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1. Interaction picture for the Green’s functions.

1.1. Interaction picture and Heisenberg field operator.

In the preceding lecture we have obtained the way of evaluating of the

n-points Green functions

< Ω|T (ϕ(x1)...ϕ(xn))|Ω > (1)

in the theory with ϕ4 interaction. We used the functional representation

for the correlation functions in euclidean space

< ϕ(x1)...ϕ(xN) >=
1

Z

∫
[Dϕ]ϕ(x1)...ϕ(xN) exp (−A[ϕ]).

(2)

and applied the perturbation theory approach to represent the correlation

functions in interacting theory in terms of the correlation functions of free
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theory. Then we obtained the Green’s function (1) in Minkowski space

as a result of analitic continuation of the correlation function determined

in euclidean space (with imaginary time τ = ıt). Here we reproduce

these results considering the theory in Minkowski space and using

Hamiltonian approach.

In the theory with interaction the Heisenberg field operators ϕ(x) ≡
ϕ(x⃗, t) satisfy, by definition the equation

ı
∂

∂t
ϕ(x⃗, t) = [H,ϕ(x⃗, t)] (3)

For the ϕ4-theory we have

H = H0 +HI = HKG +
λ

4!

∫
d4xϕ4(x)

(4)

We are going to find a representation for the Green’s function as a pertur-

bation series over the powers of λ. According to Feynman, this per-

turbation series can be understood as the interaction processes

in space-time.

Notice that the interaction Hamiltonian HI appears not only in the

definition of Heisenberg operator (69) but also in the definition of vacuum

state |Ω >.

The idea behind the perturbation theory is to express the

Heisenberg field ϕ(x) and vacuum state |Ω > in terms of the free

(KG) Heisenberg field and free field (KG) vacuum state |0 >.
For any fixed t0, using translation invariance, we can expand the Heisen-

berg field in the interation theory as

ϕ(x⃗, t0) =

∫
d3p

(2π)3
1√
Ep⃗

(ap⃗ exp (ıp⃗x⃗) + a†p⃗ exp (−ıp⃗x⃗))

(5)
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where the operators ap⃗, a
†
p⃗ satisfy the standard commutation relations

[ap⃗, a
†
p⃗′] = (2π)3δ(p⃗− p⃗′) (6)

The operators ap⃗, a
†
p⃗ are expressed by the canonical variables similar to the

KG field. Therefore they satisfy (6) at the moment t0, though they do not

diagonalize the Hamiltonian. In fact the commutation relations (6) will

formally hold for any other moment t because

ap⃗(t) = exp [ı(t− t0)H]ap⃗ exp [−ı(t− t0)H],

a†p⃗(t) = exp [ı(t− t0)H]a†p⃗ exp [−ı(t− t0)H].

(7)

Then for an arbitrary t ̸= t0

ϕ(x⃗, t) = exp (ıH(t− t0))ϕ(x⃗, t0) exp (−ıH(t− t0)) =

exp (ıH(t− t0)) exp (−ıH0(t− t0)) exp (ıH0(t− t0))ϕ(x⃗, t0)

exp (−ıH0(t− t0)) exp (ıH0(t− t0)) exp (−ıH(t− t0)) =

exp (ıH(t− t0)) exp (−ıH0(t− t0))ϕI(x⃗, t) exp (ıH0(t− t0)) exp (−ıH(t− t0))

(8)

where the field

ϕI(x⃗, t) = exp (ıH0(t− t0))ϕ(x⃗, t0) exp (−ıH0(t− t0)) =∫
d3p

(2π)3
1√
Ep⃗

(ap⃗ exp (ıp⃗x⃗− ıEp⃗(t− t0)) + a†p⃗ exp (−ıp⃗x⃗+ ıEp⃗(t− t0))

(9)

is called interaction picture field. It is clear that ϕI(x) satisfy KG

equation of motion.

If the coupling constant λ is small the field ϕI(x⃗, t) determines

the main contribution to the total Heisenberg field ϕ(x⃗, t) of the

ϕ4-theory.

3



Now we can write for the Heisenberg field

ϕ(x⃗, t) = U †(t, t0)ϕI(x⃗, t)U(t, t0)

(10)

where the unitary operator

U(t, t0) = exp (ıH0(t− t0)) exp (−ıH(t− t0)) (11)

which is known as evolution operator in interaction picture has been

introduced.

Although this operator is written in terms of the ϕ(x⃗, t), it is

natural to expect that for small λ it can be expressed in terms

of ϕI(x). This can be done noticing that U(t, t0) is the unique solution of

the equation

ı
∂

∂t
U(t, t0) = exp (ıH0(t− t0))(H −H0) exp (−ıH(t− t0)) =

exp (ıH0(t− t0))HI exp (−ıH0(t− t0)) exp (ıH0(t− t0)) exp (−ıH(t− t0)) =

HI(t)U(t, t0)

⇔

ı
∂

∂t
U(t, t0) = HI(t)U(t, t0)

(12)

where U(t0, t0) = 1 and

HI(t) = exp (ıH0(t− t0))HI exp (−ıH0(t− t0)) =
λ

4!

∫
d4x exp (ıH0(t− t0))ϕ

4(x⃗, t0) exp (−ıH0(t− t0)) =

λ

4!

∫
d4xϕ4I(x)

(13)

is the interaction Hamiltonian written in interaction picture.

4



The solution of (12) can be represented as a series

U(t, t0) =

1 + (−ı)
∫ t

t0

dt1HI(t1) + (−ı)2
∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) +

(−ı)3
∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3HI(t1)HI(t2)HI(t3) + ... (14)

where the operators HI(ti) are time-ordered. It can be written in a more

compact form

U(t, t0) =
∞∑
n=0

(−ı)n

n!

∫ t

t0

dt1...dtnT (HI(t1)...HI(tn)) =

T exp (−ı
∫ t

t0

dt′HI(t
′)) (15)

where the time-ordered exponent is determined by the Taylor series of time-

ordered terms. Now the Heisenberg field ϕ(x) of the interacting

theory is written in terms ϕI(x) which is just a KG Heisenberg

field.

We can consider more general evolution operator

U(t, t′) = T exp (−ı
∫ t

t′
dt′′HI(t

′′)) , ı
∂

∂t
U(t, t′) = HI(t)U(t, t

′), t ≥ t′ (16)

with the initial condition U(t′, t′) = 1.

This is a unitary operator because the solution of the equation above is

U(t, t′) = exp (ıH0(t− t0)) exp (−ıH(t− t′)) exp (−ıH0(t
′ − t0)).

(17)

One can check also that

U(t1, t2)U(t2, t3) = U(t1, t3)

(18)
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for any t1 ≥ t2 ≥ t3.

1.2. Vacuum state in interaction picture.

One has to find also a representation for the vacuum state |Ω > in

interacting theory. The statement is

|Ω >= lim
T→∞(1−ıϵ)

(exp (−ıE0T < Ω|0 >))−1 exp (−ıHT )|0 > (19)

To proove this one can write

exp (−ıHT )|0 >=
∞∑
n=0

exp (−ıEnT )|n >< n|0 >=

exp (−ıE0T )|Ω >< Ω|0 > +
∞∑
n ̸=0

exp (−ıEnT )|n >< n|0 >

(20)

where |n > and En are the eigenstates and eigenvalues of the H. We must

assume of course that < Ω|0 ≯= 0, otherwise the HI can not be

considered as a small perturbation.

In the limit T → ∞(1− ıϵ) only the vacuum state contribution survives

in the formula above because of En > E0 for n ̸= 0.

1.3. Green’s function formula.

Now one can find the expression for the Green’s functions in interacting

theory in terms of the Green’s functions of free field theory.

Let us consider for example 2-point Green’s function < ϕ(x)ϕ(y) >,
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where x0 > y0. Then

< T (ϕ(x)ϕ(y)) >=< Ω|T (ϕ(x)ϕ(y))|Ω =< Ω|ϕ(x⃗, x0)ϕ(y⃗, y0)|Ω >=

< Ω|U−1(x0, t0)ϕI(x⃗, x
0)U(x0, t0)U

−1(y0, t0)ϕI(y⃗, y
0)U(y0, t0)|Ω >=

< Ω|U−1(x0, t0)ϕI(x⃗, x
0)U(x0, y0)U(y0, t0)U

−1(y0, t0)ϕI(y⃗, y
0)U(y0, t0)|Ω >=

< Ω|U−1(x0, t0)ϕI(x⃗, x
0)U(x0, y0)ϕI(y⃗, y

0)U(y0, t0)|Ω >

(21)

If one substitutes the expression (19) for the vacuum |Ω > and notices taht

exp (−ıH(t0 − (−T ))|0 >= exp (−ıH(t0 − (−T )) exp (ıH0(t0 − (−T ))|0 >

= U(t0,−T ])|0 >

(22)

one can obtain

< Ω|ϕ(x)ϕ(y)|Ω >=

lim
T→∞(1−ıϵ)

(exp (−ıE0(T − t0) < Ω|0 >))−1 < 0|U(T, t0)

U †(x0, t0)ϕI(x)U(x
0, t0)U

†(y0, t0)ϕI(y)U(y
0, t0)

U(t0,−T )|0 > (exp (−ıE0(t0 − (−T ))) < Ω|0 >)−1 =

lim
T→∞(1−ıϵ)

(| < 0|Ω > |2 exp (−ıE02T ))
−1

< 0|U(T, x0)ϕI(x)U(x0, y0)ϕI(y)U(y0,−T )|0 >

(23)

where y0 > t0. If one devides this expression by

1 =< Ω|Ω >= (| < 0|Ω > |2 exp (−ıE02T ))
−1 < 0|U(T, t0)U(t0,−T )|0 >

(24)

7



we get the desired expression

< Ω|ϕ(x)ϕ(y)|Ω >= lim
T→∞(1−ıϵ)

< 0|U(T, x0)ϕI(x)U(x0, y0)ϕI(y)U(y0,−T )|0 >
< 0|U(T,−T )|0 >

(25)

where U(T, x0), U(x0, y0), U(y0,−T ) are given by (16). Since all the fields

in this expression are time-ordered we can write in general

< Ω|T (ϕ(x)ϕ(y))|Ω >=

lim
T→∞(1−ıϵ)

< 0|T (ϕI(x)ϕI(y) exp (−ı
∫ T

−T dtHI(t)))|0 >
< 0|T (exp (−ı

∫ T

−T dtHI(t)))|0 >
(26)

It is clear that for the n-point Green’s function we have similar expres-

sion

< Ω|T (ϕ(x1)...ϕ(xn))|Ω >=

lim
T→∞(1−ıϵ)

< 0|T (ϕI(x1)...ϕI(xn) exp (−ı
∫ T

−T dtHI(t)))|0 >
< 0|T (exp (−ı

∫ T

−T dtHI(t)))|0 >
(27)

Expanding the exponentials in the powers of coupling constant

λ we get the representation of the Green’s function of the inter-

acting theory as a series of the Green’s functions of free theory.

This is what we have found in the previous lecture, considering the pertur-

bation theory for the correlation functions in euclidean space and making

then analitic continuation to the imaginary values of euclidean time τ .

2. Normal ordering and Wick’s theorem.

The formula (27) gives the way to evaulate the Green’s functions in

interracting theory in terms of Green’s functions of the fields ϕI(x) of free

(KG) theory. Indeed, if we expand the interaction Hamiltonian HI in a

series the r.h.s of (27) will contain the Green’s functions of free theory so

one can apply Wick’s theorem (in operator formulation) again.
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2.1. Normal ordering of operators.

To this end let us consider first the 2-point Green’s function< 0|T (ϕI(x)ϕI(y))|0 >
in KG theory and expand the Heisenberg field operators by the positive

and negative frequences parts

ϕI(x) = ϕ+I (x) + ϕ−I (x),

ϕ+I (x) =

∫
d3p

(2π)3
1√
2Ep⃗

ap⃗ exp (−ıpx)

ϕ−I (x) =

∫
d3p

(2π)3
1√
2Ep⃗

a†p⃗ exp (ıpx)

(28)

Suppose that x0 > y0 in T (ϕI(x)ϕI(y)). Then

T (ϕI(x)ϕI(y)) = ϕI(x)ϕI(y) =

ϕ+I (x)ϕ
+
I (y) + ϕ+I (x)ϕ

−
I (y) + ϕ−I (x)ϕ

+
I (y) + ϕ−I (x)ϕ

−
I (y) =

ϕ+I (x)ϕ
+
I (y) + ϕ−I (y)ϕ

+
I (x) + ϕ−I (x)ϕ

+
I (y) + ϕ−I (x)ϕ

−
I (y) + [ϕ+I (x), ϕ

−
I (y)]

(29)

In each term of this expression, excluding the commutator, the

annihilation operators ap⃗ are to the right of the creation operators

a†p⃗. This way to order the fields in T (ϕI(x)ϕI(y)) is convenient because by

the vacuum definition

ϕ+I (x)|0 >= 0 =< 0|ϕ−I (x)

(30)

so that the all terms in < 0|T (ϕI(x)ϕI(y))|0 > except the commutator

vanish. The way to arrange the creation-annihilation operators in the

operator product when the annihilation operators stand to the right of the

creation operators is called the normal ordering of operators. The
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normal ordering of operators aq⃗...a
†
p⃗... is denoted usualy as

: aq⃗ ...a
†
p⃗ ... :

(31)

For example

: as⃗a
†
p⃗aq⃗ar⃗a

†
t⃗
:= a†p⃗a

†
t⃗
as⃗aq⃗ar⃗

(32)

Suppose now that y0 > x0 in T (ϕI(x)ϕI(y)). Then

T (ϕI(x)ϕI(y)) = ϕI(y)ϕI(x) =

ϕ+I (y)ϕ
+
I (x) + ϕ+I (y)ϕ

−
I (x) + ϕ−I (y)ϕ

+
I (x) + ϕ−I (y)ϕ

−
I (x) =

ϕ+I (y)ϕ
+
I (x) + ϕ−I (x)ϕ

+
I (y) + ϕ−I (y)ϕ

+
I (x) + ϕ−I (y)ϕ

−
I (x) + [ϕ+I (y), ϕ

−
I (x)]

(33)

and hence all terms in < 0|T (ϕI(x)ϕI(y))|0 > are vanishing except the

last commutator. It makes sense therefore to define the operation which is

called contraction:

ϕ(x)ϕ(y) = [ϕ+(x), ϕ−(y)] if x0 > y0

and

ϕ(x)ϕ(y) = [ϕ+(y), ϕ−(x)] if y0 > x0

(34)

But the contraction so defined coincides with the definition of

Feynman’s propagator

ϕ(x)ϕ(y) = DF (x− y) (35)

Hence we can write

T (ϕI(x)ϕI(y)) =: ϕI(x)ϕI(y) : +ϕ(x)ϕ(y) (36)
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2.2. Wick’s theorem.

Wick’s Theorem:

T (ϕI(x1)...ϕI(xN)) =: ϕI(1)...ϕI(xN) : +

sum of : ϕI(1)...ϕI(xN) : with all possible contractions inside (37)

Example

T (ϕI(x1)...ϕI(x4)) =: ϕI(x1)...ϕI(x4) : + : ϕI(x1)ϕI(x2)...ϕI(x4) : +

: ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4) : + : ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4) : +

: ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4) : +...+ : ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4) : +

: ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4) : +...+ : ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4) :

(38)

Therefore

< 0|T (ϕI(x1)...ϕI(x4))|0 >=< 0|ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4)|0 > +...+

< 0|ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4)|0 >=

DF (x1 − x2)DF (x3 − x4) + ...+DF (x1 − x4)DF (x2 − x3).

(39)

To prove the theorem we use induction method. For the 2-point function

the theorem is proved already. Suppose it is also proved for N − 1-point

function. One can choose without restrictions the ordering in the form

x01 > ... > x0N (if it’s not the case one can relabel the points to get the
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ordering we choose). Then we can write

T (ϕ(x1)...ϕ(xN)) = ϕ(x1)...ϕ(xN) =

ϕ(x1) : (ϕ(x2)...ϕ(xN) +

sum of ϕ(2)...ϕ(xN) with all possible contactions) :=

(ϕ+(x1) + ϕ−(x1))(: ϕ(x2)...ϕ(xN) : +

sum of : ϕ(x2)...ϕ(xN) : with all possible contactions inside) (40)

(here and in what follows the label I will be omitted).

One needs to put the field (ϕ+(x1)+ϕ
−(x1)) inside the normal ordering.

It is easy to put the term ϕ−(x1) inside the normal ordering because it is

anough to put it from the left in all terms in the sum over the contrac-

tions. To put the second term ϕ+(x1) one needs to take into account all

commutators which appear while we are moving ϕ+(x1) to put it from the

right of all the operators ϕ(xi), i = 2, ..., N . For example

ϕ+(x1) : ϕ(x2)...ϕ(xN) :=

: ϕ(x2)...ϕ(xN) : ϕ
+(x1)+ : [ϕ+(x1), ϕ(x2)]ϕ(x3)...ϕ(xN) : +...

: ϕ(x2)...ϕ(xN−1)[ϕ
+(x1), ϕ(xN)] :=

: ϕ+(x1)ϕ(x2)...ϕ(xN) : + : ϕ(x1)ϕ(x2)ϕ(x3)...ϕ(xN) : +

: ϕ(x1)ϕ(x2)ϕ(x3)...ϕ(xN) : +...+ : ϕ(x1)ϕ(x2)ϕ(x3)...ϕ(xN) :

(41)

Thus we have

ϕ(x1) : ϕ(x2)...ϕ(xN) :=: ϕ(x1)ϕ(x2)...ϕ(xN) : +

: ϕ(x1)ϕ(x2)ϕ(x3)...ϕ(xN) : +...+ : ϕ(x1)ϕ(x2)ϕ(x3)...ϕ(xN) :

(42)

Similarly doing with all other terms from (40) we obtain the statement of

the theorem.
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2.3. Green’s functions and Feynman diagrams.

When we calculate Green’s functions, Wick’s theorem, we just have

proved, leads again to the Feynman diagrams.

Let us consider for example the 2-points Green’s function< T (ϕ(x)ϕ(y)) >.

According to (26) the numerator is

lim
T→∞(1−ıϵ)

< 0|T (ϕI(x)ϕI(y) exp (−ı
∫ T

−T

dtHI(t)))|0 >=

lim
T→∞(1−ıϵ)

[< 0|T (ϕI(x)ϕI(y))|0 > +

−ıλ
4!

< 0|T (ϕI(x)ϕI(y)
∫ T

−T

dt

∫
d3uϕ4I(u⃗, t))|0 > +

1

2!
(
−ıλ
4!

)2 < 0|T (ϕI(x)ϕI(y)
∫ T

−T

dtd3uϕ4I(u⃗, t)

∫ T

−T

dt′d3vϕ4I(v⃗, t
′))|0 > +...]

(43)

At zero perturbation order the Wick’s theorem gives

< 0|T (ϕI(x)ϕI(y))|0 >=< 0|(: ϕ(x)ϕ(y) : +DF (x− y))|0 >= DF (x− y)

(44)

Now we consider the first perturbation order

−ıλ
4!

∫
d4u < 0|T (ϕI(x)ϕI(y)ϕ4I(u))|0 >=

−ıλ
4!

∫
d4u(< 0| : ϕ(x)ϕ(y)ϕ(u)ϕ(u)ϕ(u) : |0 > +

< 0| : ϕ(x)ϕ(y)ϕ(u)ϕ(u)ϕ(u)ϕ(u) : |0 > +

4 < 0| : ϕ(x)ϕ(y)ϕ(u)ϕ(u)ϕ(u)ϕ(u) : |0 > +...

+3 < 0|ϕ(x)ϕ(y)ϕ(u)ϕ(u)ϕ(u)ϕ(u)|0 > +

12 < 0|ϕ(x)ϕ(y)ϕ(u)ϕ(u)ϕ(u)ϕ(u)|0 >)

(45)
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Due to the normal ordering definition, only the last two terms give nonzero

contribution:

−ıλ
4!

∫
d4u < 0|T (ϕI(x)ϕI(y)ϕ4I(u))|0 >=

−ıλ
4!

∫
d4u(3 < 0|ϕ(x)ϕ(y)ϕ(u)ϕ(u)ϕ(u)ϕ(u)|0 > +

12 < 0|ϕ(x)ϕ(y)ϕ(u)ϕ(u)ϕ(u)ϕ(u)|0 >) =
−ıλ
4!

∫
d4u(3DF (x− y)DF (u− u)2 + 12DF (x− u)DF (y − u)DF (u− u))

(46)

These terms can be represented by the following diagrams: 3 diagrams of

type

x y u

(47)

plus 12 diagrams of the type

x
u y

(48)

The second perturbation order is

1

2!
(
−ıλ
4!

)2
∫
d4ud4v < 0|T (ϕ(x)ϕ(y)ϕ4(u)ϕ4(v))|0 >

(49)

According to Wick’s theorem the nonzero contribution is given by the terms

where all Heisenberg operators are contracted. It gives the sum of diagrams
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consisting of product of connected digrams and vacuum diagrams:

[ + + + + ]

(50)

[ + + ]

(51)

where the product of diagrams from the first factor and diagrams from the

second factor is taken in such a way to have second order perturbation

factor. Again we see here the contribution of vacuum diagrams.

Notice also that the vacuum diagram we have had at the first order

appears here to the power of 2 and with the factor 1
2! . One may also find

that this diagram will appear at third perturbation order to the power of

3 and with the factor 1
3! . It is easy to see that the contribution of this

diagram at higher orders is given by the exponential. The same is true

for other vacuum diagrams which appeared at the second order. One can

see in fact, that the vacuum diagrams contributions exponentiate

when we consider higher perturbation theory orders, so that we

can write
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lim
T→∞(1−ıϵ)

< 0|T (ϕI(x)ϕI(y) exp (−ı
∫ T

−T

dtHI(t)))|0 >=

[ + + + + + ]

(52)

exp [ + + + ]

(53)

The denominator of the Green’s 2-point function can be analysed simi-

larly, so that we find

lim
T→∞(1−ıϵ)

< 0|T (exp (−ı
∫ T

−T

dtHI(t)))|0 >=

1 +
−ıλ
4!

∫
d4u < 0|T (ϕ(u)ϕ(u)ϕ(u)ϕ(u))|0 > +

1

2!

(−ıλ
4!)2

∫
d4ud4v < 0|T (ϕ(u)ϕ(u)ϕ(u)ϕ(u)ϕ(v)ϕ(v)ϕ(v)ϕ(v))|0 > +

... =

exp [ + + + ]

(54)

Hence the denominator cancels the vacuum diagrams contribution from

numerator. Thus, the 2-points Green’s function in ϕ4 theory is given
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by the contribution of all connected diagrams with two external

points:

< Ω|T (ϕ(x)ϕ(y)|Ω >=

[ + + + + + ]

(55)

The multi-points Green’s functions can be analysed similarly.

3. Wick’s theorem for fermions and Yukawa model.

3.1. Normal ordering and Wick’s theorem for fermions.

We start with the calculation of < 0|T (ψ(x)ψ̄(y))|0 > for the Dirac

field. As one knows this Green’s function is Feynman’s propagator for

Dirac fermions. But now we calculate it directly using creation-anihilation

operators.

In the Hesenberg picture the field operators are

ψ(x) =

∫
d3p

(2π)3
1

2
√
Ep⃗

∑
s

(asp⃗u
s(p⃗) exp (−ıpx) + bs†p⃗ v

s(p⃗) exp (ıpx))

ψ̄(x) =

∫
d3p

(2π)3
1

2
√
Ep⃗

∑
s

((asp⃗)
†ūs(p⃗) exp (ıpx) + (bsp⃗)v̄

s(p⃗) exp (−ıpx))(56)

where the creation-annihilation operators satisfy the anti-commutators re-

lations

[asp⃗, a
r†
q⃗ ]+ = [bsp⃗, b

r†
q⃗ ]+ = (2π)3δ3(p⃗− q⃗)δs,r

(57)
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Let us introduce the decompositions

ψ+(x) =

∫
d3p

(2π)3
1

2
√
Ep⃗

∑
s

asp⃗u
s(p⃗) exp (−ıpx),

ψ̄+(x) =

∫
d3p

(2π)3
1

2
√
Ep⃗

∑
s

bsp⃗v̄
s(p⃗) exp (−ıpx),

ψ−(x) =

∫
d3p

(2π)3
1

2
√
Ep⃗

∑
s

bs†p⃗ v
s(p⃗) exp (ıpx),

ψ̄−(x) =

∫
d3p

(2π)3
1

2
√
Ep⃗

∑
s

as†p⃗ ū
s(p⃗) exp (ıpx)

(58)

Suppose that x0 > y0 in T (ψ(x)ψ̄(y)). Then

T (ψ(x)ψ̄(y)) = (ψ+(x) + ψ−(x))(ψ̄+(y) + ψ̄−(y)) =

ψ+(x)ψ̄+(y)− ψ̄−(y)ψ+(x) + ψ−(x)ψ̄+(y) + ψ−(x)ψ̄−(y) + [ψ+(x), ψ̄−(y)]+

(59)

where we have taken into account Fermi statistics of the Dirac field.

In each term of this expression, excluding the anti-commutator, the

annihilation operators asp⃗, b
s
p⃗ are to the right of the creation operators as†p⃗ ,

bs†p⃗ . This way to order the fields in T (ψ(x)ψ̄(y)) is convenient because by

the vacuum definition

ψ+(x)|0 >= 0 = ψ̄+(x)|0 >, < 0|ψ−(x) = 0 =< 0|ψ̄−(x)

(60)

so that the all terms in < 0|T (ψ(x)ψ̄(y))|0 > except the anti-commutator

vanish. The way to arrange the creation-annihilation operators in

the operator product when the annihilation operators stand to

the right of the creation operators is called the normal ordering
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of operators. The normal ordering of operators asq⃗...b
r
p⃗...a

t†
k⃗
...bu†

l⃗
is denoted

usualy as

: asq⃗...b
r
p⃗...a

t†
k⃗
...bu†

l⃗
:

(61)

The only difference from the bosonic case in the definition of normal or-

dering of fermions is the sign factor (due to Fermi statistics). For example

: asq⃗a
r†
p⃗ b

t
k⃗
bu†
l⃗

:= −ar†p⃗ b
u†
l⃗
asq⃗b

t
k⃗

(62)

Suppose now that y0 > x0 in T (ψ(x)ψ̄(y)). Then

T (ψ(x)ψ̄(y)) = −ψ̄(y)ψ(x) =

−ψ̄+(y)ψ+(x) + ψ−(x)ψ̄+(y)− ψ̄−(y)ψ+(x)− ψ̄−(y)ψ−(x)− [ψ̄+(y), ψ−(y)]+

(63)

where the Fermi statistics has been taken into account again.

The all terms in < 0|T (ψ(x)ψ̄(y))|0 > are vanishing except the last

anti-commutator. It makes sense therefore to define the operation which

is called contraction for fermions:

ψ(x)ψ̄(y) = [ψ+(x), ψ̄−(y)]+ if x0 > y0

and

ψ(x)ψ̄(y) = −[ψ̄+(y), ψ−(x)]+ if y0 > x0

ψ(x)ψ(y) = ψ̄(x)ψ̄(y) = 0. (64)

But the contraction so defined coincides with the definition of
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Feynman’s propagator for Dirac fermions

ψ(x)ψ̄(y) = SF (x− y),

SF (x− y) =

Θ(x0 − y0) < 0|ψa(x)ψ̄b(y)|0 > −Θ(y0 − x0) < 0|ψ̄b(y)ψa(x)|0 >=∫
d4p

(2π)4
ı(pµγ

µ +m)

p2 −m2 + ıϵ
exp (−ıp(x− y)) (65)

Hence, we can write

T (ψ(x)ψ̄(y)) =: ψ(x)ψ̄(y) : +ψ(x)ψ̄(y) (66)

It allows to prove by inductionWick’s Theorem:

T (ψ(x1)ψ̄(x2)...ψ(xN)) =: ψ(x1)ψ̄(x2)...ψ(xN) : +

sum of : ψ(x1)ψ̄(x2)...ψ(xN) : with all possible contractions inside.

(67)

3.2. Interaction picture for Yukawa model.

The Yukawa model can be considered as a simplifying version of QED

where the foton is replaced by a scalar particle. The Lagrangian is the sum

LY = LKG + LDir + Lint,

LKG =
1

2
[∂µϕ∂

µϕ−m2ϕ2],

LDir = ψ̄(ıγµ∂µ −m)ψ,

Lint = −gϕψ̄ψ. (68)

Similarly to the ϕ4 model one can develop interaction picture for Yukawa

model assuming that coupling constant g is small and introducing Heisen-

berg fields operators ψI(x), ϕI(x) in interaction picture. By the defini-
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tion, these fields obey the free field theory equations of motion:

ı
∂

∂t
ϕI(x⃗, t) = [HKG, ϕI(x⃗, t)]

ı
∂

∂t
ψI(x⃗, t) = [HDir, ψI(x⃗, t)] (69)

Then we can express the Heisenberg fields ψ(x), ϕ(x) and the vacuum state

|Ω > of Yukawa theory in terms of the Heisenberg fields ψI(x), ϕI(x) and

vacuum |0 > of free theory similarly to the case of ϕ4 theory. Doing this

waywe introduce the evolution operator in interaction picture

U(t, t0) = exp (ı(t− t0)H0) exp (ı(t− t0)H)

(70)

where H0 = HKG + HDir, H = H0 + Hint, which allows to express the

Heisenberg interaction fields in terms of free fields ϕI , ψI

ϕ(x⃗, t) = U †(t, t0)ϕI(x⃗, t)U(t, t0), ψ(x⃗, t) = U †(t, t0)ψI(x⃗, t)U(t, t0).

(71)

This operatorsatisfy the differential equation

ı
∂

∂t
U(t, t0) = HI(t)U(t, t0)

(72)

which can be solved as

U(t, t0) = T exp (−ı
∫ t

t0

dt′H(t′)), U(t0, t0) = 1,

(73)

where

HI(t) = g

∫
d3xϕI(x⃗, t)ψI(x⃗, t)ψ(x⃗, t).

(74)
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It allows to obtain the Green’s function formula like this

< Ω|T (ψ(x1)...ψ(xn)ψ̄(y1)...ψ̄(yn)ϕ(z1)...ϕ(zm))|Ω >=

lim
T→∞(1−ıϵ)

< 0|T (ψI(x1)...ψI(xn)ψ̄I(y1)...ψ̄I(yn)ϕI(x1)...ϕI(xn) exp (−ı
∫ T

−T dtHI(t)))|0 >
< 0|T (exp (−ı

∫ T

−T dtHI(t)))|0 >
.

(75)

3.3. Green’s functions and Feynmam diagrams.

Consider first the 2-points Green’s functions

< Ω|T (ϕ(x)ϕ(y))|Ω >= lim
T→∞(1−ıϵ)

< 0|T (ϕI(x)ϕI(y) exp (−ı
∫ T

−T dtHI(t)))|0 >
< 0|T (exp (−ı

∫ T

−T dtHI(t)))|0 >
,

< Ω|T (ψ(x)ψ̄(y))|Ω >= lim
T→∞(1−ıϵ)

< 0|T (ψI(x)ψ̄(y) exp (−ı
∫ T

−T dtHI(t)))|0 >
< 0|T (exp (−ı

∫ T

−T dtHI(t)))|0 >
.

(76)

One can use perturbation expansion in order to calculate these functions.

At zero perturbation order the numerators give the free propagators

DF (x− y) = x y
(77)

SF (x− y) = x y
(78)

As usual, there are certainly highest order corrections which contain con-

nected diagrams as well as unconnected fragments of vacuum diagrams, but

these fragments are cancelled by the vacuum diagrams from denominator.

The interaction vertex appears when we consider 3-point Green’s func-

tion < Ω|T (ψ(x)ψ̄(y)ϕ(z))|Ω > at first order. In this case Wick’s theorem
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applied to the numerator gives

−ıg
∫
d4u < 0|T (ψ(x)ψ̄(y)ϕ(z)ψ̄(u)ψ(u)ϕ(u))|0 >=

−ıg
∫
d4u(< 0| : ψ(x)ψ̄(y)ϕ(z)ψ̄(u)ψ(u)ϕ(u) : |0 > +...

+ < 0| : ψ(x)ψ̄(y)ϕ(z)ψ̄(u)ψ(u)ϕ(u) : |0 >) =

−ıg
∫
d4u < 0|(−1)ψ(x)ψ̄(u)(−1)ψ(u)ψ̄(y)ϕ(z)ϕ(u)|0 >=

−ıg
∫
d4uSF (x− u)SF (u− y)DF (z − u)

(79)

Thus, we find the vertex diagram

u

= −ıg
∫
d4u (80)

The diagrams of propagators (77), (78) and the vertex diagram (80) gen-

erate all the diagrams in Yukawa theory. Therefore, one can calculate any

Green’s function of the theory using these Feynman rules.
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