
Lecture 8

Standard model and Georgi-Glashow Grand Unification model.
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1. Standard Model.

1.1. Gauge group and bosonic sector.

The gauge group of the Standard Model is

SU(3)× SU(2)× U(1) (1)

where SU(3) is responsible for the strong interactions of quarks and hence,

we have to add strong interaction coupling constant gs to the constants g, ǵ

of the electro-weak interaction. Thus, the Standard Model have additional
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SU(3)-gauge symmetry and SU(3) gauge fields transforming by the rule

GA
µ (x)tA → U(x)GA

µ (x)tAU−1(x) +
ı

gs
U(x)∂µU

−1(x),

U(x) = exp (ıαA(x)tA) ∈ SU(3) (2)

where tA, A = 1, ..., 8 are generators of su(3)-Lie algebra

[tA, tB] = ıfABCtC (3)

So we add to the electro-weak Lagrangian the SU(3) gauge fields contri-

bution

LG = −1

4
FA
µν(F

A)µν,

FA
µν = ∂µG

A
ν − ∂νGA

µ + gsf
ABCGB

µG
C
ν (4)

The Higgs bosons are SU(3)-singlets so they do not interract to the

SU(3) gauge fields.

1.2. Quarks multiplets.

The quarks of all generations sit in the fundamental SU(3)-representation

so that they are 3-components complex vectors regardless of chirality. In

this representation the su(3)-generators are given by Gell-Mann matrices

(see Appendix).

Hence, all the covariant derivatives from the electro-weak theory (see

Appendix) have to be extended by SU(3)-gauge fields:

Qi
L → Qiα

L , uR → uαR, dR → dαR,

DνQ
iα
L = ∂νQ

iα
L − ıgsGA

ν (tA)αβQiβ
L −

ıg

2
Aa
ν(σ

a)ijQ
jα
L −

ıǵ

2
Bν(YL)ijQ

jα
L ,

Dνu
α
R = ∂νu

α
R − ıgsGA

ν (tA)αβuβR −
ıǵ

2
BνYRuu

α
R,

Dνd
α
R = ∂νd

α
R − ıgsGA

ν (tA)αβdβR −
ıǵ

2
BνYRdd

α
R (5)
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where α = 1, ..., 3 labels the elements of SU(3)-multiplet. The quarks

Lagrangian now takes the form

Lq = Q̄L
iα

(ıγνDν)
αβQiβ

L + ūR
α(ıγνDν)

αβuβR + d̄R
α
(ıγνDν)

αβdβR −

λdQ̄
iα
L ΦidαR − λdd̄αR(Φi)†Qiα

L − λuεijQ̄iα
L ΦjuαR − λuεijūαR(Φj)†Qiα

L . (6)

Due to Higgs effect Yukawa interaction terms gives the standard mass

terms for quarks

− 1√
2
λdv(d̄RdL + d̄LdR)− 1√

2
λuv(ūRuL + ūLuR). (7)

1.3. Leptons multiplets.

The leptons of all generations sit in the SU(3)-singlets so they do not

interact with GA
µ (x) gauge fields.

1.4. J5
µ current and anomalies.

There is an additional symmetry in the theory since the chiral fermions

are present in the theory

ψ → exp (ıαγ5)ψ

(8)

since the chiral fermions are present. This symmetry leads at the classical

level to the axial current conservation low

∂µJ5
µ = 0, J5

µ = ψ̄γ5γµψ

(9)

But due to quantum anomaly this current does not conserv.

Since in electro-weak sector vector bosons interact with vector and axial

currents this anomaly breaks the gauge symmetry of the theory. It may

lead to nonrenormalizable theory. But the anomaly in the theory is

canceled.
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2. Georgi-Glashow model of Grand Unification.

2.1. Standard model coupling constants evolution and Grand Unification idea.

The Standard Model with gauge group SU(3) × SU(2) × U(1) has 3

independent coupling constants g3, g2, g1 such that

g3 > g2 > g1

(10)

at the energy level << mW ≈ 100GeV . It follows from Renormalization

group equations that g3 and g2 decrease as the energy scale grows:

1

g2
3(E)

=
1

g2
3(M)

+
1

16π2
(11− 4n

3
) log (

E

M
)2,

1

g2
2(E)

=
1

g2
2(M)

+
1

16π2
(
22

3
− 4n

3
− 1

6
) log (

E

M
)2,

(11)

while the U(1) gauge coupling goes like

1

g2
1(E)

=
1

g2
1(M)

− 1

16π2
(
4n

3
+

1

10
) log (

E

M
)2

(12)

where n is the number of generations. When n = 3 we find that

1

g2
3(E)

=
1

g2
3(M)

+
7

16π2
log (

E

M
)2

1

g2
2(E)

=
1

g2
2(M)

+
19

6

1

16π2
log (

E

M
)2

1

g2
1(E)

=
1

g2
1(M)

− 41

10

1

16π2
log (

E

M
)2

(13)

As the energy grows the coupling constants gi(E) approach to each other

maximally close at E ≈ 1016 GeV. (though they do not intersect at one
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point):

1/g3

1/g2

1/g1

102 1016 Gev

(14)

One can explain this behaviour at high energies if we assume

that at some energy scale around E ≈ 1016GeV they coinside. Then

at lower energies, g3,2 will encrease because of renormalization group equa-

tions (asymptotic freedom), while g1 will decrease, which is realy observed

at low energies.

An even more interesting hypothesis whould be that all the Standard

Model gauge symmetries are the subgroups of some larger gauge

symmetry group which is sponaneously broken at large energies.

The most simple choise for such group is SU(5). Then the SU(3) ×
SU(2)×U(1) coupling constants ere related to the SU(5) coupling constant

as

g5 = g3 = g2 =

√
5

3
g1

(15)

The idea that the Standard Model gauge group SU(3)×SU(2)×
U(1) is emebeded into a large simple gauge group is called Grand
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Unification. The particular SU(5) choice has been proposed by Georgi

and Glashow.

In fact one can modify the renormalization group equation in such a

way to make the gauge couplings intersecting at some point. It can be

achieved in N = 1 supersymmetric gauge theories.

2.2. SU(5) multiplets of Standard Model particles.

Because of the rank of the Standard Model group SU(3)×SU(2)×U(1)

is 4 the minimal Grand unification group must have rank 4. The Georgi

and Glashow poposed to take the SU(5) as a Grand Unification gauge

group. It is 52 − 1 = 24-dimensional group.

It is obvious that

SU(3)× SU(2)× U(1) ⊂ SU(5) (16)

The embeding (16) is fixed by the Higgs field vacuum expectation value

< Ω|Φ|Ω >. The Higgs field is in adjoint representation of the SU(5):

Φ(x) = Φa(x)T a

(17)

where T a , a = 1, ..., 24 are the fundamental 5-representation matrices of

the Lie agebra of the group (see Appendix 3).

The Higgs field vaccum expectation value which is invariant w.r.t. the

SU(3)×SU(2)×U(1) can be taken to be proportional to the weak hyper-
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charge generator Y

< Ω|Φ|Ω >=



−1
3 0 0 0 0

0 −1
3 0 0 0

0 0 −1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2


v =

Y

2
v (18)

(where we put Y =
√

5
3T

24

T 24 =

√
3

5



−1
3 0 0 0 0

0 −1
3 0 0 0

0 0 −1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2


(19)

Tr(T 24)2 = 1
2).

Let us try to sort out the fermions of Standard model in the SU(5)

irreducible representations.

We have the following particles

u1 u2 u3 νe

d1 d2 d3 e

c1 c2 c3 νµ

s1 s2 s3 µ−

t1 t2 t3 ντ

b1 b2 b3 τ−


(20)

The first generation of particles occupies the first and second rows. The

second generation consists of the third and forth rows. The third generation

consists of the last two rows.
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Looking at the generators T a (see Appendix 2.) it becomes clear that

fundamental SU(5) representation 5 is decomposed w.r.t SU(3)×SU(2)×
U(1) as

5 = (3, 1,−1

3
)⊕ (1, 2,

1

2
) (21)

The conjugated representation decomposes similarly

5∗ = (3∗, 1,
1

3
)⊕ (1, 2,−1

2
) (22)

so we see that 5∗ representation of SU(5) can be realized for (d̄1, d̄2, d̄3, e, νe).

To get the representation like (3, 2, 1
6) we decompose the tensor product

5× 5 into the symmetric and anti-symmetric parts:

5× 5 = ((3, 1,−1

3
)⊕ (1, 2,

1

2
))× ((3, 1,−1

3
)⊕ (1, 2,

1

2
)) =

(6, 1,−2

3
)s ⊕ (3∗, 1,−2

3
)a ⊕ (3, 2,

1

6
)s ⊕ (3, 2,

1

6
)a ⊕

⊕(1, 3, 1)s ⊕ (1, 1, 1)a =

15s ⊕ 10a

(23)

Hence the representations we need are in 10a representation

10a = (3∗, 1,−2

3
)a ⊕ (3, 2,

1

6
)a ⊕ (1, 1, 1)a =

0 ū3 −ū2 u1 d1

−ū3 0 ū1 u2 d2

ū3 ū2 0 u3 d3

−u1 −u2 −u3 0 ē

−d1 −d2 −d3 −ē 0


(24)

which is the second fundamental SU(5) representation. The rest particles

from the first generation can be placed into

5∗ = (d̄1, d̄2, d̄3, e, νe) (25)
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Thus we see that the one generation of leptons and quarks fits

into 5∗ ⊕ 10! Other generations can be placed similarly.

We therefore define left-handed Weyl fermions in 5∗ representation Ψi(x)

and a left-handed Weyl fermions in 10 representation Ψij(x) = −Ψji(x).

The covariant derivatives of these fields are given by

DµΨi = ∂µΨi − ıg5A
a
µ(T̄ a)ikΨ

k =

∂µΨi + ıg5A
a
µ(T a)ikΨ

k,

DµΨij = ∂µΨij − ıg5A
a
µ(T a10)

kn
ij Ψkn =

∂µΨij − ıg5A
a
µ((T a)kiΨkj + (T a)njΨin)

(26)

so that the kinetic terms are

ıΨ†i σ̄
µDµΨi +

ı

2
Ψ†ijσ̄µDµΨij.

(27)

2.3. Quark’s electric charges.

Placing the Standard model particles into SU(5) multiplets one can

explain the values of electric charges of quarks. Indeed, electric charge

operator Q is an element of Lie algebra su(5). Acting by this operator on

the vectors from 5∗ we find

QΨi = qiΨ
i

(28)
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From the other hand we have by definition

0 = TrQ = qd̄1 + qd̄2 + qd̄3 + qe + qνe ⇔

qd1 = qd2 = qd3 =
1

3
qe

(29)

It explains why the charges of quarks are rational, but does not explain

why the charge of electron is quantized.

2.4. Higgs potential for spontaneous SU(5) symmetry breaking.

The most general (Φ ↔ −Φ symmetric) renormalizable Higgs field po-

tential which breaks SU(5) down to SU(3)×SU(2)×U(1) takes the form

V (Φ) = −µ
2

2
Tr(Φ2) +

λ1

4
(Tr(Φ)2)2 +

λ2

4
Tr(Φ4)

(30)

The vacuum average (18) breaking the SU(5) down to SU(3) × SU(2) ×
U(1) gives the following value of V

V (v) = −µ
2

2

5

6
v2 +

1

4
(
25

36
λ1 +

35

216
λ2)v

4

(31)

Nonzero value of v minimazing the potential is given by

v2 =
36µ2

30λ1 + 7λ2

(32)

and the Higgs boson aqquires the mass

m2
h =

5µ2

3
(33)
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According to Higgs mechanism, Goldstones modes make the masses of

gauge fields along the broken symmetries to be non-zero. The matrix of

SU(5) gauge fields is given by

G1
1 − cB

3 G2
1 G3

1
X1

1√
2

X2
1√
2

G1
2 G2

2 − cB
3 G3

2
X1

2√
2

X2
2√
2

G1
3 G2

3 G3
3 − cB

3
X1

3√
2

X2
3√
2

X†11√
2

X†21√
2

X†31√
2

W 3+cB
2

W+
√

2
X†12√

2

X†22√
2

X†32√
2

W−√
2

−W 3+cB
2


(34)

where G1
1 +G2

2 +G3
3 = 0, B is hypercharge gauge field,

√
2W± = W 1±ıW 2,

and W 3 are the SU(2) gauge fields. Thus the fields X i
α from (3, 2,−5

6),

where the index α is SU(3) index while i is SU(2) index, become massive

with

MX ≈ g5v ≈ 1016Gev

(35)

The SU(3)×SU(2)×U(1) gauge fields interact to the quarks and leptons

with

g3 = g2 =

√
3√
5
g1 = g5

(36)

Thus instead of 3 arbitrary gauge coupling constants, we had in

the Standard model, we have only one gauge coupling constant as

we expected from Standard Model coupling constants evolution.

In order for fermions become massive one needs also to add Yukawa

interaction terms.

2.5. Quark-lepton interaction and proton decay.
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One can also find from the Lagrangian the couplings of X with quarks

and leptons (from the first generation for example):

−g5[X
†a
1µ(d†aσ̄

µe− ē†σ̄µda + u†bσ̄µucεabc) +

X†a2µ(−d†aσ̄µν + ē†σ̄µua + d†bσ̄µucεabc)] + h.c. =

−g5X
†a
iµ (εijd†aσ̄

µlj − εij ē†σ̄µqja + q†bjσ̄µucεabc) + h.c. =

−g5X
†a
iµJ

µi
a + h.c.

(37)

Because of quark-lepton terms in this expression the exchange of an X

boson can violate baryon and lepton conservation low and can lead to a

proton decay:

ud
X−→ e+ū

p = uud
X−→ uūe+ = π0e+

(38)

Proton decay has not been observed. The limit on rate 1
τ for p → π0e+

decay is τ > 1033 years. It gives the estimation

MX > 3× 1015Gev

(39)

Appendix 1. Electro-weak Theory (GWS).

2.1. Gauge group, bosonic sector and Higgs effect (reminder).

It is given by YM field theory with gauge group SU(2)×U(1) interract-

ing with a dublet of complex scalar fields Φ(x) = (φ1(x), φ2(x)) with the
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following rule of gauge transformations

Φ(x)→ exp (ıαa(x)
σa

2
+ ı

β(x)

2
)Φ(x),

Aν(x) ≡ Aa
ν(x)

σa

2
→ U(x)Aν(x)U−1(x) +

ı

g
U(x)∂νU

−1(x),

Bν(x)→ Bν(x) +
ı

2ǵ
∂β(x) (40)

where U(x) = exp (ıαa(x)σ
a

2 ).

The corresponding part of the Lagrangian is given by

L(A,B,Φ) = −1

4
(F a

µν)
2 − 1

4
(Fµν)

2 +
1

2
|DµΦ|2,

DµΦ = (∂µ − ıgAa
µ

σa

2
− ı ǵ

2
Bµ)Φ (41)

It is supposed that Φ acquires the vacuum expectation value

Φ0 =
1√
2

(0, v) (42)

due to the self-interaction

V (Φ) = −µ2Φ†Φ +
λ

2
(Φ†Φ)2 (43)

so that the subgroup of matrices leaves the vacuum vector fixed:

exp (ıβ(x)(
σ3 + 1

2
))Φ0 = Φ0,

exp (ıβ(x)(
σ3 + 1

2
)) ∈ U(1)em ⊂ U(1)× U(1) ⊂ SU(2)× U(1) (44)

isomorphic to U(1) group. Therefore we have a massless gauge boson while

3 other bosons becomes massive. Indeed

Dµ(Φ0 + φ(x)) = (∂µ − ıgAa
µ

σa

2
− ı ǵ

2
Bµ)(Φ0 + φ(x)) =

Dµφ(x)− (ıgAa
µ

σa

2
+ ı

ǵ

2
Bµ)Φ0,

Φ†0(gA
a
µ

σa

2
+
ǵ

2
Bµ)(gAaµσ

a

2
+
ǵ

2
Bµ)Φ0 =

1

2

v2

4
(g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + ǵBµ)2) (45)
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Hence, it make sense to introduce the following combinations of gauge

bosons

W±
µ =

1√
2

(A1 ∓ ıA2)µ, mW =
gv

2
,

Zµ =
1√

g2 + ǵ2
(gA3 − ǵB)µ, mZ =

√
g2 + ǵ2

v

2

Aµ =
1√

g2 + ǵ2
(ǵA3 + gB)µ, mA = 0 (46)

For the case of general representation of the gauge group SU(2)× U(1)

Dµ = ∂µ − ıgAa
µT

a − ıǵY Bµ =

∂µ − ı
g√
2

(W+T+ +W−T−)µ −
ı√

g2 + ǵ2
Zµ(g2T 3 − ǵ2Y )

− ıgǵ√
g2 + ǵ2

Aµ(T 3 + Y ) (47)

where T± = T 1 ± ıT 2.

It is natural to identify the EM gauge potential coupling to the charge

of electron

e =
gǵ√
g2 + ǵ2

(48)

and determine the electric charge operator as

Qem = T 3 + Y (49)

It is also convenient to introduce the mixing angle ΘW by the relation(
Z

A

)
=

(
cosΘW −sinΘW

sinΘW cosΘW

)(
A3

B

)
⇔

cosΘW =
g√

g2 + ǵ2
, sinΘW =

ǵ√
g2 + ǵ2

(50)
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Then we will have

Dµ =

∂µ − ı
g√
2

(W+T+ +W−T−)µ − ı
g

cosΘW
Zµ(T 3 − sin2ΘWQem)− ıeAµQem,

g =
e

sinΘW
(51)

and mW = mZcosΘW . Experimental data: mW = 80Gev, mZ = 91Gev,

mH = 126Gev (2012).

2.2. Fermionic sector, leptons multiplets.

The leptons (which are fermions) interract to W -bosons only by the left-

handed components while the right-handed components do not interract

to W . Thus, the left-handed components sit at SU(2) dublets:(
νe(x)

e−(x)

)
L

,

(
νµ(x)

µ−(x)

)
L

,

(
ντ(x)

τ−(x)

)
L

(52)

Each component of the each dublet is a left-handed Weyl spinor w.r.t.

Lorentz group:

γ5

(
νe(x)

e−(x)

)
L

= −

(
νe(x)

e−(x)

)
L

(53)

The upper components describe the 3 kinds of neutrino, while the bottom

components describe the electron, muon and τ -lepton.

The right-handed components of leptons sit at SU(2) singlets:

e−R(x), µ−R(x), τ−R (x) (54)

They are right-handed Weyl spinors:

γ5e−R(x) = e−R(x) (55)

Each left-handed dublet together with the corresponding right-

handed singlet form a generation of leptons.
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In what follows we concentrate on the first generation and introduce the

notation (
νe(x)

e−(x)

)
L

≡

(
E1
L(x)

E2
L(x)

)
, ER(x) ≡ e−R(x) (56)

Then the corresponding part of the Lagrangian is given by

Llept = ĒL
i
(ıγνDν)E

i
L + ĒR(ıγνDν)ER − λeĒi

LΦiER − λeĒR(Φi)†Ei
L,

DνE
i
L = ∂νE

i
L −

ıg

2
Aa
ν(σ

a)ijE
j
L −

ıǵ

2
Bν(YL)ijE

j
L,

DνER = ∂νER −
ıǵ

2
BνYRER (57)

where i, j = 1, 2 and λe is a coupling constant leading to the masses of

leptons (λe is renormalizable constant so that it is a parameter of the

model). Due to the vacuum average (42) the leptons get masses

∆Llept = −λeĒi
LΦiER − λeĒR(Φi)†Ei

L = −λev√
2

(ēLeR + ēReL)...⇒

me =
λev√

2
(58)

Notice that we get the standard mass term for fermions −λev√
2
ēe

so that eL → eR transition is recovered!

One could add the standard mass term for leptons directly but it would

destroy the gauge invariance:

EL(x)→ exp (ıαa(x)
σa

2
+ ıβ(x)YL)EL(x),

ER(x)→ exp (ıβ(x)YR)ER(x) (59)

Thus, the Dirac’s electron is a superposition of eL and eR which

are completely different particles from the point of view of weak

forces!

16



To define YL and YR we use the relation (49). In the fundamental

SU(2)-representation, which is used for the left-handed leptons

T 3 =
1

2
σ3 =

(
1
2 0

0 −1
2

)
(60)

Hence,

YL = Qem − T 3 =

(
0 0

0 −1

)
−

(
1
2 0

0 −1
2

)
=

(
−1

2 0

0 −1
2

)
(61)

Right-handed leptons are singlets, that is T 3 = 0 but e−R, µ
−
R, τ

−
R have Qem =

−1 and hence

YR = −1 (62)

2.3. Quarks multiplets and Lagrangian.

Quarks are included into GWS model similarly to the leptons:

Q1 =

(
u(x)

d(x)

)
L

, Q2 =

(
c(x)

s(x)

)
L

, Q3 =

(
t(x)

b(x)

)
L

(63)

Each component of the each dublet is a left-handed Weyl spinor w.r.t.

Lorentz group.

γ5

(
u(x)

d(x)

)
L

= −

(
u(x)

d(x)

)
L

(64)

The right-handed components of quarks sit at SU(2) singlets:

uR(x), dR(x), cR(x), sR(x), tR(x), bR(x) (65)

The quadruples (Q1, uR, dR),...,(Q3, tR, bR) form a generations of quarks.
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The Lagrangian is given similar to (57). For the first quarks generation

the Lagrangian is

Lq = Q̄L
i
(ıγνDν)Q

i
L + ūR(ıγνDν)uR + d̄R(ıγνDν)dR −

λdQ̄
i
LΦidR − λdd̄R(Φi)†Qi

L − λuεijQ̄i
LΦjuR − λuεijūR(Φj)†Qi

L,

DνQ
i
L = ∂νQ

i
L −

ıg

2
Aa
ν(σ

a)ijQ
j
L −

ıǵ

2
Bν(YL)ijQ

j
L,

DνuR = ∂νuR −
ıǵ

2
BνYRuuR,

DνdR = ∂νdR −
ıǵ

2
BνYRddR. (66)

By the Higgs effect the quarks get the following masses:

∆Lq = −λdQ̄i
LΦidR − λdd̄R(Φi)†Qi

L − λuεijQ̄i
LΦjuR − λuεijūR(Φj)†Qi

L =

−λdv√
2

(d̄LdR + d̄RdL)− λuv√
2

(ūLuR + ūRuL)...⇒

md =
λdv√

2
, mu =

λuv√
2
, (67)

where λu,d are renormalizable constants so that they are the parameters of

the model.

Now we find

YL = Qem − T 3 =

(
2
3 0

0 −1
3

)
−

(
1
2 0

0 −1
2

)
=

(
1
6 0

0 1
6

)
(68)

The values of u, d quarks electric charges follow from the fact that proton

has electric charge +1 and it is a bound state of two u-quarks and one

d-quark (in order to be colorless), while neutron has electric charge 0 and

it is a bound state of two d-quarks and one u-quark:

p = εαβγu
αuβdγ, n = εαβγd

αdβuγ (69)

(Recall also the electric charge quantization phenomenon.)
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For the right-handed quarks we find

YR = Qem = (
2

3
,−1

3
) (70)

Appendix 2. Gell-Mann matrices.

Gell-Mann matrices:

t1 =


0 1 0

1 0 0

0 0 0

 , t2 =


0 −ı 0

ı 0 0

0 0 0

 , t3 =


1 0 0

0 −1 0

0 0 0

 ,

t4 =


0 0 1

0 0 0

1 0 0

 , t5 =


0 0 −ı
0 0 0

ı 0 0

 , t6 =


0 0 0

0 0 1

0 1 0

 ,

t7 =


0 0 0

0 0 −ı
0 ı 0

 , t8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (71)
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