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1. Paths integral Quantization of Electromagnetic field.

1.1. Paths integral and Gauge invariance, problems with propagator.

Similar to the paths integrals for scalar field and Dirac’s field it is natural

to consider the following paths integral

I =

∫
DA exp [−ı

∫
d4x

1

4
Fµν(x)F

µν(x)]. (1)

Because of the gauge symmetry the action S[A] = 0 for the pure gauge

fields Aµ = 1
e∂µα(x) so the paths integral is badly determined. It causes

also the problem with propagator. Indeed, one can write

S =
1

2

∫
d4k

(2π)4
Aµ(k)(−gµνk2 + kµkν)Aν(k). (2)

Then for a purely gauge configurations Aµ(k) = kµα(k)

kµα(k)(−gµνk2 + kµkν)kνα(k) = 0. (3)
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It means that the equation determining the propagator

(−gµνk2 + kµkν)D
νλ
F (k) = ıδλµ ⇔

(gµν∂
2 − ∂µ∂ν)D

νλ(x− y) = ıδλµδ
4(x− y) (4)

does not have a solution because the matrix (−gµνk2 + kµkν) is not

invertible. It could seem that the problem can be cured if one defines the

paths integral in phase space, but this is not the case.

1.2. Gauge orbits and gauge fixing.

The gauge invariance problem means that the physical configurations

of Aµ(x) are the gauge orbit classes

Ãµ(x) = {Aµ(x) ≈ Aµ(x) +
1

e
∂µα(x)}, (5)

so that we must integrate in (1) over the space of gauge orbits

Ãµ(x) instead of the integration over the gauge potentials Aµ(x)

themselves.

How to do it?

One can try to do it picking up in the gauge orbit classes a representative

and integrate over these representatives. This procedure is called a

gauge fixing.

Let us try to determine some surface in the space of gauge fields Aµ(x)

which is given by the equation

G(A(x)) = 0. (6)

Ideally, this surface must intersects each class Ã(x) only at one point. But

the question is whether this is possible? In what follows we will assume

that it can be done locally.

Thus, the paths integral must be equipped with the insertion∏
x

δ(G(A(x))) (7)
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1.3. Faddeev-Popov trick.

By the definition of δ-function

1 =

∫
[DG(Aα(x))]δ(G(Aα(x))) =

∫
[Dα(x)]det(

δG(Aα(x))

δα(x)
)δ(G(Aα(x))) (8)

where Aα(x) = A(x) + 1
e∂µα(x) is the gauge orbit of the field A(x). Gauge

fixing functional G(A(x)) can be considered as introducing some coordi-

nates along the gauge orbits. From the other hand, gauge parameters α(x)

can be used as natural coordinates along the gauge orbits. Thus, the sec-

ond equality in (8) appears due to the change of variables on the gauge

orbit:

G(Aα(x)) → α(x)

(9)

The finite dimensional version of the relation (8) is

1 =

∫ ∏
i

dαidet(
∂gj
∂αk

)δ(g(α)). (10)

After the insertion (8) into the paths integral we obtain

I =

∫
[DA][Dα] exp [−ı

∫
d4x

1

4
Fµν(x)F

µν(x)]det(
δG(Aα)

δα
)δ(G(Aα)) (11)

One can do the inverse gauge transformation of gauge field A(x) and use

the invariance of the action and the mesure [DA−α] = [DA]:

I =∫
[Dα]

∫
[DA] exp [−ı

∫
d4x

1

4
Fµν(x)F

µν(x)]det(
δG(A)

δα
)δ(G(A)) =

V ol(G)

∫
[DA] exp [−ı

∫
d4x

1

4
Fµν(x)F

µν(x)]det(
δG(A)

δα
)δ(G(A)), (12)

where V ol(G) is a volume of the group of gauge transformations.
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Let us consider Lorentz gauging

G(A(x)) = ∂µA
µ(x).

(13)

Then

det(
δG(Aα)

δα
) = det(

1

e
∂2),

I =

V ol(G)det(
1

e
∂2)

∫
[DA] exp [−ı

∫
d4x

1

4
Fµν(x)F

µν(x)]δ(∂µA
µ)) (14)

Thus, we obtain a path integral that takes into account only the classes of

gauge orbits (at least locally).

One can generalize the Lorentz gauging:

G(A(x)) = ∂νA
ν − f(x) (15)

where f(x) is an arbitrary function:

I =

V ol(G)det(
1

e
∂2)

∫
[DA] exp [−ı

∫
d4x

1

4
Fµν(x)F

µν(x)]δ(∂µA
µ − f(x)) (16)

It is helpful to consider the following superposition of the integrals (16)

I =

N(ξ)

∫
[Df ] exp [−ı

∫
d4x

f 2

2ξ
]V ol(G)det(

1

e
∂2)∫

[DA] exp [−ı
∫
d4x

1

4
Fµν(x)F

µν(x)]δ(∂µA
µ − f(x)).

(17)

Integrating over f(x) we obtain

I = N(ξ)V ol(G)det(
1

e
∂2)∫

[DA] exp [−ı
∫
(d4x

1

4
Fµν(x)F

µν(x) +
1

2ξ
(∂µA

µ)2]. (18)
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As one can see the gauge degrees of freedom enter the path integral as a

factor so that they can be obsorbed by the normalization factor.

1.4. ξ-gauge, correlation functions and photon’s propagator.

Now one can consider paths integral representation for Green’s functions

of gauge invariant operators

< Ω|TÔ1(A)...Ôn(A)|Ω >=

limT→∞(1−ıϵ)

∫
[DA]O1(A)...On(A) exp [ı

∫ T

−T d
4x(LEM − 1

2ξ (∂µA
µ)2)]∫

[DA] exp [ı
∫ T

−T d
4x(LEM − 1

2ξ (∂µA
µ)2)]

(19)

The gauge invariance condition for O(A) is important in order to the nom-

inator be gauge invariant.

It gives the foton propagator because one can inverse the differential

operator from this new ξ-dependent action for Aµ(x):

−gµνk2 + (1− 1

ξ
)kµkν)D

νσ
F (k) = ıδσµ ⇔

Dµν
F (k) = − ı

k2 + ıϵ
(gµν − (1− 1

ξ
)
kµkν
k2

) (20)

2.1. Gauge symmetry in non-Abelian case.

The gauge group of QED is U(1):

ψ(x) → exp [ıα(x)]ψ(x), Aµ(x) → Aµ(x) +
1

e
∂µα(x) (21)

Faddeev-Popov trick in this case gives just a constant factor V ol(Ĝ)det(1e∂
2).

For the non-Abelian groups the situation is more interesting.

Non-Abelian group gauge transformations, covariant derivatives and
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gauge invariant action:

Aµ(x) ≡ Aa
µta → U−1(x)Aµ(x)U(x) + U−1(x)

ı

g
∂µU(x), U(x) ∈ SU(N),

Dµ ≡ ∂µ + ıgAµ → U−1(x)DµU(x),

Fµν(x) ≡ DµAν −DνAµ = ∂µAν − ∂νAµ + ıg[Aµ, Aν] → U−1(x)FµνU(x) ⇒

SYM = −1

4

∫
d4xTr(FµνF

µν).(22)

2.2. Paths integral, gauge fixing and F-P ghosts.

Let us consider the paths integral for non-Abelian YM gauge fields

I =

∫
[DA] exp [− ı

4

∫
d4xTr(FµνF

µν)]. (23)

The natural metric in the space of YM fields is given by:

ds2 =

∫
d4xd4yδ(x− y)Tr(δA1µ(x)δA

µ
2(y)). (24)

Thus, the mesure in the paths integral is

[DA] =
∏
x

∏
a,µ

dAa
µ(x). (25)

As in the Abelian case, we have the problem of integrating over the classes

of gauge orbits, so we need to fix the gauge G(A(x)) by some of the ways

and use Faddeev-Popov trick. As a result we find

I =

∫
[DA] exp [− ı

4

∫
d4xTr(FµνF

µν)] =

V ol(Ĝ)

∫
[DA] exp [ıSYM ]δ(G(A))det(

δG(Aα)

δα
) (26)

Now we choose Lorentz gauging

Ga(A) = ∂µAa
µ. (27)
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For an infinitesimal gauge transformation U = 1 + α(x) = 1 + αa(x)ta

δAµ =
1

g
∂µα + ı[Aµ, α] ⇔

δAa
µ =

1

g
∂µα

a + fabcAb
µα

c. (28)

Then

δGa(A) = ∂µ(
1

g
∂µα

a) + fabc∂µ(Ab
µα

c) =

1

g
∂µ(δac∂µ + gfabcAb

µ)α
c =

1

g
∂µDac

µ α
c

⇔
δG(Aα)

δα
=

1

g
∂µDµ. (29)

We already know that in a finite-dimensional space the matrix determi-

nant can be represented as a result of integration over Grassmann variables∫ ∏
i

dθidθ
∗
i exp(−θ†Aθ) = detA.

(30)

Here, one can use the Grassmann variables ca(x), c̄a(x) (Faddeev-Popov

ghosts) to write

det(
δG(Aα)

δα
) =

∫
[Dc][Dc̄] exp [−ı

∫
d4xc̄a(x)∂µDab

µ c
b(x)] =∫

[Dc][Dc̄] exp [−ı
∫
d4xc̄a(x)(∂µ∂µc

a + gfabc∂µ(Ab
µc

c))] =∫
[Dc][Dc̄] exp [−ı

∫
d4xLgh(x)] (31)

where the ghost’s Lagrangian is

Lgh = ∂µc̄a∂µc
a − gfabc(∂µc̄a)cbAc

µ. (32)

The ghost’s fields are Lorentz scalars but they are in adjoint representation

of the gauge group G and interact with the gauge potential.
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Similarly to the EM fields one can consider more general gauge fixing

Ga(A) = ∂µAa
µ(x)− fa(x) (33)

and integrate out over the all possible fa(x) with the weight exp[−ı
∫
d4xf2

2ξ ]

so that one gets

I =∫
[DA][Dc][Dc̄] exp [ı

∫
d4x(−1

4
Tr(FµνF

µν) +
1

2ξ
Tr((∂µAµ)

2)− Lgh)].

(34)

The integral allows to extract propagator for the gauge fields

< Ω|TAa
µ(x)A

b
ν(y)|Ω >=∫

d4k

(2π)4
−ıδab

k2 + ıϵ
(gµν − (1− 1

ξ
)
kµkν
k2

) exp (−ık(x− y)). (35)

As well as the ghosts fields propagators

< Ω|Tca(x)c̄b(y)|Ω >=∫
d4k

(2π)4
ıδab

k2 + ıϵ
exp (−ık(x− y)). (36)

2.3. BRST symmetry and physical states in Gauge theory.

The integral (34) possesses some important fermionic symmetry called

BRST-symmetry.

Let us introduce additional auxiliary field Ba(x)

I =

∫
[DA][Dc][Dc̄][DB] exp [ıS[A, c, c̄, B]],

S[A, c, c̄, B] =∫
d4x[−1

4
Tr(FµνF

µν)− 1

2ξ
Tr(B2) + Tr(B∂µAµ)−

∂µc̄a(∂µc
a − gfabccbAc

µ)]. (37)
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Because of the field B(x) is not dynamical it can be integrated out from

the paths integral above giving back the integral (34). But the auxiliary

field B allows us to see the symmetry of the action S[A, c, c̄, B] under the

transformations generated by Grassmann (fermionic) parameter ϵ:

δAa
µ = ϵ(Dµc)

a, δca = −1

2
gϵfabccbcc, δc̄a = ϵBa,

δBa = 0. (38)

Let us define the BRST operator Q acting on an arbitrary field Φ(x) from

the set A, c, c̄, B by the formula

ϵQΦ(x) = ϵδΦ(x) ⇔

QAa
µ = ϵ(Dµc)

a, Qca = −1

2
gϵfabccbcc, Qc̄a = ϵBa,

QBa = 0. (39)

One can check that

Q2 = 0. (40)

That is Q is nilpotent operator. Therefore in the space of states generated

by the creation operators of fields A(x), c(x), c̄(x), B(x) one can define the

BRST cohomology by the rule

H =
KerQ

ImQ
. (41)

They are the functions of physical states in YM field theory.
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