities of linear

analysis. However, as we have seen, it is within the power of linear analysis
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to prove that each critical fixed point A∗ generates a manifold U(A∗)

which belongs to Σ(∞) and

dimU(A∗) = dimF+

(25)

In other words, the critical fixed point A∗ generates dimF+-parameter

family of finite local QFT.

2. RG transformation of composite fields.

2.1. Composite fields as a tangent space of the quasilocal actions.

It is important to understand the meaning of the above geometric no-

tions in terms of local field degrees of freedom.

Recall the generic quasi local action can be written as integral

A =

∫
ddxL,

L =
∑
k=1

u2k
2k!

ϕ2k
0 +

∞∑
k=0

v2k
2n!

ϕ2k
0 (∂ϕ0)

2 + ...

(26)

Then

δA =

∫
ddxL,

δL =
∑
k=1

δu2k
2k!

ϕ2k
0 +

∞∑
k=0

δv2k
2n!

ϕ2k
0 (∂ϕ0)

2 + ...

(27)

In other words δA is an integral of linear combination of local composite

fields:

δA =

∫
ddx

∑
α

δλαOα(x), Oα = ϕ2n
0 , ϕ2n

0 (∂ϕ0)
2, ....

(28)
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and δλα are the variations of the coupling constants. Hence,

F ≡ TΣ|A∗

(29)

can be identified with the space of scalar composite fields spanned by Oα.

2.2. RG transformation of composite fields.

How the RG transformation acts on these composite fields?

Consider a correlation function involving one of more of Oα(x)

< Oα(x)... >=
1

Z

∫
[Dϕ0](Oα(x)...) exp [−A[ϕ0]].

(30)

where the dots represent other local insertions. To perform the step 1 of

the Wilson’s RG transformation we must split

ϕ0(x) = ϕ1(x) + ϕ̂(x)

(31)

and then integrate the fast mode ϕ̂(x) out. Since, Oα(x) in general is a

polynomial function of ϕ0(x) and its derivatives at the point x. Therefore

Oα(ϕ1(x) + ϕ̂(x), der.) =
∑
β

Y β
α (ϕ̂(x), der.)Oβ(ϕ1(x), der.),

(32)

where Y β
α are local functions of the fast mode and its derivatives. For

example

(ϕ1(x) + ϕ̂(x))n =
n∑

k=0

Y k
n (ϕ̂)ϕ

n−k
1 (x), Y k

n = Ck
nϕ̂

k(x).

(33)
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Therefore the integral over ϕ̂(x) can be written as

1

Z

∫
[Dϕ̂](Oα(ϕ1(x) + ϕ̂(x), der.)...) exp [−A(ϕ1 + ϕ̂)] =

1

Z1
(
∑
β

yβα(L)Oβ(ϕ1(x), der.)...) exp [−A1(ϕ1)],

(34)

where A1 is the action appearing in step 1 of the Wilson’s RG transfor-

mation with the parameter L and the coefficients yβα are the expectation

values of Y β
α over the ensemble of the fast mode fluctuations:

yβα(L) =< Y β
α (ϕ̂(x), der.) >ϕ̂ . (35)

In writing this equation we have assumed that the other insertions repre-

sented by the dots are placed at the distances >> 1
Λ from x and therefore

all diagrams with the fast mode propagators connecting these insertions

can be ignored (claster property). In general, the coefficients yβα(L) are

complicated sums of Feynmann diagrams. But in any case (35) shows

that in the step 1 any composite field Oα gets replaced by a linear

combination of composite fields with L-dependent coefficients.

This statement remains true after we perform the step 2, which amounts

to the change of variables

ϕ1(x) = z−
1
2 (L)ϕ0(

x

L
)

(36)

As Oβ in (35) are typically polynomials of ϕ1 and its derivatives taken at

x, we have ∑
β

yβα(L)Oβ(z
− 1

2 (L)ϕ0(
x

L
), z−

1
2∂ϕ0(

x

L
), ...) =

∑
β

zβα(L)Oβ(ϕ0(
x

L
),

∂

∂(x
i

L )
ϕ0(

x

L
), ...),

(37)
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i.e. under the full RG transformation the composite field Oα gets

replaced by the linear combination of composite fields with L-

dependent coefficients. The exact statement is

< Oα(x)... > |A =<
∑
β

zβα(L)Oβ(
x

L
)... > |A′, (38)

where

A′ = RGl(A), l = log(L)

(39)

is the RG transformed action. Thus, we can write

RGl,AOα =
∑
β

zβα(L)Oβ (40)

stressing the fact that RG transformation acts on the fields linearly. Addi-

tional index A is written down to remind that this transformation depends

on the action A.

2.3. RG transformation of composite fields at the fixed-point.

Let A be a fixed point A∗. Then A′ = A and (40) yelds linear relation

for the correlation functions of the composite fields. Recall that by the

composition low of the RG transformations,

RGl+l′ = RGlRGl′

(41)

in this case the coefficients zβα must obey the equation

zβα(l + l′) =
∑
γ

zγα(l
′)zβγ (l)

(42)
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It means that zβα(l) must satisfy linear differential equation with l-dependent

coefficients:

d

dl
zβα(l) = −

∑
γ

Dγ
αz

β
γ (l), Dβ

α = − d

dl
zβα(l)|l=0.

(43)

These coefficients Dβ
α are nothing else then the matrix elements of the

linear operator D corresponding to the infinitesimal transformation (40)

RGδl,A∗ = I − δlD +O(δl2).

(44)

Let us denote Φα(x) the eigenvectors of the operator D, i.e. special linear

combinations of the composite fields Oα(x) which satisfy the equations

DΦα ≡ Dβ
αΦβ = DαΦα,

(45)

where the notation Dα has been used for the corresponding eigenvalues of

D. Then

RGl,A∗Φα = exp (−lDα)Φα,

(46)

and for the fixed-point theory the equations (38) reads

< Φα1
(x1)...Φαn

(xn) > |A∗ = L−Dα1 ...L−Dαn < Φα1
(
x1
L
)...Φαn

(
xn
L
) > |A∗.(47)

For the two-point correlation functions, which depend only on the distance

between the two points, it follows from (47)

< Φα(x)Φβ(y) > |A∗ = |x− y|−Dα−DβGαβ

(48)
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where Gαβ are the constants. In general, the equation expresses the scale

invariance of the theory described by the fixed-point action A∗. The

eigenvalues Dα are called the scale dimensions (or anomalous scale

dimensions) of the fields Φα. If A∗ is not a free-field theory, there is no

reason to expect them to coincide with canonical dimensions.
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