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1. Scaling relations and universality class.

1.1. LG approximation and Curie critical point.

It is possible to establish direct relation between the singular behavior

of thermodynamic quantities near critical points and fixed points of the

Wilson’s RG.

We consider a magnet. The long-range fluctuations of local magnetiza-

tion M(x) can be taken into account by considering the statistical integral

Z =

∫
[Dϕ0] exp [−A0[ϕ0]],

(1)

where

ϕ0(x) = C(T )M(x)

(2)
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with some temeperature-dependent coefficient. It is assumed that the func-

tional integral has the cutoff parameter Λ such that

Λ−1 >> atomic scale a

(3)

The action A0 combines statistical contributions of all microscopic

fluctuations and depend significantly on all details of the micro-

scopic interactions. One can take Landau-Ginzburg approximation

A0 =

∫
ddx(

1

2
(∂ϕ0)

2 +
m0(T )

2

2
ϕ2
0 +

λ0(T )

4!
ϕ4
0)

(4)

where m0(T )
2, λ0(T ) are unknown functions of the temerature T , but any

other combinations of powers of ϕ0 and its derivatives can be added to

the action. Because of all coefficients are functions of T , we have one

parametric family of actions Σ describing physical system, with all its

microscopic details, depending on the temperature. This one dimensional

manifold will be called ”physical curve”.

Let us assume that there is a fixed point A∗ out there in Σ. At this

point we actually will consider a subspace Σsym ∈ Σ which contains only

actions invariant under ϕ0 → −ϕ0. We assume that there is a fixed point

A∗ ∈ Σsym such that it has only one (symmetric) relevant field Φ0 with

dimension D0 < d. In other words, the unstable manifold in Σsym is one

-dimensional and correspondingly the critical surface Σcrit has codimension

one. This means that physical curve generally intersects Σcrit at some point

T = Tc.

The large distance properties of the system can be understood if we can

follow the RG flow which starts at any point on the physical curve. Let

us consider a typical pattern of the RG flow in this situation. Besides the
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critical fixed point A∗ there are two non-critical (Rc = 0) fixed points Ph

and Pl. At the point Ph we have the probability distribution in the form∏
x

δ(ϕ0(x))

(5)

At the point Pl we have∏
x

(δ(ϕ0(x)− ϕ̄) + δ(ϕ0(x) + ϕ̄))

(6)

A trajectory starting at any point on the physical curve at T > Tc and far

enough from Tc, converges quickly to the fixed point Ph. Similarly, starting

at any point with T < Tc one quickly reaches Pl.

The only trajectory which behaves qualitatively different way is the

one that starts at the point Tc itself. This trajectory C lays entirely at

the critical surface and converges to the critical point A∗ as l → −∞.

This means that the large-distance physics exactly at the critical

temperature is completely determined by the fixed-point action

A∗. In particular, the two-point correlation function will have the scale-

invariant form

< M(x)M(y) > |T=Tc
=

Const

|x− y|2Dϕ

(7)

for |x−y| >> a exp (l0), where l0 is some amount of the RG ”time” needed

to arrive closely to A∗ and Dϕ is the dimension of ϕ at the fixed point.

1.2. RG trajectory behavior near the fixed point and critical exponents.

Consider now the trajectory Cτ which starts at some point T very close
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to Tc,

τ =
Tc − T

Tc
<< 1.

(8)

Let us assume, for example that T < Tc. There are 3 distinct stages of the

RG evolution for such trajectory:

1. it goes very close to the surface Σcrit approaching A∗, untill it comes

very close this fixed point;

2. it then stays near A∗ for a very long RG time l;

3. it departs towards Pl staying close to the unstable manifold U .

The stage 2 is most important one, that is where the critical singularities

are formed. Because at this stage the trajectory stays close to the fixed

point, we can use linear analysis.

Let us assume that in some finite amount l0 of RG time the trajectory

Cτ comes close to A∗ where the corresponding action can be written as

A = A∗ + y0

∫
ddxΦ0(x) +

∑
α ̸=0

yα

∫
ddxΦα(x) (9)

where y0 depends on τ . This dependence is analytical because it

comes from the integrating the RG flow equations for finite time

l0. As for τ = 0 one must stay at the critical surface, which in the linear

approximation corresponds to y0 = 0, for small τ , we can assume

y0 = Const(Tc − T ) (10)

and neglect the τ -dependence of all yα, for α ̸= 0.

In the second stage the RG flow is described by the equations

dy0
dl

= k0y0,
dyα
dl

= kαyα

(11)
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where

k0 = d−D0 > 0, kα = d−Dα < 0, for α ̸= 0.

(12)

During this second stage all irrelevant terms in (9) dye out, while

the coefficient y0 increases as

y0(l) = y0 exp [k0(l − l0)]. (13)

Recall that if Rc is the correlation lenght corresponding to the initial action

on the physical curve, the correlation lenght corresponding to the time l

along the trajectory is

Rc(l) = Rc exp (−l).

(14)

From this and (13) one can finds

Rc ≈ y−ν
0 , ν =

1

k0
=

1

d−D0
,

(15)

and from the linear dependence (10):

Rc ≈ |Tc − T |−ν (16)

Thus, the correlation length is diverges near Tc, with the expo-

nent determined by the dimension D0 of the relevant field Φ0.

This divergence is in full agreement with the idea that is the large scale

fluctuations which are responsible for the critical behavior.

Similar way one can relate other exponents to the dimensions of various

fields at the fixed point A∗. For example, the corresponding magnetization

M̄ ≈< ϕ0 >

(17)
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must satisfy the CS equation, which in this case reads

(Dϕ − k0y0
∂

∂y0
)M̄ = 0,⇔ M̄ ≈ y

Dϕ
k0
0 . (18)

Again, taking into account (10) we find (T < Tc)

M̄ ≈ (Tc − T )β, β =
Dϕ

d−D0
.

(19)

Note that (16), (18) can be obtained by simple dimensional counting, if

one assumes that the coupling constants y0 has the dimension k0 and the

field ϕ0 has dimension Dϕ. This follows from the CS equation with the

linear approximation for the RG functions β. In fact it is valid beyond

the linear approximation, as it follows from the existence of the canonical

coordinates.

As another example of this dimensional counting let us find some other

critical exponent in terms of dimensions. If, at T = Tc, one adds an external

field

H

∫
ddxϕ0(x)

(20)

the dimensional counting implies that H has dimension d − Dϕ, and so

the magnetization as the function of H must have the following singular

behavior

M̄ ≈ H
1
δ , δ =

d−Dϕ

Dϕ

(21)

(as it comes from the corresponding CS equation

(Dϕ − (d−Dϕ)H
∂

∂H
)M̄ = 0).

(22)
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Similarly, one finds specific heat at H = 0

C ≈ |Tc − T |α, α = 2− dν (23)

Note that all these exponents are expressed through just 2 numbers, the

dimensions of the fields ϕ0 and Φ0. Therefore no matter what the values of

this dimensions are, the critical exponents must obey certain scaling

relations, like (23).

1.3. Universality class of critical behavior.

Note that the above analysis relies on the properties of the fixed point

A∗, as well as on general topological properties of RG. Very little indeed

depends on the details of the original actions on the physical

curve, and hence on the detailes of the microscopic structure of

the magnet. One expects therefore that the most important characteris-

tics of the critical singularities must not be different for phase transitions

in different magnetic materials. One fixed point may represent the crit-

icality in the whole class of physical systems. It is said it describes a

universality class of critical behavior.

This all shows that understandingthe fixed points is of crucial impor-

tance both in statistical mechanics and in QFT.

2. Wilson-Fisher fixed point.

2.1. Geometry of RG flow near A∗G and A∗WF fixed points.

We have studied one explicit example of the fixed point-the gaussian

fixed point corresponding to free massless scalar field. It is easy to argue,

however, that the gaussian fixed point cannot be responsible for

the ordinary transition in a magnet in 3 dimensions. Indeed, it

was very important for the above arguments that the critical surface of
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A∗ has codimension 1 in ΣSym, i.e. there is only 1 relevant field which

respects the symmetry (ϕ → −ϕ). However, the gaussian fixed point has

more that 1 symmetric relevant fields for d < 4. In particular, for d = 3

the fields ϕ2, ϕ4 are relevant. Therefore it is not the gaussian fixed point

that describes universality class of the magnetic phase transition. The best

theoretical evidence for its existance was given by Wilson and Fisher.

At d < 4 the topology of the RG flow relating the fixed points A∗G and

A∗WF is likely to be the following. The unstable manifold U(A∗G) at d < 4

has dimension 2. It is generated by 2 relevant fields ϕ2 and ϕ4. The fixed

point A∗WF is likely to lay in U(A∗G), so that the RG flow on this unstable

manifold would look qualitatively as follows.

There is a trajectory C going along the critical surface Σc from the fixed

point A∗G towards A∗WF . Therefore, A∗G lays on the critical surface Σc

which also passes through A∗WF . The unstable manifold U(A∗WF ) is then

1-dimensional.

The whole unstable manifold U(A∗G) in this picture, being an element

of the Σ(∞), represent local field theories- ϕ4 field theories. These theories

can be described by 2 parameters, the renormalized mass parameter M 2

and the renormalized coupling constant λ. These parameters, can be taken

therefore as the coordinates in the above picture. Although there is an

ambiguity in the choice of these coordinates (the scheme dependence),

the critical surface corresponding to M 2 = 0 is defined by the scheme-

independent condition

Γ2(p2)|p2=0 = 0.

(24)

In these coordinates the fixed point A∗WF lays at M 2 = 0 and λ = λ∗,

where the value of λ∗ depends on the scheme.
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One can consider the ϕ4 theory treating the dimensions of space d as a

continous parameter.

What happens when d approaches 4? We know that at d = 4 the

field ϕ4 becomes marginally irrelevant and for d > 4 it is strictly irrelevant,

so that for d ≥ 4 the gaussian fixed point has only one relevant field ϕ2.

This behavior can be explained if one assumes that when d approaches 4

from below the fixed point A∗WF gets very close to the gaussian fixed point

and at d = 4 these 2 points merge. At d > 4 λ∗ becomes negative and it

does not correspond to field theory in usual sense.

This idea leads to the patterns of the RG flow at d = 4 and at d > 4 is

shown in the pictures.

Wilson and Fisher have assumed that if one take d = 4 − ϵ with

small ϵ the fixed point A∗WF can be observed by the renormalized

perturbation theory.

2.2. Renormalized perturbation theory at d = 4− ϵ.

We start with the bare action

A =

∫
ddx(

1

2
(∂ϕ0)

2 +
m2

0

2
ϕ2
0 +

λ0

4!
ϕ4
0),

[ϕ0] =
d− 2

2
= 1− ϵ

2
, [λ0] = 4− d = ϵ > 0.

(25)

and rewrite this action in terms of renormalized parameters:

A =

∫
ddx(

1

2
(∂ϕ)2 +

M 2

2
ϕ2 +

λ

4!
ϕ4 +

δZ

2
(∂ϕ)2 +

δM 2

2
ϕ2 +

δλ

4!
ϕ4), (26)

where the counterterms are determined from suitably chosen normalization

conditions.

It makes sense to recall here that for d < 4 the diagrams describing the

field and the coupling constant renormalizations do not diverge, the only
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divergent renormalization is the one of the mass parameter. Therefore

the counterterms δZ, and δλ have finite limit when the cutoff parameter

Λ → ∞. Therefore at d < 4 these renormalizations are introduced

not for the purpose of exterminating the divergences, which are

absent, but in order to introduce more suitable coordinate λ on

the U(A∗G) instead of λ0.

As the fixed point A∗WF is expected to be located on the critical surface

Σc, it suffices to study the massless ϕ4 theory which is defined by the

condition

Γ2(p2)|p2=0 = 0.

(27)

As before, choose also the normalization conditions at some normalization

scale µ:

d

dp2
Γ2(p2)|p2=µ2 = 1,

Γ4(p1, ..., p4)|p212=p213=p223=...=4µ2 = λ.

(28)

The first one fixes the normalization of ϕ while the second gives the defi-

nition of the renormalized coupling constant λ.

Now we write CS equation

(x
∂

∂x
+ND(λ) + β(λ)

∂

∂λ
) < ϕ(x1)...ϕ(xN) >λ= 0. (29)

where D(λ) = d−2
2 + γ(λ), and γ(0) = 0, because canonical dimension of ϕ

is (d− 2)/2. We are going to determine the RG functions β(λ) and

γ(λ) for d < 4.

2.3. Calculation of γ(λ) and β(λ) at d < 4.
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Since the RG flow along the massless part of U(A∗G) (towards the point

A∗WF along Σc) we have

d

dl
λ = −β(λ).

(30)

We use perturbation theory to calculate the correlation functions as a series

in λ and then find β and γ from the CS equation (29) itself.

It is useful to introduce λ̄:

λ = µ4−dλ̄

(31)

Then by dimensional counting the N -point correlation function has the

form

< ϕ(x1)...ϕ(xN) >λ= µN d−2
2 CN(µx1, ..., µxN |λ̄)

(32)

and therefore the CS eq. takes the form

(µ
∂

∂µ
+Nγ̄(λ̄) + β̄(λ̄)

∂

∂λ̄
) < ϕ(x1)...ϕ(xN) >λ̄= 0

(33)

where β̄ and γ̄ are the dimensionless functions defined by

β(λ) = µϵβ̄(
λ

µϵ
), γ(λ) = γ̄(

λ

µϵ
)

(34)

In what follows we will omit all these bars. The CS equation can be written

for proper vertices in momentum space

(µ
∂

∂µ
+Nγ(λ) + β(λ)

∂

∂λ
)ΓN(p1, ..., pN) = 0. (35)
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We can now repeat the calculations of the leading contributions to the

proper vertices within dimensional regularization method and obtain

Γ2 = p2 +O(λ2),

Γ4(p1, ..., p4) = µ4−d(λ−
1

2

λ2

(4π)
d
2

Γ(2− d
2)Γ

2(d2 − 1)

Γ(d− 2)
((p212)

d−4
2 + (p213)

d−4
2 + (p214)

d−4
2 − 3(2µ)d−4) +O(λ3)).(36)

where the counterterm is fixed by the condition

Γ4(p1, ..., p4)|p212=p213=p223=...=4µ2 = µ4−dλ.

(37)

Substitution of (36) into CS eq. (35) we find

γ(λ) = O(λ2),

β(λ) = (d− 4)λ+ 3
λ2

(4π)
d
2

Γ(3− d
2)Γ

2(d2 − 1)

Γ(d− 2)
+O(λ3)

(38)

The term (d− 4)λ represents the canonical dimension of the coupling con-

stant λ in the action (26).

2.4. WF fixed point.

Let us assume that d = 4− ϵ for small ϵ, then we can write

β(λ) = −ϵλ+ 3
λ2

(4π)2
+O(λ3).

(39)

For small ϵ the RG flow equation

d

dl
λ = −β(λ)

(40)
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has nontrivial fixed point

λ∗ =
(4π)2

3
ϵ. (41)

The higher order corrections to the β(λ) for small ϵ can shift the position

of this point

λ∗ =
(4π)2

3
ϵ+O(ϵ2) (42)

but these corrections cannot destroy the fixed point. The point (41) is

called the Wilson-Fisher fixed point.

2.5. ϵ-expansion and critical exponents.

The main assumption of the approach known as the ϵ-expansion is that

the general features of the RG flow observed at small ϵ remain

qualitatively the same at ϵ = 1, i.e. at d = 3. Under this asuumption,

the characteristics of the WF fixed point can be calculated perturbatively,

as the power series of ϵ.

To find the critical exponents one must calculate the dimensions of var-

ious relevant fields at the WF point. Note that Φ0 = ϕ2 is the only sym-

metric relevant field at A∗WF . The dimensions of the fields Φ0 and ϕ at

this point can be calculated as

D0 = Dϕ2 = d− 2 + γϕ2(λ∗), Dϕ =
d− 2

2
+ γ(λ∗)

(43)

In the leading order in ϵ we can just borrow the results from the d = 4

calculation

γϕ2(λ) =
λ

(4π)2
+O(λ2),

γ(λ) =
1

12

λ2

(4π)2
+O(λ2)

(44)
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and substitute λ = λ∗ from (42). This yelds the critical exponents

1

ν
= d−D0 = 2− ϵ

3
+ ...,

α = 2− d

d−D0
=

ϵ

6
+ ...

(45)

For ϵ = 1 this gives ν = 0.60, α = 0.16 to be compared with ν = 0.63,

α = 0.12 found in experiment.
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