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1. Wilson’s RG transformation by 2 steps.

1.1. Step1. Momenta shell integration.

Let us consider Euclidean φ4 field theory with the cutoff at Λ0

Z0 =

∫
Λ0

[Dφ0] exp [−A(φ0)]

A(φ) =

∫
ddx[

1

2
(∂φ)2 +

1

2
m0φ

2 +
λ0

4!
φ4] (1)

Question: How the path integral depends on Λ0?

We use the simplest regularization for the calculation of this integral:

φ0(x) =

∫
|k|<Λ0

ddk

(2π)d
φk exp (ıkx) (2)
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where only the wavevectors with |k| < Λ0 enter the paths integral. It gives

the free propagator

D(k) =
Θ( k

2

Λ2
0
)

k2 +m2
0

Θ(x) = 0, x > 1, Θ(x) = 1, x ≤ 1 (3)

Question: What is the difference between the integral with Λ0

and Λ1 < Λ0?

Let us introduce temporarily the notation

φ0 =

∫
|k|<Λ0

ddk

(2π)d
φk exp (ıkx),

φ1 =

∫
|k|<Λ1

ddk

(2π)d
φk exp (ıkx) (4)

If Λ0 > Λ1 the difference is that the integral over φ0, as compared to

the integral over φ1, includes the integration over the models with the

momentum

∆ = {Λ1 < |k| < Λ0} (5)

So one can write

φ0(x) = φ1(x) + φ̂(x),

φ̂(x) =

∫
∆

ddk

(2π)d
φk exp (ıkx),

[Dφ0] = [Dφ1][Dφ̂] (6)

We will call the field φ1(x) the slow mode, while φ̂(x) will be called the

fast mode.

Now the idea is to integrate first over the fast modes φ̂ and define

a new ”effective action” for the slow modes φ1:∫
∆

[Dφ̂] exp [−A0(φ1 + φ̂)] = C exp [−A1(φ1)] (7)
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The constant C is not important because in correlation functions this con-

stant will enter in nominator and denominator.

1.2. Effective action for φ4.

Let us consider how this procedure works for the case of φ4-model.

φ0 = φ1 + φ̂,

Z0 =

∫
Λ0

[Dφ0] exp [−A0(φ0)] =∫
Λ1

[Dφ1][Dφ̂] exp [−A0(φ1)]

∫
∆

[Dφ̂] exp [−
∫
ddx[

1

2
(∂φ̂)2 +

1

2
m0φ̂

2 +
λ0

4!
φ̂4]]

exp [−λ0

4!

∫
ddx(4φ3

1φ̂+ 6φ2
1φ̂

2 + 4φ1φ̂
3)] (8)

The terms ∂φ1∂φ̂ and φ1φ̂ do not appear because∫
ddxφ1(x)φ̂(x) =

∫
<Λ1

∫
∆

ddkddp

(2π)2d
φ(k)φ(p)

∫
ddx exp (ı(k + p)x) =∫

<Λ1

ddk

(2π)d

∫
∆

ddp

(2π)d
φ(k)φ(p)δ(k + p) (9)

The action

A[φ1, φ̂] =

∫
ddx[

1

2
(∂φ̂)2 +

1

2
m0φ̂

2 +
λ0

4!
φ̂4

−λ0

4!
(4φ3

1φ̂+ 6φ2
1φ̂

2 + 4φ1φ̂
3)] (10)

must be viewed in this context as the action for φ̂ with φ1 determining a

sorce terms.

Then integration over the fast mode φ̂ can be represented by the dia-

grams contributions which are generated by the free propagator

< φ̂(k)φ̂(−k) >= D∆(k) =
Θ(|k| ∈ ∆)

k2 +m2
0

= (11)

and the vertices
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−λ0

∫
ddx = (12)

−λ0

3!

∫
ddxφ3

1(x) = (13)

−λ0

2!

∫
ddxφ2

1(x) = (14)

−λ0

∫
ddxφ1(x) = (15)

The dashed lines represent the field φ1 which carry a momentum |k| <
Λ1. The solid lines correspond to the field φ̂ with momentum |k| ∈ ∆.

All solid lines in the diagrams have to be contracted because we integrate

over φ̂ leaving φ1 fixed ” external legs”.

The diagrams exponentiate in terms of connected diagrams so that the

action A1[φ1] is given by the sum of connected diagrams:

A1[φ1] = −(sum of all connected diagrams) (16)

The diagrams with no external legs contribute the constant factor above.

1.3. Quasilocal actions.
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It is obvious that the action A1[φ1] does not have a form of φ4 action.

It containes all powers of φ1 due to diagrams with various numbers of

external legs. Moreover the action is no longer local. For example, the

diagram (coming from φ2
1(x) < φ̂2(x)φ̂2(y) >∆ φ2

1(y))

(17)

gives a contribution

−λ0

8

∫
ddxddyφ2

1(x)D2
∆(x− y)φ1(y) (18)

This nonlocality is not so catastrophic. We have violated locality at

short distances by introducing cutoff anyway, so this additional nonlocality

does not add something new. The statement is that all nonlocal terms

generated this way admit convergent derivative expansions.

This means the following. Suppose we have evaluated some diagram

D(k1, ..., kn) with n external legs in the momentum space. One can expand

this diagram in power series in all the momenta ki. This series converge all

the way up to |ki| < Λ1 because all internal momentum integration in this

diagrams lay above Λ1 so that dimensinless variables ki
Λ1

are small anough

to be in the area of convergency.

This implies that the new action admits meaningful expansion in terms

of local contributions

A1[φ1] =

∫
ddx[

∞∑
n=1

u2n

2n!
φ2n

1 (x) +
∞∑
n=0

v2n

2n!
φ2n

1 (∂φ1)
2 + ...] (19)
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where the dots involve both higher powers of ∂φ1 and higher derivatives

of φ1. The only difference from local action is that the action involve

derivatives of arbitrary high order. By this reason the action A1[φ1] is

called quasilocal.

The conclusion at this point is that by integration out the fast modes

φ̂ we can show that the theory described by (A0,Λ0) can be equiva-

lently described at low external momenta |k| << Λ1 by the action

(A1,Λ1), where Λ1 < Λ0:

(A0,Λ0)→ (A1,Λ1), Λ0 > Λ1 (20)

1.4. Step2. Coordinates dilatation and correlation functions relation.

At first glance it may look as a step in a wrong direction because the

new action A1 has complicated quasilocal form.

In fact the integration over the fast mode becomes very power-

ful move if this integration is combined with the following variable

transformation

φ1(x) = z−
1
2 (L)φ̃0(

x

L
) (21)

in the functional integral for the correlation functions where

L =
Λ0

Λ1
> 1 (22)

and z−
1
2 (L) is some factor related to the field renormalization (to be dis-

cussed later).

To do that let us consider the correlation function

< φ0(x1)...φ0(xn) >(A0,Λ0)=

1

Z0

∫
|k|<Λ0

[Dφ0]φ0(x1)...φ0(xn) exp [−A0[φ0]] (23)
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Because of we are interested in the low momenta behaviour of this corre-

lation function with the momenta |ki| << Λ1 < Λ0 one can replace

φ0(x1)...φ0(xn)→ φ1(x1)...φ1(xn) (24)

Then

< φ0(x1)...φ0(xn) >(A0,Λ0)=

1

Z0

∫
|k|<Λ1

[Dφ1]φ1(x1)...φ1(xn)

∫
∆

[Dφ̂] exp [−A0[φ1 + φ̂]] =

C

Z0

∫
|k|<Λ1

[Dφ1]φ1(x1)...φ1(xn) exp [−A1[φ1]] (25)

But

Z0 = C

∫
|k|<Λ1

[Dφ1] exp [−A1[φ1]] = CZ1 (26)

so that we obtain

< φ0(x1)...φ0(xn) >(A0,Λ0)=< φ1(x1)...φ1(xn) >(A1,Λ1) (27)

The variable transformation (21): φ1(x) = z−
1
2 (L)φ̃0(

x
L) corresponds to

the dilatation of the coordinates with factor 1
L and returning the

cutoff Λ1 back to Λ0:

x→ x

L
, Λ1 → Λ0 (28)

Indeed

φ1(x) =

∫
|k|<Λ1

ddk

(2π)d
φ(k) exp (ıkx) =

=

∫
|k|<Λ1

ddk

(2π)d
φ(k) exp (ıLk

x

L
) =

L−d
∫
|q|<LΛ1=Λ0

ddq

(2π)d
φ(
q

L
) exp (ıq

x

L
) (29)
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so that

φ̃0(x) = z
1
2 (L)φ1(Lx) = L−dz

1
2

∫
|k|<Λ0

ddk

(2π)d
φ(
k

L
) exp (ıkx) (30)

contains all the wave vectors |k| < Λ0.

We then obtain for correlators

< φ0(x1)...φ0(xn) >(A0,Λ0)=< φ1(x1)...φ1(xn) >(A1,Λ1)≡
1

Z1

∫
|k|<Λ1

[Dφ1]φ1(x1)...φ1(xn) exp [−A1[φ1]] =

z−
n
2 < φ̃0(

x1

L
)...φ̃0(

xn
L

) >(Ã0,Λ0) (31)

But now we must identify

φ0(x) ≡ φ̃0(x) (32)

so that the relation (31) can be rewritten as

< φ0(x1)...φ0(xn) >(A0,Λ0)= z−
n
2 (L) < φ0(

x1

L
)...φ0(

xn
L

) >(Ã0,Λ0) (33)

where

Ã0[φ0] ≡ A1[z
− 1

2 (L)φ0(xL)] (34)

That is the theories described by A0 and Ã0, with the same cutoff Λ0 are

different by a scale transformation with the factor L. The transformation

A0 → Ã0 (35)

thus represents the scale transformation in the space of effective actions.

It is called the Wilson’s RG transformation.

Let us rewrite the relation (33) in opposit manner and make the Fourier

transform of both sides:

f.t. < φ0(x1)...φ0(xn) >(Ã0,Λ0)= f.t.z
n
2 (L) < φ0(Lx1)...φ0(Lxn) >(A0,Λ0)(36)
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where the comparison is made at low values of momenta |ki| << Λ0. In

other words, the theory described by Ã0 differs from that described by A0

by a scale transformation of space x→ x
L only.

The Wilson’s RG shows what it takes to make such rescaling in

field theory. Just rescaling the coordinates in the action is not sufficient.

The naive rescaling represented by step 2 above, must be supplemented

by the integration over the fast modes in step 1. Roughly speaking, the

rescaling x→ x
L increases the spacial density of the fields degrees

of freedom, and one has to dilute them back to the original den-

sity by performing step 1. In this sense the step 1 can be thought

of as transformation of the measure in the path integral.

2. Geometry of Renormalization flow.

2.1. Wilson’s RG semigroup.

We have seen that even the original action A has simple form like φ4,

the result of RG transformation is usualy a complicated quasilocal action

containing arbitrary high powers and orders of derivatives. On the other

hand, if A is generic quasilocal the Ã will again be of quasilocal form. (It

is assumed here that RG transformation is determined by this condition).

Under this assumption, the RG transformation acts in the space of

quasilocal actions which we denote by Σ, so that

RG : Σ→ Σ, Ã = RGl(A) (37)

where l = ln(L) ≥ 0 (L = Λ0

Λ1
).

It is clear that

RGl1+l2(A) = RGl1(RGl2(A)), RG0(A) = A (38)
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It means that RG is one-parametric semigroup. It is not a group because

the inverse to RGl can not be defined. The reason is simple but important-

the step 1 leads to a loss of information about the interractions at the cutoff

scales.

2.2. Approximate calculation of RG and Wilson’s RG flow equation.

In general exact evaluation of the RG transformation for an arbitrary l

is at least as difficult as exact evaluation of the functional integral. One can

find a good approximation for RGl with l small enough. Then, according

to the composition low (38) the transformation RGNl can be obtained as

N -th iteration of RGl:

RGNl = RGl...RGl (39)

Thus, one can do it step by step, integrating out the shortest scale degrees

of freedom.

Hence, it make sense to consider the infinitesimal RG transformation

RGδl(A) = A+B(A)δl + ...

B(A) =
d

dl
RGl(A)|l=0 (40)

In view of (38), the family of actions

Al = RGl(A0) (41)

where A0 is an arbitr. initial action from Σ, satisfies the equation

d

dl
Al = B(Al) (42)

which is called Wilson’s RG flow equation. It generates the scale trans-

formations in the space of quasilocal actions Σ. Namely two actions Al1
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and Al2 belonging to the same integral curve Al (RG trajectory)

describes the theories which differ by the scale transformation

x→ exp (l1 − l2)x (43)

Thus, the problem of RG transformation splits into 2 steps:

1. Evaluation of B(A).

2. Integration the RG flow equation (42).

2.3. The coordinates in the space of quasilocal actions.

One can introduce some coordinates on Σ to make the RG flow equation

more precise. Generic quasilocal action (which is φ→ −φ symmetric) can

be written as

A[φ0] =

∫
ddx[

∞∑
n=1

u2n

2n!
φ2n

0 (x) +
∞∑
n=0

v2n

2n!
φ2n

0 (∂φ0)
2 +

∞∑
n=0

w2n+1

2n!
φ2n+1

0 (∂φ0)
2∂2φ0 + ...] (44)

Thus the coupling constants u2n, v2n, w2n+1,... can be taken as such coordi-

nates. Thus, the space Σ is infinite-dimensional. Some of the coordinates

can be eliminated by appropriate renormalization of φ0, one can take for

instance v0 = 1.

In terms of these coordinates the RG flow equation can be written in

the form

d

dl
u2n(l) = Bu2n(u2n(l), v2n(l), w2n+1(l), ...)

d

dl
v2n(l) = Bv2n(u2n(l), v2n(l), w2n+1(l), ...)

d

dl
w2n+1(l) = Bw2n+1

(u2n(l), v2n(l), w2n+1(l), ...)

.......... (45)
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where Bu2n, Bv2n, Bw2n+1
,... are some functions of the coordinates on Σ.

In practical calculations some approximations for these equations are

necessary. Most importantly one must find some finite-dimensional ap-

proximation for Σ. But before it is usefull to think about what are the

properties of the RG flow we must be interested in.

2.4. Geometric properties of RG flow.

Some properties of RG flow can be discussed without refernce to specific

form of RG transformation if we made a few general assumptions concern-

ing the actions generated by RGl transformation. The main assumption

is

RGl : Σ→ Σ (46)

which means that RGl maps quasilocal action A into quasilocal ac-

tion Al and the series representing actions A and Al converge for

the fields φ0 which contain only Fourier components with |k| ≤ Λ.

Unfortunately there is no proof of this statement but in many cases it

holds. Hence

Al ∈ Σ, for l > 0 ifA0 ∈ Σ (47)

The trajectory Al gives a set of actions which all describe essentially

the same physical system up to the coordinate rescalings.

It is usefull to discuss RG action on Σ in terms of physical mass m or

in terms of correlation lenght Rc = m−1. To define it, consider the 2-point

correlation function. Its typical large-distance behaviour is

< φ0(x)φ0(0) >≈ exp (−|x|
Rc

), as |x| → ∞ (48)
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Let Rc be the correlation length associated with a system described by the

action (A0,Λ). Of course Al describes the same system, but in the units in

which the cutoff associated with Al is still Λ, the correlation length will be

Rc(l) = exp (−l)Rc (49)

It allows to define various surfaces Σ(Rc = r) ∈ Σ of quasilocal actions

with fixed correlation lenght Rc = r. Of special interest is the critical

surface Σcrit with Rc =∞.

For an arbitrary finite r ≥ 0 one can consider also the subspaces Σ(Rc ≤
r) ⊂ Σ of the quasilocal actions such that Rc ≤ r.

Let us apply RGl to the subspace Σ(Rc ≤ r). In view of (49) we find

RGlΣ(Rc ≤ r) ⊂ Σ(Rc ≤ exp (−l)r)⇒

RGlΣ ≡ Σ(l) ⊂ Σ, RGlΣ 6= Σ (50)

2.5. RG flow limit and space of local QFT.

Another important subspace is the limiting space

RG∞Σ ≡ Σ(∞) (51)

This space can be much smaller then Σ. The basic idea of the Wilson’s

RG approach is in the hope that Σ(∞) has many less dimensions then

Σ. The reason is the following: For large l the Action Al describes the

physical system with actual interactions of much shorter range (the range

of interactions is ≈ Rc) then the range of interractions for the initial action

A0 (in case of a theory on a lattice it means that interaction terms involve

only few nearest spins around the given spin). It is unlikely that arbitrary

action in Σ has this property. Thus Σ(∞) is expected to be only small

subset in Σ.
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The RG flow differential equation (42):

d

dl
Al = B(Al)

(52)

can be integrated backward in l as well as forward. Suppose A ∈ Σ

but A /∈ Σ(l). Then A−l may not be in Σ because A−l can fail to be

quasilocal (it may contain long-range interractions) or can have pathologi-

cal properties like some coefficients which controll convergence of the paths

integral can become such that integral with A−l no longer exists.

The subspace Σ(∞) is important exception from this general rule. If

one takes A ∈ Σ(∞) and obtain A−l by integrating backwards we find that

A−l ∈ Σ(∞) (53)

To proove this, suppose that A−l /∈ Σ(∞) but A−l ∈ Σ. Then

RGl(A−l) = A ∈ Σ(∞) (54)

so that A can be reached in finite time l from some point in Σ but this

contradicts the definition of Σ(∞). It means that starting from Σ(∞)

one can integrate back and forth, still remaining within Σ(∞).

For this reason the subspace Σ(∞) is of central importance in local

Quantum Field Theory. The problem of QFT is to obtain finite local

theory in the limit Λ → ∞, with appropriately adjusted bare action A0.

Integrating backward is essentially considering the actions which lead to

the same physics as the action A0 but equipped with larger and larger cutoff

Λ mesured in the units of m. It is then clear that finding renormalized

local theories is equivalent to finding actions A from which one

can integrate backward whithout limits. For this reason it is natural

to identify Σ(∞) with the space of local QFT .
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2.6. RG flow fixed points.

The picture of the RG flow at generic point in Σ is rather boring- it

just flows. Something interesting happens near singular points of the flow.

The most simple but most important points of the RG flow are the fixed

points.

A fixed point is an action A∗ which satisfy the equation

B(A∗) = 0 (55)

Associated trajectory is trivial

Al = A∗ (56)

Appendix .

Renormalization in φ4.

1. Regularization and renormalization program.

Recall our renormalization program we considered for the φ4 theory.

1.

Start with the action

A =

∫
d4x(

1

2
(∂φ0)

2 +
m2

0

2
φ2

0 +
λ0

4!
φ4

0)

(57)

containing the bare field, bare mass, and bare coupling constant.

2.

Introduce some cutoff with a cutoff momentum Λ (this can be done

many ways), to make the integrals over internal momenta finite.

3.
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We expect that one can give parameters m2
0, λ0, and the field renormal-

ization constant Z certain dependence on Λ:

m2
0 = m2

0(Λ) , λ0 = λ0(Λ) , Z = Z(Λ)

(58)

such that the correlation functions of the renormalized field

φ = Z−
1
2 (Λ)φ0,

< φ(x1)...φ(xN) >= Z−
N
2 (λ,m,Λ) < φ0(x1)...φ0(xN) >

(59)

have finite Λ→∞ limit.

4.

We rewrite the initial action in terms of renormalized λ, m, φ(x) intro-

ducing counterterms

A =

∫
d4x(

1

2
(∂φ)2 +

m2

2
φ2 +

λ

4!
φ4 +

δZ

2
(∂φ)2 +

δm2

2
φ2 +

δλ

4!
φ4)

(60)

where m is an actual mass and λ is suitably defined finite coupling constant.

The identity with the original action implies

1 + δZ = Z , m2 + δm2 = Zm2
0 , λ+ δλ = Z2λ0

(61)

It leads to the renormalized perturbation theory where the per-

turbation expansion is going by renormalized coupling constant

λ with the following Faynman rules:

=
1

k2 +m2

(62)
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k1 k2

= (k2
1δZ − δm2)(2π)4δ(k1 + k2)

(63)

= λ

(64)

= δλ

(65)

Therefore we assume the counterterm coefficients themselves depend per-

turbatively (i.e. as power series) on λ:

δZ = Z1λ+ Z2λ
2 + ...

δm2 = b1λ+ b2λ
2...

δλ = a1λ+ a2λ
2 + ...

(66)

In the cutoff regularization the coefficients Zi, bi, ai depends on

the Λ, while in the dimensional regularization the coefficients Zi,

bi, ai depends on ε = 4− d.
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