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1. Why do we need in Quantum FT?

1.1 Lagrangian, action and equations of motion in Classical mechanics and FT.

The equations of motion in Classical Mechanics follow from extremal

action principle: we have an action

S =

∫
L(q(t), q̇(t))dt (1)

where the Lagrangian L(q(t), q̇(t)) is a function of coordinate of a particle
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q(t) and its velocity q̇(t). The equations of motion follow if we demand

that trajectory is extremal

δS = 0 (2)

In Classical FT an analog of q(t) is a field φ(~x, t), we have an action

S =

∫
Λ(φ(~x, t), φ̇(~x, t),∇φ(~x, t))d3xdt (3)

and the equations of motion follow if we demand that ”‘trajectory”’ φ(~x, t)

is extremal

δS = 0 (4)

1.2 Lorentz invariance, locality and causuality.

The action (3) will be Lorentz invariant if the Lagrangian density Λ is

Lorentz invariant because the mesure d3xdt is Lorentz invariant clearly.

The action must be local. It means that Lagrangian desity is local. This

in turn means that all the quantities φ(~x, t), φ̇(~x, t), ∇φ(~x, t) are taken in

one point (~x, t). This reflects (Faraday’s) principle of short-range action:

the field degree of freedom φ(~y, t) does not interract immedi-

ately with φ(~x, t) if |~y − ~x| =finite.

Allowing such interractions would lead to possible terms in Lagrangian

like ∫
F (φ(~x, t), φ(~y, t))d3xd3y (5)

But Lorentz invariance of the action S would require also the terms which

are nonlocal in time as well, like∫
G(φ(~x, t), φ(~y, t′))d3xd3ydtdt′ (6)

which evidently violate causuality. The state in the future affects the

dynamics at present. Locality and causuality are deeply connected.
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1.3 Symmetries of the action and Noether theorem.

The Lagrangian approach opens up a natural way to relate the symme-

tries of the action to the consrvation lows. It is given by

Noether theorem: suppose we have a continued set of transformations

φ(x)→ φ̃(x) = Fs(x, φ(x)) (7)

parametrized by a parameter s, such that Fs(x, φ(x)) = φ(x) and the action

is invariant

S[φ(x)] = S[φ̃(x)] (8)

Consider the infinitesimal transformation

φ(x)→ φ(x) + εE(x, φ(x))⇒

Λ(φ̃, ∂µφ̃) = Λ(φ, ∂µφ) + ε[
∂Λ

∂φ
E +

∂Λ

∂(∂µφ)
∂µE)] (9)

Because of action is invariant

∂Λ

∂φ
E +

∂Λ

∂(∂µφ)
∂µE = ∂µK

µ ⇔

∂µ(
∂Λ

∂(∂µφ)
E + (

∂Λ

∂φ
− ∂µ

∂Λ

∂(∂µφ)
)E = ∂µK

µ (10)

But the second term on the r.h.s. is zero due to the equations of motion

and we obtain the conservation low

∂µ(
∂Λ

∂(∂µφ)
E)− ∂µKµ ≡ ∂µJ

µ = 0

Jµ =
∂Λ

∂(∂µφ)
E(x, φ)−Kµ(φ, ∂φ) (11)

This leads to the conserved charges for the equations of motion solutions

(on shell):

Qt1 ≡
∫
d3xJ0(~x, t1) = Qt2 ≡

∫
d3xJ0(~x, t2) (12)
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where it is implyed that classical solution is such that φ(~x, t) → 0 when

~x→∞. The equation (12) is proved by Gauss theorem.

1.4 Stress-energy tensor.

The most general symmetry taking place in FT is translational sym-

metry. If the Lagrangian density

Λ(φ(x), ∂φ(x))

(13)

has no explicit dependence on xµ the action is invariant w.r.t the shifts by

a constant vector a:

x→ x̃ = x+ a,

φ(x)→ ˜φ(x) = φ(x+ a) (14)

The infinitesimal version of the shift is

x→ x̃ = x+ da,

φ(x)→ φ̃(x) = φ(x) + daν∂νφ(x) (15)

so that E(φ, ∂φ) = ∂νφ(x) is vector and

Kµ = ∂νΛ (16)

Now the expression (11) gives the stress-energy tensor conservation low

T µν =
∂Λ

∂(∂µφ)
∂νφ− Λδµν , ∂µT

µ
ν = 0 (17)

The conservation low (17) leads to 4 conserved quantyties:

E =

∫
T 00d3x, P i =

∫
T 0id3x⇔ P µ =

∫
gµνT 0

ν d
3x,

i = 1, ..., 3, ν, µ = 0, ..., 3, gµν = diag(1,−1,−1,−1) (18)

E is an energy and ~P is a momentum.
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1.5 KG theory.

It is a single component (scalar) field φ(~x, t) with the action

S =

∫
1

2
[(φ̇)2 − (∇φ)2 −m2φ2]d3xdt =∫

1

2
[∂µφ∂

µφ−m2φ2]d4x (19)

The action is Lorentz invariant because the scalar field transforms under

the Lorentz tralsformation xµ → x̃µ = Rµ
νx

ν as φ̃(x) = φ(x̃). The equation

of motion:

δS = 0⇔ ∂µ∂
µφ+m2φ = 0 (20)

so that m2 is a mass of the field φ. The stress-energy tensor is given by

Tµν = ∂µφ∂νφ−
1

2
gµν(∂λφ∂

λφ−m2φ2) (21)

Hence the energy and momentum densityes are given by

ε =
1

2
(φ̇)2 + (∇φ)2 +m2φ2),

~p = φ̇∇φ (22)

2. Hamiltonian formalism.

2.1.Canonical variables and Hamiltonian in Classical Mechanics.

In order to pass from Lagrangian formalism to Hamiltonian formalism

in classical mechanics, one needs to introduce canonical momenta

pi =
∂L(q, q̇)

∂q̇i
(23)

and exludes q̇ in favor of p: q̇ = f(q, p). Then the Hamiltonian function

appears as the Legandre transform

H(p, q) =
∑
i

piq̇i − L(q, p) (24)
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Then the equations of motion take the Hamiltonian form

q̇i =
∂H

∂pi
= {qi, H},

ṗi = −∂H
∂qi

= {pi, H},

{f, g} ≡ ∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
(25)

2.2.Canonical variables and Hamiltonian in Classical FT.

In the field theory we have ~x instead of i, hence the canonical momenta

is

π(~x) =
δL

δφ̇
(26)

where

L =

∫
Λ(φ, ∂φ)d3x

(27)

2.3. Canonical variables and Hamiltonian in KG theory.

Applying the definition above to the case of KG Lagrangian we find

π(~x) = φ̇(~x) (28)

Hence the Hamiltonian is

H =

∫
d3xπ(~x)φ̇(~x)− L =∫

d3x
1

2
(π2 + (∇φ)2 +m2φ2) (29)

3. Quantization procedure in Hamiltonian formalism.

3.1. Quantization procedure in mechanics.

Classical mechanics: phase space parametrized by the canonical coordi-

nates pi, qi, endowed with the canonical Poisson brackets

{qi, pj} = δji (30)
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Quantum mechanics: Hilbert space of states, H, p̂i, q̂i-operators with

canonical bracets

[qi, p
j] = ıδji (31)

Classical mechanics: Hamiltonian H(p, q)- function on the phase space.

Quantum mechanics: Hamiltonian Ĥ(p̂, q̂)-operator acting on the space

of states.

Classical mechanics: equations of motion

q̇i = {qi, H}, ṗi = {pi, H} (32)

Quantum mechanics: Heisenberg’s equations of motion

˙̂qi = [q̂i, H], ˙̂pi = [p̂i, H] (33)

or Schrödinger’s representation: H is the space of quadraticaly integrable

functions Ψ(q) such that

q̂iΨ(q) = qiΨ(q), p̂iΨ(q) = ı
∂

∂qi
Ψ(q)

ı
∂

∂t
Ψ(q) = ĤΨ (34)

3.2. Quantization of KG field in Schrödinger picture.

An analog of quantum mechanical wave function is a functional Ψ[φ(x)]

which is an element of the Hilbert space of states H of KG QFT Ψ[φ(x)] ∈
H. The scalar product in H is determined by the functional integral

(Ψ1,Ψ2) =

∫
D[φ(x)]Ψ1(φ)Ψ∗2(φ) (35)

By definition, the functional Ψ[φ] satisfy the equations

φ̂(~x)Ψ = φ(~x)Ψ, π̂(~x)Ψ = −ı δ

δφ(~x)
Ψ (36)
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where the operators φ̂(~x), π̂(~x) does not depend on time and satisfy the

canonical commutation relations

[φ̂(~x), π̂(~x)] = ıδ3(~x− ~y) (37)

The evolution of Ψ[φ] in time is given by the Schrödinger equation

ı
∂

∂t
Ψ = ĤΨ (38)

where the Haniltonian is

Ĥ =

∫
d3x

1

2
(π̂(~x)2 + (∇φ(~x))2 +m2φ(~x)2) (39)

3.3. KG as a set of harmonic oscillators.

The idea is to treat the KG field as a set of harmonic oscillators. Indead,

the KG Hamiltonian (29) is similar to the harmonic oscillator Hamiltonian

Hosc =
2

2
(p2 + ω2q2) (40)

The difference is that in case of KG field we have a set of harmonic oscil-

lators numbered by a points ~x of space.

For the harmonic oscillator the operators

a =
ı√
2ω

(p− ıωφ), a∗ = − ı√
2ω

(p+ ıωφ) (41)

diagonalize the Hamiltonian

Hosc =
ω

2
(a∗a+ aa∗) = ω(a∗a+

1

2
) (42)

where the last expression follows from the commutation relation

[a, a∗] = 1 (43)

which in turn follows from the canonical commutator for p and q. Then it

is easy to check that the states (a∗)n|0 > are Hosc-eigenstates

Hosc(a
∗)n|0 >= (n+

1

2
)ω(a∗)n|0 > (44)
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and the space of states of harmonic oscillator is generated by these eigen-

states.

For the KG field one can consider an analog of the operators (41)

φ(~x) =

∫
d3p

(2π)3
1√
2ωp

(a~p + a∗−~p) exp (ı~p~x)

π(~x) = −ı
∫

d3p

(2π)3

√
ωp
2

(a~p − a∗−~p) exp (ı~p~x) (45)

They are introduced in such way to have

[a~p, a
∗
~p′] = (2π)3δ(~p− ~p′)

Ĥ =

∫
d3p

(2π)3
ω~p(a

∗
~pa~p +

1

2
[a~pa

∗
~p]) (46)

Because of the relations

[Ĥ, a~p] = −ω~pa~p, [Ĥ, a∗~p] = ω~pa
∗
~p (47)

one can easy to build the space of states H.

We demand that the energy spectrum is bounded from below: E ≥ E0.

It means that there is a state |0 > with minimal energy E0 such that

a~p|0 >= 0 (48)

Then the other states are given by creation operators

|~p1, ..., ~pN >= a∗~p1...a
∗
~pN
|0 >,

Ĥ|~p1, ..., ~pN >= (ω~p1 + ...+ ω~pN + E0)|~p1, ..., ~pN > (49)

The ground state energy

E0 =

∫
d3p

(2π)3
ω~p

1

2
[a~pa

∗
~p] =

∫
d3p

ω~p
2
δ(0) (50)

is divergent. But the expression for E0 can be rewritten as follows

E0 =

∫
d3p

ω~p
2

∫
d3x exp (ı(~p− ~p′)~x)δ(~p− ~p′) = ε0V

3, (51)
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where

ε0 =

∫
d3p

ω~p
2

(52)

is the density of vacuum energy.

3.4. Vacuum energy, normal ordering and particle interpretation.

Though the infinite vacuum energy can cause the problems, it can be

ignored as long as the difference between the energy of a given state and

vacuum energy matters. Therefore it makes sense to redefine Ĥ by sub-

tracting E0:

: Ĥ := Ĥ − E0 =

∫
d3p

(2π)3
ω~pa

∗
~pa~p (53)

and do similar subtraction for the momentum operator

: ~̂P :=

∫
d3p

(2π)3
~pa∗~pa~p (54)

It allows us to interprate the operator a∗~p as creating a particle with the

energy ω~p and momentum ~p so that the vector |~p1, ..., ~pN >= a∗~p1...a
∗
~pN
|0 >

is an N -particles state with the momenta ~p1, ..., ~pN because of the cor-

rect relation ω~pi =
√
~p2i +m2 between the momentum and energy of each

particle.

3.5. Vacuum energy regularization and QFT at small distances.

Though the subtraction (53), (54) is very convenient and allows to study

the spectrum of excited states it does not solve the vacuum energy prob-

lem. E0 is invisible in infinite flat space-time but it is impodtant when

we consider gravity. That is vacuumenergy contributes to the cosmological

constant which as we know is astronomically small.

As one can see from (52) comes from small distances (big momenta). It

can be assumed that the theory does not apply to very small scales and

must be modifyed so that instead of (52) we would have

ε0 =

∫
d3p

ω~p
2

Φ(
~p2

λ2
), Φ(0) = 1 (55)
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where λ is large momentum, where a new physics emerge. If we assume that

Φ(x) → 0 as x → ∞ sufficiently fast, the integral above would converge.

But Φ(x) and λ must be determined by small scales physics. Thus, the

vacuum energy divergence problem is a physical problem.

3.6. Creation anihilitation operators as a coserved charges.

The creation-anihilation operators introduced in (45) can be considered

as a coserved charges of some infinite symmetry which manifests itself in

KG theory. Indead, under the infinitesimal field transformation

φ(x)→ φ̃(x) = φ(x) + f(x) (56)

where the function f(x) is an arbitrary KG equation equation solution, the

Lagrangian density changes by

Λ(φ̄) = Λ(φ) + ∂µK
µ
f , K

µ
f = φ∂µf (57)

Hence one can use the Noether theorem to conclude that

∂µJ
µ
f = 0, Jµf = f∂µφ− φ∂µf (58)

So the corresponding conserved charges (integrals of motion) are given by

Af =

∫
d3x(φ̇f − ḟφ) =

∫
d3x(πf − ḟφ) (59)

The last formula allows to calculate the Poisson brackets

{Af , Ag} =

∫
d3x(ḟ g − fġ) (60)

One can easy to see that the charges form the algebra of creation-anihilation

operators w.r.t Poisson brackets if we use the plane waves basis

A~p ≡ Af~p, f~p = exp (ı(ω~pt− ~p~x)),

A∗~p ≡ Af∗~p
, f ∗~p = exp (−ı(ω~pt− ~p~x)),

ω~p =
√
~p2 +m2 (61)
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{A~p, A
∗
~p′} = −ı(2π)32ω~pδ(~p− ~p′),

{A~p, A~p′} = {A∗~p, A∗~p′} = 0 (62)

Thus, in quantum theory

A~p → Â~p, A
∗
~p → Â∗~p

[Â~p, Â
∗
~p′] = (2π)32ω~pδ(~p− ~p′),

[Â~p, Â~p′] = [Â∗~p, Â
∗
~p′] = 0 (63)

Thus one can identify

Â~p =
√

2ω~pa~p, Â
∗
~p =

√
2ω~pa

∗
~p (64)

It is important to note that operators Â~p, Â
∗
~p are Lorntz invariants if one

uses the covariant form of their definition

A~p =

∫
dΣµ(f~p∂

µφ− φ∂µf~p) (65)

where Σ is any space-like 3-dim. surface. Therefore the quantization of

KG theory represented above is Lorentz covariant.
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