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1. Sponataneously broken symmetries and Goldsone theorem.

1.1. Sponatneously broken Z2-symmetry in scalar φ4 model.

Let us consider the simplest case of one scalar field with the lagrangian

L(φ) =
1

2
(∂µφ)2 − m2

2
φ2 − λ

4!
φ4 (1)

Now we change the mass term m2 → −µ2, µ2 > 0

L(φ) =
1

2
(∂µφ)2 +

µ2

2
φ2 − λ

4!
φ4 (2)

One can rewrite the potential adding a constant (which is not important)

L(φ) =
1

2
(∂µφ)2 +

µ2

2
φ2 − λ

4!
(φ2 − 6µ2

λ
)2 (3)

and consider the hamiltonian

H =

∫
d3x[

1

2
φ̇2 +

1

2
(∇φ)2 − µ2

2
φ2 +

λ

4!
φ4] ≈∫

d3x[
1

2
φ̇2 +

1

2
(∇φ)2 +

λ

4!
(φ2 − 6µ2

λ
)2] (4)

The lagrangian and hamiltonian are invariant under the Z2-symmetry

chage φ → −φ. The classical minimal energy configurations are given
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by the homogeneous configurations:

φ0(t, ~x) = ±v = ±
√

6

λ
µ (5)

Hence, the φ0 =< φ > can be considered as a nonzero vacuum averege

which sponatneously breaks Z2-symmetry φ → −φ. (The vacuum is

unique, φ = 0 when µ2 < 0).

Near the vacuum configuration one can introduce the fluctuating field

σ(x):

φ(x) = v + σ(x) (6)

and substitute this parametrization into the lagrangian:

L =
1

2
(∂µσ)2 − 2µ2

2
σ2 −

√
λ

6
µσ3 − λ

4!
σ4 (7)

We get the massive scalar field lagrangian with the mass
√

2µ and self-

interraction terms σ3 and σ4. The relic of broken Z2-symmetry is the

relation between the constants in the last 3 terms.

Notice that in quantum mechanics we would have a tunneling between

the vaccua (5) but it is not in QFT.

1.2. Sponataneously broken U(1)-symmetry.

It is interesting to see what happens if the continuous symmetry is

broken. Let us consider the symplest case of U(1) symmetry. Suppose

that U(1) symmetry is acting on the complex scalar field:

φ(x) = φ1(x) + ıφ2(x)→ exp (ıα)φ(x)

(8)

Then the Lagrangian (12) can be rewritten in the form

L =
1

2
(∂µφ)(∂µφ̄) +

µ2

2
φφ̄− λ

4
(φφ̄)2 (9)
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The classical minimum energy configuration is given by

∂V

∂φ
= 0⇔ φφ̄ =

µ2

λ
(10)

If we choose some particular vacuum configuration

φ0 = φ10 + ıφ20

(11)

the only subgroup of U(1) leaving this φ0 fixed is the trivial one (O(1)).

Hence we conclude that the whole U(1) is spontaneously broken and

the set of vacuum configurations can be represented as the coset space

U(1)/1 = S1 which is nothing else but a circle.

1.3. Sponataneously broken O(N)-symmetry in linear σ-model.

The case of continuous symmetry breaking is more interesting and im-

portant. Let us consider the generalization of the previous Lagrangian

L =
1

2
(∂µφ

a)(∂µφa) +
µ2

2
φaφa − λ

4
(φaφa)2 (12)

The Hamiltonian (energy) is∫
d3x[

1

2
φ̇aφ̇a +

1

2
(∇φa)2 − µ2

2
(φaφa) +

λ

4
(φaφa)2] (13)

where, a = 1, ...N . The Lagrangian and Hamiltonian are invariant w.r.t.

O(N)-transformations

φa(x)→ Rabφb(x), a, b = 1, ..., N (14)

In D > 2 dimensional space, the classical minimum energy configurations

are given by the homogeneous fields φa0 minimazing the potential energy

∂V

∂φa
= −µ

2

2
2φa +

λ

2
(φbφb)22φa = 0,

⇔ φa0φ
a
0 =

µ2

λ
⇔ φ0 ∈ SN−1 (15)
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Thus, we have a set of vacuum configurations parametrizing the the points

of N − 1-dimensional sphere. One can choose obviously the coordinates in

such way that

φ0 = (0, ..., v), v =
µ√
λ

(16)

so that the remaining unbroken symmetry is given by O(N − 1)-rotations

leaving the vector (16) fixed. In other words, the set of vaccua is given by

the coset

O(N)/O(N − 1) ≈ SN−1 (17)

Near the vacuum configuration (16) one can introduce the set of fluctuating

fields

φ(x) = φ0 + (π1(x), ...πN−1(x), σ(x)) (18)

Then the lagrangian (12) takes the form

L =
1

2
(∂µπ

a)2 +
1

2
(∂µσ)2

−1

2
(2µ2)σ2 −

√
λµσ3 −

√
λµσ(πa)2 − λ

4
σ4 − λ

2
σ2(πa)2 − λ

4
((πa)2)2 (19)

We get a set of N − 1 massless scalar fields πa and massive field

σ interracting to each other and themselvs. Initial O(N) symmetry

is broken to O(N − 1) acting by rotations on the fields πa. These fields

describe fluctuations along O(N)/O(N−1) manifold of vaccua, while σ(x)

describes fluctuations in radial direction.

1.4. Sponataneously broken SU(2)-symmetry in fundamental representation.

One can generalize the U(1) example above for the case of SU(2) group.

Suppose we have the dublet of complex scalar fields Φ(x) = (Φ1(x),Φ2(x))

which are in fundamental representation of SU(2):

Φ(x)→ UΦ(x), U = exp(taτ a) ∈ SU(2)

(20)
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The Lagrangian is given by

L =
1

2
(∂µΦ†)(∂µΦ) +

µ2

2
Φ†Φ− λ

4
(Φ†Φ)2 (21)

The classical minimum energy configuration is given by

∂V

∂Φ
= (

λ

2
Φ†Φ− µ2

2
)Φ† = 0⇔ Φ†Φ =

µ2

λ
(22)

If we choose some particular vacuum configuration

Φ0 = (Φ1
0,Φ

2
0)

(23)

the only subgroup of SU(2) leaving this Φ0 fixed is the trivial one. Hence

we conclude that the whole SU(2) is spontaneously broken in this

case.

1.5. Sponataneously broken SU(2)-symmetry in adjoint representation.

Let us consider the triplet of real scalar fields φ(x) = (φ1(x), ..., φ3(x)) =

φ(x) ≡ φaτ a which are in adjoint representation of SU(2):

φ(x)→ U−1(x)φ(x)U(x), U(x) = exp(taτ a) ∈ SU(2)

(24)

In this case the adjoint action of the group is equivalent to the SO(3)

rotations of the vectors in R3. Thus, we are in the situation of O(N)

example considered above where N = 3. The minimum energy configura-

tion is given by (15) where the particular vacuum solution is given by (16).

Hence, in the adjoint representation we have unbroken U(1) ≈ O(2)

subgroup of SU(2).

1.6. Goldstone’s theorem.
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Goldsone’s theorem states that each spontaneously broken sym-

metry must lead to the massless particle called Goldstone’s bo-

son.

It can be proven looking at the Lagrangian of a number of scalar fields

φa(x)

L = f(∂µφ
a) + V (φ) (25)

Suppose that φ0 is the local minimum of V (φ):

∂V

∂φa
|φ=φ0 = 0 (26)

Then, near φ0 we can expand

V (φ) = V (φ0) +
1

2
(φ− φ0)a(φ− φ0)b(

∂2V

∂φa∂φb
)|φ0 + ... (27)

The second derivatives term is a symmetric matrix whose eigenvalues are

equal to the masses of fluctuating modes near the minimum φ0:

(
∂2V

∂φa∂φb
)|φ0 = m2

ab (28)

They are nonegative because of φ0 is a minimum of the potential. One

needs to show that each continuous symmetry of the Lagrangian, shifting

the minimum φ0 corresponds to zero eigenvalue of the matrix (28).

The symmetry transformation with parameter t can be written as

φa → φa + tεa(φ) (29)

Because of we are looking for minimal energy configurations it is natural

to think they are given by homogeneous fields, so that derivative terms

in the lagrangian vanish. Then V (φ) must be invariant:

εa(φ)
∂V

∂φa
= 0⇒

0 =
∂

∂φb
(εa(φ)

∂V

∂φa
)|φ0 =

∂εa

∂φb
|φ0
∂V

∂φa
|φ0 + εa(φ0)(

∂2V

∂φa∂φb
)|φ0 =

εa(φ0)(
∂2V

∂φa∂φb
)|φ0 (30)
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For the transformations leaving the vacuum φ0 fixed (εa(φ0) = 0) we have in

the theory an unbroken symmetry subgroup (O(N−1)). By the definition,

for the spontaneously broken symmetry εa(φ0) 6= 0, hence, this vector is

zero-eigenvalue vector and corresponds to the massless particle.
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