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1.1. RG transformation of composite fields.

Recall the quasilocal action

A =

∫
ddx[

∞∑
k=1

u2k
2k!

ϕ2k
0 +

∞∑
k=1

v2k
2k!

ϕ2k
0 (∂ϕ0)

2 + ...] (1)

The variation

δA =

∫
ddx[

∞∑
k=1

δu2k
2k!

ϕ2k
0 +

∞∑
k=1

δv2k
2k!

ϕ2k
0 (∂ϕ0)

2 + ...] =

=

∫
ddx

∑
α

δλαOα(x),

where Oα = {ϕ2n
0 , ϕ2n

0 (∂ϕ0)
2, ...}, Oα ∈ TΣ|A ≡ F (2)

To find the RG action on composite fields we consider the corr. function

< Oα(x)... >=
1

Z

∫
[Dϕ0](Oα(x)...) exp (−A0[ϕ0]) (3)

Now we perform the step 1 of RG transformation by splitting the field
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ϕ0(x) into its slow and fast parts:

ϕ0 = ϕ1 + ϕ̃ ⇒

Oα(ϕ0, ∂ϕ0, ...) =
∑
β

Y β
α (ϕ̃, ∂ϕ̃, ...)Oβ(ϕ1, ∂ϕ1, ...) (4)

and integrating the fast part ϕ̃ out. Therefore

1

Z

∫
∆

[Dϕ̃][Oα(ϕ1 + ϕ̃, ...)...] exp (−A0[ϕ1 + ϕ̃]) =

1

Z1
[
∑
β

yβα(L)Oβ(ϕ1, ∂ϕ1, ...)...] exp (−A1[ϕ1]) (5)

where ∆ = {Λ1 < |k| < Λ0},

Z0 = C

∫
|k|<Λ1

[Dϕ1] exp [−A1[ϕ1]] = CZ1

(6)

yβα(L) =< Y β
α (ϕ̃, ∂ϕ̃, ...) >∆, L =

Λ0

Λ1
(7)

Thus, in the step 1, any composite field Oα(x) gets replaced by a

linear combination of composite fields, with L-dependent coeffi-

cients.

At the step 2

x → x

L
, Λ1 → Λ0

ϕ1(x) = z−
1
2ϕ0(

x

L
),∑

β

yβα(L)Oβ(z
− 1

2 (L)ϕ0(
x

L
), z−

1
2 (L)

∂

∂ x
L

ϕ0(
x

L
), ...) =

∑
β

zβα(L)Oβ(ϕ0(
x

L
),

∂

∂( xL)
ϕ0(

x

L
), ...) (8)
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We have assumed here that Oα is homogeneous polynom of ϕ0 of some

dimensions dα so that

zβα(L) = yβαz
−dα

2

(9)

Therefore, under the full RG transformation the composite field Oα(x) gets

replaced by the linear combination of composite fields with L-dependent

coefficients:

< Oα(x)... >(A0,Λ0)=<
∑
β

zβα(L)Oβ(
x

L
)... >(A1,Λ1)⇔

RGlOα|A0
=

∑
β

zβα(L)Oβ(
x

L
)|A1

, L = exp (l) (10)

1.2. RG transformation of composite fields at fixed point.

Let us assume that

A0 = A∗ (11)

It means that RGl1+l2A∗ = RGl1RGl2A∗ = A∗, therefore

zβα(l1 + l2) = zγα(l2)z
β
γ (l1) ⇔

d

dl
zβα(l) = −Dγ

αz
β
γ (l), Dγ

α = − d

dl
zγα|l=0 (12)

The coefficients Dγ
α are the matrix elements of the infinitesimal transfor-

mation

RGδl = 1− δlD + ... (13)

One can diagonalize the operatorD introducing special linear combinations

Φα of Oα:

DΦα = DαΦα ⇒ RGlΦα = exp (−lDα)Φα ⇒

< Φα1
(x1)...Φαn

(xn) > |A∗ =

L−Dα1
−...Dαn < Φα1

(
x1
L
)...Φαn

(
xn
L
) > |A∗ (14)
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1.3. K-operator eigenspaces at fixed point.

At the fixed point one can relate the operator D to the operator K

determining RG-action on the space of quasilocal actions at the fixed point.

Recall that by definition

RGδl(A) = A+B(A)δl + ...

B(A) =
d

dl
RGl(A)|l=0

(15)

Thus, K is a linearization of the RG flow operator B(A) at the fixed point

A∗:

B(A∗ + δA) ≡ KδA (16)

The relation is simple. Any eigenvector Ψα of K is an integral

KΨα = kαΨα, Ψα =

∫
ddxΦα(x) ⇒

kα = d−Dα (17)

d is coming from the step 2 of RG transformation because in the integral∫
ddxΦ(x)one needs to make additional transformation of measure:∫

ddxΦ(
x

L
) = Ld

∫
dd

x

L
Φ(

x

L
)

(18)

Using the kα one can solve the RG equation for A at the fixed point A∗:

δA(l) =
∑
α

Cα exp (kαl)Ψα

(19)

Therefore, the tangent space F at the fixed point can be decomposed by

F− = {Φα with Dα > d} − irrelevant fields

F0 = {Φα with Dα = d} − marginal fields

F+ = {Φα with Dα < d} − relevant fields (20)
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The subspace F− corresponds to the critical surface (Rc = ∞). In the

case when F0 = 0 the subspace F+ is the linear approximation of unstable

manifold U(A∗). Recall that U(A∗) (where A∗ ∈ Σ(∞)) is, by definition

the set of points which lie on RG trajectories, such that being integrated

backward, converge to the fixed point A∗:

A0 ∈ U(A∗) ⇒ Al → A∗ as l → −∞

(21)

But the picture is more complex if F0 ̸= 0. Suppose this space is 1-

dimensional: F0 = {ΦM}. By the definition, the relevant (irrelevant)

field corresponds to the deformation δA which increase (decrease)

with the RG flow in the linear approximation. The deformation

δAM = λM

∫
ddxΦM(x) (22)

corresponding to marginal field does not change in the linear approxima-

tion, but it may very well increase or decrease with RG flow if we go

beyond the linear approximation. If δAM increases along the RG flow

for λM small enough, the deformationn is called marginaly relevant.

Similarly, if δAM decreases along the RG flow for λM small enough, the

deformationn is called marginaly irrelevant.

In many respects the marginaly relevant (irrelevant) field can be treated

on the same footing with relevant (irrelevant) ones. Thus if a marginaly

relevant field is present, the unstable manifold U(A∗) is generated by the

subspace F̂ :

TU |A∗ = F̂ ⊃ F+ (23)

2. Gaussian fixed point.

5



2.1. RG transformation of the massless free action.

The Gaussian fixed point is given by the massless free action

AG =

∫
ddx

1

2
(∂ϕ0)

2 (24)

Let us check that it is the fixed point indeed.

ϕ0(x) = ϕ1(x) + ϕ̃(x),

AG =

∫
ddx(

1

2
(∂ϕ1)

2 +
1

2
(∂ϕ̃)2) (25)

Therefore the step 1 of RG transformation does not change the action AG:

A1 =

∫
ddx

1

2
(∂ϕ1)

2 (26)

The step 2:

ϕ1(x) = z−
1
2 (L)ϕ0(

x

L
),

Ã = z−1

∫
ddx

1

2
(
∂

∂xµ
ϕ0(

x

L
))2 =

Ld−2

z(L)

∫
ddx

1

2
(
∂

∂xµ
ϕ0(x))

2 (27)

Under the choice

z
1
2 (L) = L

d−2
2 ⇒ Ã = AG (28)

we get the standard normalization of the kinetic term, so that it is a fixed

point indeed.

2.2. RG action on composite fields at Gaussian fixed point.

Now we find RG transformation of composite fields in this fixed-point

theory. Consider the correlation function

1

Z

∫
[Dϕ1][Dϕ̃]∆

[
1

2M !
(ϕ1(x) + ϕ̃(x))2M ...

]
exp (−A[ϕ̃]) exp (−A[ϕ1]) =

1

Z1

∫
[Dϕ1][

(
M∑

m=0

∫
[Dϕ̃]∆

1
2m!ϕ̃

2m(x) exp (−A[ϕ̃])∫
[Dϕ̃]∆ exp (−A[ϕ̃])

ϕ2M−2m
1 (x)

(2M − 2m)!
)...

]
exp (−A[ϕ1]) (29)
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Hence, at the step 1 we can write

<
1

2M !
ϕ2M
1 (x)... > |(A0,Λ0) =

1

Z1

∫
[Dϕ1]

[
(

M∑
m=0

<
ϕ̃2m

2m!
>∆

ϕ1(x)
2M−2m

(2M − 2m)!
)...

]
exp (−A[ϕ1]) (30)

so that the step 1 yelds for O2M = 1
2M !ϕ

2M
0

1

2M !
ϕ2M
0 =

1

2M !
ϕ2M
1 +

M∑
m=1

<
ϕ̃2m

2m!
>∆

ϕ1(x)
2M−2m

(2M − 2m)!
(31)

where

<
ϕ̃2m

2m!
>∆=

Λd−2m
1

2m!(4π)
d
2Γ(d2)

Ld−2m − 1

d− 2m
(32)

The step 2 amounts to changing

ϕ1 → z−
1
2 (L)ϕ0(

x

L
) = L

2−d
2 ϕ0(

x

L
) (33)

Therefore under the step 2 the expression (31) takes the form

RGlOn(x) = Ln 2−d
2 On(

x

L
) +

n∑
k=1

< ϕ̃k >∆

k!
L(n−k) 2−d

2 On−k(
x

L
) (34)

Recalling the definition of matrix zαβ (L) from (10) we find

RGlOα =
∑
β

zβα(L)Oβ(
x

L
) ⇒

znn(L) = Ln 2−d
2 , zkn(L) =

< ϕ̃k >∆

k!
L(n−k) 2−d

2 , k = 1, ...n (35)

where it is implied that < ϕ̃2n−1 >∆= 0. Now one can find the matrix Dα
β

considering infinitesimal RG transformation RG1+δl = 1− δlD, L = 1+ δl.

By the definition (12)

Dn
n = −dznn

dL
|L=1 = n

d− 2

2
,

Dk
n = − d

dL
(
< ϕ̃k >∆

k!
L(n−k) 2−d

2 )|L=1 = − d

dL

< ϕ̃k >∆

k!
|L=1 ≡ −Nk

(36)
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Thus, for the infinitesimal transformation we obtain

DOn = n
d− 2

2
On −

n∑
k=1

NkOn−k,

where N2m =
Λd−2m
1

2m!(4π)
d
2Γ(d2)

, N2m−1 = 0 (37)

It is not difficult to diagonalize this operator. Proove that

Φn =
1

n!
ϕn
0 −

1

2!(n− 2)!
< ϕ2

0 > ϕn−2
0 + ... ≡ 1

n!
: ϕn

0 :,

DΦn = DnΦn, Dn = n
d− 2

2
(38)

In fact the eigenvalues Dn are found without compution exact form of

Φn. Indeed, the eq. (37) shows that D acts on the fields On as triangle ma-

trix (it mixes ϕn
0 with itself and lower powers of ϕ0), and so its eigenvalues

are given by the diagonal elements of D

Dn = n
d− 2

2
(39)

We see that dimensions Dn coinside with the canonical dimensions

of the composite fields ϕn
0 , which is not surprising because we have a

free massless theory.

Dimensions of the space F+ of the relevant fields associated with the

Gaussian fixed point AG depends on d.

The field 1
2 : ϕ2 : is always relevant because D2 = d− 2 < d. For d > 6

it remains the only relevant field. At d = 6 Φ3 =
1
3! : ϕ

3 : is marginal. For

d < 6 it becomes relevant because D3 =
3
2(d− 2) < d. The situation with
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relevant fields is summarized in the table

d > 6 : ϕ2,

6 > d > 4 : ϕ2, ϕ3

4 > d >
10

3
: ϕ2, ϕ3, ϕ4

....
2n

n− 2
> d >

2(n+ 1)

n− 1
: ϕ2, ϕ3, ... ϕn

d = 2 : ϕ, ϕ2, ϕ3, .... (40)

Note that the classification above coinsides with our earlier classification

of the perturbatively renormalizable scalar field theories. We see that in

generic dimensionality d the perturbatively renormalizable the-

ories correspond to the unstable manifold U(AG). (This is because

U(A∗) (where A∗ ∈ Σ(∞)) is, by definition the set of points which lie on

RG trajectories, such that being integrated backward, converge to the fixed

point A∗:

A0 ∈ U(A∗) ⇒ Al → A∗ as l → −∞

(41)

)

Also, we realize now that this classification of renormalizable field

theories is relevant only to the vicinity of the Gaussian fixed

point. If we manage to find more complex fixed point, its own unstable

manifold will give rise to a family of local field theories which may have

little to do with perturbatively defined renormalizable field theories we

considered above.

2.3. ϕ4 is marginaly irrelevant at Gaussian fixed point.

9



Exact correspondence between the unstable manifold and the space of

perturbatively renormalizable field theories may break down if d takes spec-

cial values such that one of the fields Φn becomes marginal (Dn = d).

As at d = 4 Φ4 is marginal we have

RGl(AG + λ

∫
d4Φ4(x)) = AG + λ

∫
d4Φ4(x) +O(λ2) (42)

i.e. at the order λ the perturbed action does not flow at all. However,

nontrivial flow can be generated beyond the linear approximation. Let us

estimate this flow at the order λ2.

Step 1.

To perform the step 1 of RG transformation one has to integrate over

the fast component ϕ̃ in

ϕ0 = ϕ1 + ϕ̃

(43)

Using the definition of diagonalized field Φ4 (see (38)) we can write for the

pertirbed action

A0 = AG + λ

∫
d4xΦ4(x) =∫

d4x

(
1

2
(∂ϕ0)

2 +
λ

4!
ϕ4
0 −

λN2

4
ϕ2
0 + const

)
(44)

Hence we have

C exp (−A1[ϕ1]) = exp (−A0[ϕ1])∫
[Dϕ̃] exp

{
−
∫

d4x

[
1

2
(∂ϕ̃)2 + λ(

1

4!
ϕ̃4 − N2

4
ϕ̃2 +

1

6
ϕ̃3ϕ1 +

1

4
ϕ̃2ϕ2

1 +
1

6
ϕ̃ϕ3

1

]}
(45)

As we have discussed already in Lect.10, the integration over ϕ̃ yields

A1 = A0 − ( sum of all connected diagrams) (46)
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which are generated by the following vertices

(47)

(48)

(49)

(50)

(51)

where the solid lines represent the fast field ϕ̃(x) (and thus, all solid lines

must be contracted), the dotted lines represent the field ϕ1(x) which plays

the role of an external field (i.e. the diagrams involve no contractions of

the dotted lines).

It is not dificult to check that (42) indeed holds to the order λ because

the constant N2 in the ϕ2
1 term in (44) is chosen (see (36), (37)) in such a

way that the contribution of the diagram

(52)

which is proportional to ϕ2
1 is compensated exactly by the transformation

of the term N2

4 ϕ
2
1 in the step 2 of the RG procedure.
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In the order λ2 many new terms in A1 are generated. For example the

diagram

(53)

gives rise to the terms ≈ ϕ6
1. All such fields are irrelevant. The diagrams

contributing to the terms ≈ ϕ4
1 are

(54)

This diagram admits Taylor expansion in the external momenta. The

zeroth term of this expansion contribute to the term ϕ4
1 in A1, while the

higher terms give rise to the irrelevant contributions like ϕ2
1(∂ϕ1)

2. In our

approximation we are neglecting the irrelevant terms, because they dye out

very fast with the RG flow. In this approximation diagram (54) can be

evaluated at zero external momenta only, yielding the contribution to A1

∆λ

4!

∫
d4xϕ4

1(x),

∆λ

4!
= −λ2

16

∫
∆

d4k

(2π)4
(
1

k2
)2 (55)

The factor λ2

16 appears as follows. The term in (45) responsible for the

vertices in this diagram is λ
4ϕ

2
1ϕ̃

2. One has to expand the exponential to

the second order to get the diagram (54), this brings in additional factor
1
2! , a factor 2 comes from combinatorics of contractions in < ϕ̃2ϕ̃2 >∆. The

momentum integral in (55) is easy to evaluate and we obtain

∆λ = −3
λ2

(4π)2
lnL (56)
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Step 2.

At this order in λ the step 2 is trivial. Indeed, for the marginal term∫
d4xϕ1(x)

4 the factor z−2(L) which comes from the transformation ϕ1 =

z−
1
2 (L)ϕ0(

x
L) is compensated exactly by the integration measure transfor-

mation (z−
1
2 (L) = L−1 but possible corrections to this formula are ≈ λ2).

Thus, in our approximation the result of the RG transformation of the

action (44) again has the form (44) with λ replaced by

λ̃ = λ− 3
λ2

(4π)2
lnL

(57)

Taking L = 1 + δl we see that λ decreases with the RG flow:

− d

dl
λ(l) = 3

λ(l)2

(4π)2
(58)

i.e. at d = 4 the field Φ4 is marginaly irrelevant.

Note that r.h.s. of (58) coinsides with the λ2 term of Callan-Symanzik

β function of ϕ4 theory.

3. Callan-Symanzik equation.

RG analysis allows one to rederive the Callan-Symazik equation which

was obtained on the basis of renormalized perturbation theory.

Let A∗ be a fixed point. Assuming that its unstable manifold is n-

dimensional, let {λi}, i = 1, ..., n be coordinates on UA∗, such that λ = 0

corresponds to A∗. This manifold describes n-parameter family of finite

local field theories. Let us denote by

< ϕ(x1)...ϕ(xN) >λ

(59)

the corresponding correlation function indicating their dependence on n

parameters λi.
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In these coordinates the RG flow equation can be written as

d

dl
λi = −βi(λ) (60)

where −βi(λ) are the components of the vector field Bi on UA∗, the minus

sign is taken to match the notations of Callan and Symanzik. According

to definition of Wilson’s RG, if λ(l) is the solution of (60) with some initial

condition λ(0) = λ, the field theories corresponding to λ and λ(l) are

related by a coordinate scale transformation x → x
L . In particular, one can

write for the correlation functions

< ϕ(x1)...ϕ(xN) >λ(l)= z
N
2 (L) < ϕ(Lx1)...ϕ(LxN) >λ (61)

where L = exp (l). For the case of infinitesimal transformation L = 1+ δl,

λ(l) = λ− β(λ)δl we have[
N∑
k=1

xak
∂

∂xak
+ND(λ) +

n∑
i=1

βi(λ)
∂

∂λi

]
< ϕ(x1)...ϕ(xN) >λ= 0 (62)

where a = 1, ...d and

D(λ) = L
d

dL
z

1
2 (L)|L=1

(63)

Notice that D(0) = Dϕ is the dimension of ϕ at the fixed point A∗. D(λ)

is often written as

D(λ) = Dϕ + γ(λ)

(64)

so that γ(0) = 0.

The eq. (62) easely generalizes to the corr. functions of composite fields
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Oα(x). Repeating the same analysis we obtain

N∑
k=1

< Oα1
(x1)...(DO)αk

(xk)...OαN
(xN) >λ +

n∑
i=1

βi(λ)
∂

∂λi
< Oα1

(x1)...OαN
(xN) >λ= 0 (65)

where

(DO)αk
(x) = xa

∂

∂xa
Oα +Dβ

α(λ)Oβ(x),

Dβ
α(λ) = −L

d

dL
zβα(L)|L=1

(66)

zβα(L) describes the RG transformation of the comopsite fieldsOα(x). Again,

Dβ
α = Dβ

α(λ)|λ=0

(67)

coinsides with the matrix of dimensions at A∗ whose eigenvalues are the

dimensions of the fields Φα(x).

We see that the CS equation is very general consequence of Wil-

son’s RG theory and not just the property of the perturbation theory

around the Gaussian fixed point.
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