Lecture 4.

Spontaneously broken symmetries, Goldstone Theorem.

Plan.

1. Sponataneously broken symmetries and Goldsone theorem.

1.1. Sponatneously broken \mathbb{Z}_{2}-symmetry in scalar ϕ^{4} model.

1.2. Sponataneously broken $O(N)$-symmetry in linear σ-model.
1.3. Sponataneously broken $U(1)$-symmetry.
1.4. Sponataneously broken $S U(2)$-symmetry in fundamental representation.
1.5. Sponataneously broken $S U(2)$-symmetry in adjoint representation.
1.6. Goldstone theorem.

1. Sponataneously broken symmetries and Goldsone theorem.

1.1. Sponatneously broken \mathbb{Z}_{2}-symmetry in scalar ϕ^{4} model.

Let us consider the simplest case of one scalar field with the lagrangian

$$
\begin{equation*}
L(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} \tag{1}
\end{equation*}
$$

Now we change the mass term $m^{2} \rightarrow-\mu^{2}, \mu^{2}>0$

$$
\begin{equation*}
L(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{\mu^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} \tag{2}
\end{equation*}
$$

One can rewrite the potential adding a constant (which is not important)

$$
\begin{equation*}
L(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{\mu^{2}}{2} \phi^{2}-\frac{\lambda}{4!}\left(\phi^{2}-\frac{6 \mu^{2}}{\lambda}\right)^{2} \tag{3}
\end{equation*}
$$

and consider the hamiltonian

$$
\begin{align*}
H=\int & d^{3} x\left[\frac{1}{2} \dot{\phi}^{2}+\frac{1}{2}(\nabla \phi)^{2}-\frac{\mu^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right] \approx \\
& \int d^{3} x\left[\frac{1}{2} \dot{\phi}^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{\lambda}{4!}\left(\phi^{2}-\frac{6 \mu^{2}}{\lambda}\right)^{2}\right] \tag{4}
\end{align*}
$$

The lagrangian and hamiltonian are invariant under the \mathbb{Z}_{2}-symmetry chage $\phi \rightarrow-\phi$. The classical minimal energy configurations are given
by the homogeneous configurations:

$$
\begin{equation*}
\phi_{0}(t, \vec{x})= \pm v= \pm \sqrt{\frac{6}{\lambda}} \mu \tag{5}
\end{equation*}
$$

Hence, the $\phi_{0}=<\phi>$ can be considered as a nonzero vacuum averege which sponatneously breaks \mathbb{Z}_{2}-symmetry $\phi \rightarrow-\phi$. (The vacuum is unique, $\phi=0$ when $\mu^{2}<0$).

Near the vacuum configuration one can introduce the fluctuating field $\sigma(x)$:

$$
\begin{equation*}
\phi(x)=v+\sigma(x) \tag{6}
\end{equation*}
$$

and substitute this parametrization into the lagrangian:

$$
\begin{equation*}
L=\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}-\frac{2 \mu^{2}}{2} \sigma^{2}-\sqrt{\frac{\lambda}{6}} \mu \sigma^{3}-\frac{\lambda}{4!} \sigma^{4} \tag{7}
\end{equation*}
$$

We get the massive scalar field lagrangian with the mass $\sqrt{2} \mu$ and selfinterraction terms σ^{3} and σ^{4}. The relic of broken \mathbb{Z}_{2}-symmetry is the relation between the constants in the last 3 terms.

Notice that in quantum mechanics we would have a tunneling between the vaccua (5) but it is not in QFT.

1.2. Sponataneously broken $U(1)$-symmetry.

It is interesting to see what happens if the continuous symmetry is broken. Let us consider the symplest case of $U(1)$ symmetry. Suppose that $U(1)$ symmetry is acting on the complex scalar field:

$$
\begin{equation*}
\phi(x)=\phi^{1}(x)+\imath \phi^{2}(x) \rightarrow \exp (\imath \alpha) \phi(x) \tag{8}
\end{equation*}
$$

Then the Lagrangian (12) can be rewritten in the form

$$
\begin{equation*}
L=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \bar{\phi}\right)+\frac{\mu^{2}}{2} \phi \bar{\phi}-\frac{\lambda}{4}(\phi \bar{\phi})^{2} \tag{9}
\end{equation*}
$$

The classical minimum energy configuration is given by

$$
\begin{equation*}
\frac{\partial V}{\partial \phi}=0 \Leftrightarrow \phi \bar{\phi}=\frac{\mu^{2}}{\lambda} \tag{10}
\end{equation*}
$$

If we choose some particular vacuum configuration

$$
\begin{equation*}
\phi_{0}=\phi_{0}^{1}+\imath \phi_{0}^{2} \tag{11}
\end{equation*}
$$

the only subgroup of $U(1)$ leaving this ϕ_{0} fixed is the trivial one $(O(1))$. Hence we conclude that the whole $U(1)$ is spontaneously broken and the set of vacuum configurations can be represented as the coset space $U(1) / 1=S^{1}$ which is nothing else but a circle.

1.3. Sponataneously broken $O(N)$-symmetry in linear σ-model.

The case of continuous symmetry breaking is more interesting and important. Let us consider the generalization of the previous Lagrangian

$$
\begin{equation*}
L=\frac{1}{2}\left(\partial_{\mu} \phi^{a}\right)\left(\partial^{\mu} \phi^{a}\right)+\frac{\mu^{2}}{2} \phi^{a} \phi^{a}-\frac{\lambda}{4}\left(\phi^{a} \phi^{a}\right)^{2} \tag{12}
\end{equation*}
$$

The Hamiltonian (energy) is

$$
\begin{equation*}
\int d^{3} x\left[\frac{1}{2} \dot{\phi}^{a} \dot{\phi}^{a}+\frac{1}{2}\left(\nabla \phi^{a}\right)^{2}-\frac{\mu^{2}}{2}\left(\phi^{a} \phi^{a}\right)+\frac{\lambda}{4}\left(\phi^{a} \phi^{a}\right)^{2}\right] \tag{13}
\end{equation*}
$$

where, $a=1, \ldots N$. The Lagrangian and Hamiltonian are invariant w.r.t. $O(N)$-transformations

$$
\begin{equation*}
\phi^{a}(x) \rightarrow R^{a b} \phi^{b}(x), a, b=1, \ldots, N \tag{14}
\end{equation*}
$$

In $D>2$ dimensional space, the classical minimum energy configurations are given by the homogeneous fields ϕ_{0}^{a} minimazing the potential energy

$$
\begin{align*}
\frac{\partial V}{\partial \phi^{a}}= & -\frac{\mu^{2}}{2} 2 \phi^{a}+\frac{\lambda}{2}\left(\phi^{b} \phi^{b}\right)^{2} 2 \phi^{a}=0, \\
& \Leftrightarrow \phi_{0}^{a} \phi_{0}^{a}=\frac{\mu^{2}}{\lambda} \Leftrightarrow \phi_{0} \in S^{N-1} \tag{15}
\end{align*}
$$

Thus, we have a set of vacuum configurations parametrizing the the points of N-1-dimensional sphere. One can choose obviously the coordinates in such way that

$$
\begin{equation*}
\phi_{0}=(0, \ldots, v), v=\frac{\mu}{\sqrt{\lambda}} \tag{16}
\end{equation*}
$$

so that the remaining unbroken symmetry is given by $O(N-1)$-rotations leaving the vector (16) fixed. In other words, the set of vaccua is given by the coset

$$
\begin{equation*}
O(N) / O(N-1) \approx S^{N-1} \tag{17}
\end{equation*}
$$

Near the vacuum configuration (16) one can introduce the set of fluctuating fields

$$
\begin{equation*}
\phi(x)=\phi_{0}+\left(\pi^{1}(x), \ldots \pi^{N-1}(x), \sigma(x)\right) \tag{18}
\end{equation*}
$$

Then the lagrangian (12) takes the form

$$
\begin{array}{r}
L=\frac{1}{2}\left(\partial_{\mu} \pi^{a}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2} \\
-\frac{1}{2}\left(2 \mu^{2}\right) \sigma^{2}-\sqrt{\lambda} \mu \sigma^{3}-\sqrt{\lambda} \mu \sigma\left(\pi^{a}\right)^{2}-\frac{\lambda}{4} \sigma^{4}-\frac{\lambda}{2} \sigma^{2}\left(\pi^{a}\right)^{2}-\frac{\lambda}{4}\left(\left(\pi^{a}\right)^{2}\right)^{2} \tag{19}
\end{array}
$$

We get a set of $N-1$ massless scalar fields π^{a} and massive field σ interracting to each other and themselvs. Initial $O(N)$ symmetry is broken to $O(N-1)$ acting by rotations on the fields π^{a}. These fields describe fluctuations along $O(N) / O(N-1)$ manifold of vaccua, while $\sigma(x)$ describes fluctuations in radial direction.
1.4. Sponataneously broken $S U(2)$-symmetry in fundamental representation.

One can generalize the $U(1)$ example above for the case of $S U(2)$ group. Suppose we have the dublet of complex scalar fields $\Phi(x)=\left(\Phi^{1}(x), \Phi^{2}(x)\right)$ which are in fundamental representation of $S U(2)$:

$$
\begin{equation*}
\Phi(x) \rightarrow U \Phi(x), U=\exp \left(t^{a} \tau^{a}\right) \in S U(2) \tag{20}
\end{equation*}
$$

The Lagrangian is given by

$$
\begin{equation*}
L=\frac{1}{2}\left(\partial_{\mu} \Phi^{\dagger}\right)\left(\partial^{\mu} \Phi\right)+\frac{\mu^{2}}{2} \Phi^{\dagger} \Phi-\frac{\lambda}{4}\left(\Phi^{\dagger} \Phi\right)^{2} \tag{21}
\end{equation*}
$$

The classical minimum energy configuration is given by

$$
\begin{equation*}
\frac{\partial V}{\partial \Phi}=\left(\frac{\lambda}{2} \Phi^{\dagger} \Phi-\frac{\mu^{2}}{2}\right) \Phi^{\dagger}=0 \Leftrightarrow \Phi^{\dagger} \Phi=\frac{\mu^{2}}{\lambda} \tag{22}
\end{equation*}
$$

If we choose some particular vacuum configuration

$$
\begin{equation*}
\Phi_{0}=\left(\Phi_{0}^{1}, \Phi_{0}^{2}\right) \tag{23}
\end{equation*}
$$

the only subgroup of $S U(2)$ leaving this Φ_{0} fixed is the trivial one. Hence we conclude that the whole $S U(2)$ is spontaneously broken in this case.
1.5. Sponataneously broken $S U(2)$-symmetry in adjoint representation.

Let us consider the triplet of real scalar fields $\phi(x)=\left(\phi^{1}(x), \ldots, \phi^{3}(x)\right)=$ $\phi(x) \equiv \phi^{a} \tau^{a}$ which are in adjoint representation of $S U(2)$:

$$
\begin{equation*}
\phi(x) \rightarrow U^{-1}(x) \phi(x) U(x), U(x)=\exp \left(t^{a} \tau^{a}\right) \in S U(2) \tag{24}
\end{equation*}
$$

In this case the adjoint action of the group is equivalent to the $S O(3)$ rotations of the vectors in \mathbb{R}^{3}. Thus, we are in the situation of $O(N)$ example considered above where $N=3$. The minimum energy configuration is given by (15) where the particular vacuum solution is given by (16). Hence, in the adjoint representation we have unbroken $U(1) \approx O(2)$ subgroup of $S U(2)$.

1.6. Goldstone's theorem.

Goldsone's theorem states that each spontaneously broken symmetry must lead to the massless particle called Goldstone's boson.

It can be proven looking at the Lagrangian of a number of scalar fields $\phi^{a}(x)$

$$
\begin{equation*}
L=f\left(\partial_{\mu} \phi^{a}\right)+V(\phi) \tag{25}
\end{equation*}
$$

Suppose that ϕ_{0} is the local minimum of $V(\phi)$:

$$
\begin{equation*}
\left.\frac{\partial V}{\partial \phi^{a}}\right|_{\phi=\phi_{0}}=0 \tag{26}
\end{equation*}
$$

Then, near ϕ_{0} we can expand

$$
\begin{equation*}
V(\phi)=V\left(\phi_{0}\right)+\left.\frac{1}{2}\left(\phi-\phi_{0}\right)^{a}\left(\phi-\phi_{0}\right)^{b}\left(\frac{\partial^{2} V}{\partial \phi^{a} \partial \phi^{b}}\right)\right|_{\phi_{0}}+\ldots \tag{27}
\end{equation*}
$$

The second derivatives term is a symmetric matrix whose eigenvalues are equal to the masses of fluctuating modes near the minimum ϕ_{0} :

$$
\begin{equation*}
\left.\left(\frac{\partial^{2} V}{\partial \phi^{a} \partial \phi^{b}}\right)\right|_{\phi_{0}}=m_{a b}^{2} \tag{28}
\end{equation*}
$$

They are nonegative because of ϕ_{0} is a minimum of the potential. One needs to show that each continuous symmetry of the Lagrangian, shifting the minimum ϕ_{0} corresponds to zero eigenvalue of the matrix (28).

The symmetry transformation with parameter t can be written as

$$
\begin{equation*}
\phi^{a} \rightarrow \phi^{a}+t \epsilon^{a}(\phi) \tag{29}
\end{equation*}
$$

Because of we are looking for minimal energy configurations it is natural to think they are given by homogeneous fields, so that derivative terms in the lagrangian vanish. Then $V(\phi)$ must be invariant:

$$
\begin{array}{r}
\epsilon^{a}(\phi) \frac{\partial V}{\partial \phi^{a}}=0 \Rightarrow \\
0=\left.\frac{\partial}{\partial \phi^{b}}\left(\epsilon^{a}(\phi) \frac{\partial V}{\partial \phi^{a}}\right)\right|_{\phi_{0}}=\left.\left.\frac{\partial \epsilon^{a}}{\partial \phi^{b}}\right|_{\phi_{0}} \frac{\partial V}{\partial \phi^{a}}\right|_{\phi_{0}}+\left.\epsilon^{a}\left(\phi_{0}\right)\left(\frac{\partial^{2} V}{\partial \phi^{a} \partial \phi^{b}}\right)\right|_{\phi_{0}}= \\
\left.\epsilon^{a}\left(\phi_{0}\right)\left(\frac{\partial^{2} V}{\partial \phi^{a} \partial \phi^{b}}\right)\right|_{\phi_{0}} \tag{30}
\end{array}
$$

For the transformations leaving the vacuum ϕ_{0} fixed $\left(\epsilon^{a}\left(\phi_{0}\right)=0\right)$ we have in the theory an unbroken symmetry subgroup $(O(N-1))$. By the definition, for the spontaneously broken symmetry $\epsilon^{a}\left(\phi_{0}\right) \neq 0$, hence, this vector is zero-eigenvalue vector and corresponds to the massless particle.

