Lecture 6.

Higgs effect in non abelian Gauge Theory.

Plan.

1. Yang-Mills theory. Gauge invariance. Lagrangian.

1.1. Nonabelean generalization of gauge symmetry. $S U(2)$ example.
1.2. Nonabelean gauge theory in general case.

2. Higgs effect in case of $S U(2)$ YM theory.

2.1. Higgs effect in case $S U(2)$-dublet scalar fields.
2.2. Higgs effect in case $S U(2)$-triplet of real scalar fields.
2.3. GWS model (part 1).

1. Yang-Mills theory. Gauge invariance. Lagrangian.

1.1. Nonabelean generalization of gauge symmetry. $S U(2)$ example.

Instead of the $U(1)$ group with gauge transformation rule for Dirac fermion $\psi(x) \rightarrow \exp (\imath \alpha(x)) \psi(x)$, one can consider nonabelian group, $S U(2)$ and instead of Dirac fermion one can consider a dublet of Dirac fermions $\Psi(x)=\left(\psi^{1}(x), \psi^{2}(x)\right)$ with the gauge action determined by

$$
\begin{equation*}
\Psi(x) \rightarrow \exp \left(\imath \sum_{i} \alpha_{k} \frac{\sigma_{k}}{2}\right) \Psi(x) \equiv V(x) \Psi(x), V(x) \in S U(2) \tag{1}
\end{equation*}
$$

where σ_{k} are the Pauli matrices.
Let us define the parallel transport operator from the point x to the point y by a unitary matrix $U(y, x)$ satisfying the equations

$$
\begin{gather*}
U(y, x) \rightarrow V(y) U(y, x) V^{\dagger}(x) \\
U(x, x)=1, U(y, x) U(x, y)=1 \tag{2}
\end{gather*}
$$

for each gauge transformation $V(x) \in S U(2)$. Then, in the case the point
y is close to the point x we can write

$$
\begin{array}{r}
y=\epsilon n(x)+x, \\
U(\epsilon n(x)+x, x)=1+\imath g \epsilon n^{\mu}(x) A_{\mu}^{k}(x) \frac{\sigma_{k}}{2}+\ldots \tag{3}
\end{array}
$$

Using (28) one can find the gauge field $A_{\mu}(x)$ transformation rule

$$
\begin{array}{r}
U(\epsilon n(x)+x, x)=1+\imath g \epsilon n^{\mu}(x) A_{\mu}^{k}(x) \frac{\sigma_{k}}{2}+\ldots \Rightarrow \\
V(\epsilon n(x)+x)\left(1+\imath g \epsilon n^{\mu}(x) A_{\mu}^{k}(x) \frac{\sigma_{k}}{2}\right) V^{-1}(x)+\ldots= \\
1+\imath g \epsilon n^{\mu}(x) \tilde{A}_{\mu}^{k}(x) \frac{\sigma_{k}}{2}+\ldots \Leftrightarrow \\
\tilde{A}_{\mu}^{k}(x) \frac{\sigma_{k}}{2}=V(x) A_{\mu}^{k}(x) \frac{\sigma_{k}}{2} V^{-1}(x)+\frac{\imath}{g} V(x) \partial_{\mu} V^{-1}(x) \tag{4}
\end{array}
$$

Define the covariant derivative

$$
\begin{equation*}
n^{\mu} D_{\mu} \Psi(x) \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(\Psi(x+\epsilon n(x))-U(\epsilon n(x)+x, x) \Psi(x)) \tag{5}
\end{equation*}
$$

It then gives

$$
\begin{equation*}
D_{\mu} \Psi(x)=\left(\partial_{\mu}-\imath g A_{\mu}^{k}(x) \frac{\sigma_{k}}{2}\right) \Psi(x) \tag{6}
\end{equation*}
$$

Under the gauge transformations $\Psi(x) \rightarrow V(x) \Psi(x), A_{\mu}(x) \rightarrow V(x) A_{\mu} V^{-1}(x)+$ ${ }_{g}{ }_{g} V(x) \partial_{\mu} V^{-1}(x)$ we find that

$$
\begin{array}{r}
D_{\mu} \Psi(x)=\left(\partial_{\mu}-\imath g A_{\mu}^{k}(x) \frac{\sigma_{k}}{2}\right) \Psi(x) \rightarrow \\
\left(\partial_{\mu}-\imath g\left(V A_{\mu}^{k}(x) \frac{\sigma_{k}}{2} V^{-1}+\frac{\imath}{g} V \partial_{\mu} V^{-1}\right)\right) V(x) \Psi(x)= \\
V D_{\mu} \Psi(x) \tag{7}
\end{array}
$$

In order to find kinetic term for the gauge field consider the parallel transport operator along small rectangle $x \rightarrow x+\epsilon e_{1} \rightarrow x+\epsilon e_{1}+\epsilon e_{2} \rightarrow x+$ $\epsilon e_{2} \rightarrow x$, generated by the vectors $e_{1,2}$. Using the property $U(z, y) U(y, x)=$
$U(z, x)$ we find

$$
\begin{array}{r}
U(x \rightarrow x)=U\left(x, x+\epsilon e_{1}\right) U\left(x+\epsilon e_{1}, x+\epsilon e_{1}+\epsilon e_{2}\right) \\
U\left(x+\epsilon e_{1}+\epsilon e_{2}, x+\epsilon e_{2}\right) U\left(x+\epsilon e_{2}, x\right)= \\
1-\imath g^{2} \epsilon^{2}\left(e_{1}\right)^{\mu}\left(e_{2}\right)^{\mu} F_{\mu \nu}(x)+\ldots \\
F_{\mu \nu}=\imath g\left[D_{\mu}, D_{\nu}\right]=\partial_{\nu} A_{\mu}-\partial_{\mu} A_{\nu}+\imath g\left[A_{\mu}, A_{\nu}\right] \tag{8}
\end{array}
$$

One can check that under the gauge transformations $V(x) A_{\mu}^{k}(x) \frac{\sigma_{k}}{2} V^{-1}(x)+$ $\frac{\imath}{g} V(x) \partial_{\mu} V^{-1}(x)$

$$
\begin{equation*}
F_{\mu \nu} \rightarrow V(x) F_{\mu \nu}(x) V^{-1} \tag{9}
\end{equation*}
$$

It follows from Lorentz invariance, gauge invariance, locality and renormalizibility that the only possible Lagrangian is

$$
\begin{equation*}
L(A, \Psi)=-\frac{1}{4}\left(F_{\mu \nu}\right)^{2}+\bar{\Psi} \imath \gamma^{\mu} D_{\mu} \Psi-m \bar{\Psi} \Psi \tag{10}
\end{equation*}
$$

1.2. Nonabelean gauge theory in general case.

$$
\begin{array}{r}
\Psi(x)=\left(\psi^{1}(x), \ldots \psi^{n}(x)\right) \\
\Psi(x) \rightarrow V(x) \Psi(x), V(x) \in U(n) \\
V(x)=\exp \left(\imath \alpha^{a}(x) t^{a}\right),\left[t^{a}, t^{b}\right]=\imath f^{a b c} t^{c} \\
D_{\mu}=\partial_{\mu}-\imath g A_{\mu}^{a} t^{a} \tag{11}
\end{array}
$$

2. Higgs effect in $S U(2)$ YM theory.

2.1. $S U(2)$-dublet scalar fields.

Gauge symmetry transformations for $S U(2)$ - dublet scalar fields $\Phi(x)=$ $\left(\phi^{1}(x), \phi^{2}(x)\right):$

$$
\begin{equation*}
\Phi(x) \rightarrow U(x) \Phi(x), U(x)=\exp \left(\imath \alpha^{a}(x) \frac{\sigma^{a}}{2}\right) \tag{12}
\end{equation*}
$$

The potential for Φ is

$$
\begin{array}{r}
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2} \\
\text { at the point } \Phi_{0}=\frac{1}{\sqrt{2}}(0, v), \frac{\partial V}{\partial \phi^{i}}=0 \tag{13}
\end{array}
$$

The covariant derivative is

$$
\begin{equation*}
D_{\mu} \Phi(x)=\left(\partial_{\mu}-\imath g A_{\mu}^{a} \frac{\sigma^{a}}{2}\right) \Phi(x) \tag{14}
\end{equation*}
$$

Then

$$
\begin{array}{r}
\Phi(x) \equiv \Phi_{0}+\phi(x) \\
\left|D_{\mu} \Phi\right|^{2}=\left[\left(D_{\mu} \phi-\imath g A_{\mu} \Phi_{0}\right)^{\dagger}\left(D^{\mu} \phi-\imath g A^{\mu} \Phi_{0}\right)\right]= \\
\left|D_{\mu} \phi\right|^{2}-\imath g\left(\left(D_{\mu} \phi\right)^{\dagger} A^{\mu} \Phi_{0}\right)+\imath g\left(\left(\Phi_{0}^{\dagger} A_{\mu}^{\dagger}\right) D^{\mu} \phi\right)+ \\
g^{2}\left(\Phi_{0}^{\dagger} A_{\mu}^{\dagger} A^{\mu} \Phi_{0}\right)= \\
\left|D_{\mu} \phi\right|^{2}-\imath g\left(\left(D_{\mu} \phi\right)^{\dagger} A^{\mu} \Phi_{0}\right)+\imath g\left(\left(\Phi_{0}^{\dagger} A_{\mu}^{\dagger}\right) D^{\mu} \phi\right)+ \\
\frac{g^{2} v^{2}}{8} A_{\mu}^{a} A^{a \mu} \Rightarrow \\
m_{A}=\frac{g v}{2} \tag{15}
\end{array}
$$

There are no massless gauge bosons because there is no nontrivial $S U(2)$ subgroup leaving the vacuum Φ_{0} fixed.
2.2. $S U(2)$-triplet of real scalar fields.

Gauge symmetry transformations for $S U(2)$ - triplet of real scalar fields $\Phi(x)=\left(\phi^{1}(x), \phi^{2}(x), \phi^{3}\right):$

$$
\begin{equation*}
\Phi(x) \rightarrow U(x) \Phi(x), U(x)=\exp \left(\imath \alpha^{a}(x) t^{a}\right) \tag{16}
\end{equation*}
$$

The covariant derivative is

$$
\begin{equation*}
D_{\mu} \phi^{a}(x)=\partial_{\mu} \phi^{a}+g \epsilon^{a b c} A_{\mu}^{b} \phi^{c}(x) \tag{17}
\end{equation*}
$$

The potential for Φ is

$$
\begin{array}{r}
V(\Phi)=-\mu^{2} \phi^{a} \phi^{a}+\frac{\lambda}{2}\left(\phi^{a} \phi^{a}\right)^{2} \\
\text { and at the point } \Phi_{0}=(0,0, v), \frac{\partial V}{\partial \phi^{a}}=0 \tag{18}
\end{array}
$$

Then

$$
\begin{equation*}
\Phi(x) \equiv \Phi_{0}+\varphi(x) \tag{19}
\end{equation*}
$$

Then

$$
\begin{array}{r}
D_{\mu} \phi^{a} D^{\mu} \phi^{a}=D_{\mu} \varphi^{a} D^{\mu} \varphi^{a}+2 g \epsilon^{a b c} D^{\mu} \varphi^{a} A_{\mu}^{b} \Phi_{0}^{c}+ \\
g^{2} v^{2}\left(A_{\mu}^{1} A^{1 \mu}+A_{\mu}^{2} A^{2 \mu}\right) \Rightarrow \\
m_{1,2}=\sqrt{2} g v, m_{3}=0 \tag{20}
\end{array}
$$

$<\phi^{3}>=v$ leaves the symmetry of rotations around the direction 3 unbroken but brokes the other symmetries from $S U(2)$.

2.3. GWS model (part 1).

It is given by YM field theory with gauge group $S U(2) \times U(1)$ interacting with a dublet of complex scalar fields $\Phi(x)=\left(\phi^{1}(x), \phi^{2}(x)\right)$ with the following rule of gauge transformations

$$
\begin{equation*}
\Phi(x) \rightarrow \exp \left(\imath \alpha^{a}(x) \frac{\sigma^{a}}{2}+\imath \frac{\beta(x)}{2}\right) \Phi(x) \tag{21}
\end{equation*}
$$

Suppose that Φ acquires the vacuum expectation value

$$
\begin{equation*}
\Phi_{0}=\frac{1}{\sqrt{2}}(0, v) \tag{22}
\end{equation*}
$$

It is easy to find the subgroup of matrices which leaves the vacuum vector fixed:

$$
\begin{equation*}
\exp \left(\imath \beta(x)\left(\frac{\sigma^{3}+1}{2}\right)\right) \Phi_{0}=\Phi_{0} \tag{23}
\end{equation*}
$$

(This is a $U(1)$ subgroup). Therefore we have one massless gauge boson while 3 other bosons becomes massive. Indeed

$$
\begin{array}{r}
D_{\mu}\left(\Phi_{0}+\phi(x)\right)=\left(\partial_{\mu}-\imath g A_{\mu}^{a} \frac{\sigma^{a}}{2}-\imath \frac{\dot{g}}{2} B_{\mu}\right)\left(\Phi_{0}+\phi(x)\right)= \\
D_{\mu} \phi(x)-\left(\imath g A_{\mu}^{a} \frac{\sigma^{a}}{2}+\imath \frac{g}{2} B_{\mu}\right) \Phi_{0} \\
\Phi_{0}^{\dagger}\left(g A_{\mu}^{a} \frac{\sigma^{a}}{2}+\frac{\dot{g}}{2} B_{\mu}\right)\left(g A^{a \mu} \frac{\sigma^{a}}{2}+\frac{\dot{g}}{2} B^{\mu}\right) \Phi_{0}= \\
\frac{1}{2} \frac{v^{2}}{4}\left(g^{2}\left(A_{\mu}^{1}\right)^{2}+g^{2}\left(A_{\mu}^{2}\right)^{2}+\left(-g A_{\mu}^{3}+\dot{g} B_{\mu}\right)^{2}\right) \tag{24}
\end{array}
$$

(notice that we have two independent coupling constants g and \dot{g} because of the gauge group is not semi-simple). It make sense to introduce the following combinations of gauge bosons

$$
\begin{array}{r}
W_{\mu}^{ \pm}=\frac{1}{\sqrt{2}}\left(A^{1} \mp \imath A^{2}\right)_{\mu}, m_{W}=\frac{1}{g v} \\
Z_{\mu}=\frac{1}{\sqrt{g^{2}+\dot{g}^{2}}}\left(g A^{3}-\dot{g} B\right)_{\mu}, m_{Z}=\sqrt{g^{2}+\dot{g}^{2}} \frac{v}{2} \\
A_{\mu}=\frac{1}{\sqrt{g^{2}+\dot{g}^{2}}}\left(\dot{g} A^{3}+g B\right)_{\mu}, m_{A}=0 \tag{25}
\end{array}
$$

For the case of general representation of the gauge group $S U(2) \times U(1)$

$$
\begin{array}{r}
D_{\mu}=\partial_{\mu}-\imath g A_{\mu}^{a} T^{a}-\imath g \not Y B_{\mu}= \\
\partial_{\mu}-\imath \frac{g}{\sqrt{2}}\left(W^{+} T^{+}+W^{-} T^{-}\right)_{\mu}-\frac{\imath}{\sqrt{g^{2}+\dot{g}^{2}}} Z_{\mu}\left(g^{2} T^{3}-\hat{g}^{2} Y\right) \\
-\frac{\imath g \dot{g}}{\sqrt{g^{2}+\dot{g}^{2}}} A_{\mu}\left(T^{3}+Y\right) \tag{26}
\end{array}
$$

where $T^{ \pm}=T^{1} \pm \imath T^{2}$.
It is natural to identify the EM gauge potential coupling to the charge of electron

$$
\begin{equation*}
e=\frac{g g^{\prime}}{\sqrt{g^{2}+\dot{g}^{2}}} \tag{27}
\end{equation*}
$$

and determine the electric charge operator as

$$
\begin{equation*}
Q=T^{3}+Y \tag{28}
\end{equation*}
$$

It is also convenient to introduce the mixing angle Θ_{W} by the relation of two basic fields

$$
\begin{gather*}
\binom{Z}{A}=\left(\begin{array}{cc}
\cos \Theta_{W} & -\sin \Theta_{W} \\
\sin \Theta_{W} & \cos \Theta_{W}
\end{array}\right)\binom{A^{3}}{B} \Leftrightarrow \\
\cos \Theta_{W}=\frac{g}{\sqrt{g^{2}+\dot{g}^{2}}}, \sin \Theta_{W}=\frac{\dot{g}}{\sqrt{g^{2}+\dot{g}^{2}}} \tag{29}
\end{gather*}
$$

Then we will have

$$
\begin{array}{r}
D_{\mu}= \\
\partial_{\mu}-\imath \frac{g}{\sqrt{2}}\left(W^{+} T^{+}+W^{-} T^{-}\right)_{\mu}-\imath \frac{g}{\cos \Theta_{W}} Z_{\mu}\left(T^{3}-\sin ^{2} \Theta_{W} Q\right)-\imath e A_{\mu} Q \\
g=\frac{e}{\sin \Theta_{W}}(30)
\end{array}
$$

Experimental data: $m_{W}=80 \mathrm{Gev}, m_{Z}=91 \mathrm{Gev}, m_{H}=126 \mathrm{Gev}$ (2012). Thus the coupling constants g, \dot{g} introduced initialy are related to the electric charge e and mixing angle Θ_{W}, which in turn are given by m_{W} and m_{Z}.

