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1. Vacuum diagrams in ϕ4 theory.

1.1 DISCONNECTED AND VACUUM DIAGRAMS IN

2-POINTS FUNCTION.

Let us consider the 2-point correlation function in ϕ4 theory paying

attention to Z-factor. We can write

< ϕ(x1)ϕ(x2) >= (
Z0

Z
)(

1

Z0

∫
[Dϕ]ϕ(x1)ϕ(x2) exp (−A0 − AI)), (1)

where Z0 is the partition function of the KG theory, A0 = AKG, AI =
λ
4!

∫
d4xϕ4(x). The diagrams we considered in the previous lecture actually

correspond to the second factor from (1):

x1 x2 + x1
x x2 + x1 x2 x

(2)
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The last diagram contains disconnected piece which is

x

(3)

It is not connected to any of the external points x1, x2. Such fragments

are called vacuum diagrams. The value of the last diagram from (2) is

the products of its disconnected parts

D(x1 − x2)× (−λ

8

∫
d4xD(x− x)2).

(4)

This holds in general: the value of any disconnected diagram is the

product of values of its connected parts as it follows from Feynmans

rules of the theory. In fact, in computing the correlation (1) the vacuum

fragments are cancelled exactly by the first factor in the r.h.s. of

(1).

1.2. CANCELLATION OF VACUUM DIAGRAMS BY Z FACTOR.

To see how vacuum fragments cancell by the partition function factor

Z consider the last diagram from (2). It is clear that this fragment will

appear n-times in n-th order of the perturbation theory:

x1 x2

(5)

It is easy to see that the value of n vacuum fragments is

1

n!
(−λ

8

∫
d4xD(x− x)2)n

(6)
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where 1
n! is an extra symmentry factor associated with the permutations of

fragments. The sum over n then yelds

[x1 x2 ] exp [ ]

(7)

This analysis can be repeated with any more other vacuum fragment and

with any other more complicated connected part of the diagram. As a

result we obtain the product of two factors

[x1 x2 + x1 x2 + x1 x2 + ]

(8)

exp [ + + + ]

,

(9)

where in the first factor we have a sum of all connected diagrams, while in

the second factor we have a sum of all connected vacuum diagrams.

Consider now the first factor from (1):

Z

Z0
=

1

Z0

∫
[Dϕ] exp (−A0 − AI). (10)

Expanding this in AI we find that this quantity is given by the sum of all

vacuum diagrams which exponentiates in terms of the connected vacuum

diagrams. That is

Z

Z0
= exp (sum of all connected vacuum diagrams). (11)
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So that this first factor cancellls the contribution of all vacuum diagrams

from the second fctor of (1).

1.3. STATISTICAL PHYSICS INTERPRETATION OF

VACUUM DIAGRAMS CONTRIBUTION.

One can make the following statistical physics interpretation of (10).

The value of the first connected vacuum diagram is

−λ

8
D2(0)

∫
d4x = −λ

8
D2(0)V 4.

(12)

Looking at other diagrams from (10) we can write

Z = Z0 exp (−ϵIV
4),

(13)

where ϵI is the sum of all connected vacuum diagrams with the

volume factored out (this factorization is also in agreement with trans-

lation invariance). So, one can interprate the functional integral

Z =

∫
[Dϕ] exp (−A)

(14)

as a (configuration) partition function of a classical statistical mechanics.

The free energy F of a statistical system is related to the partition function

as Z = exp [−F
T ]. We see therefore, that

ϵ0 + ϵI , where ϵ0 = − lnZ0

V 4

(15)

is interpreted as the specific free energy of this system, where ϵ0

is a specific free energy of free theory and ϵI incorporates all
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corrections due to the interaction. Because of all vacuum diagrams

are divergent at short distancies the short distance divergence of the specific

energy is similar to the divergence of vacuum energy in KG theory.

2. Generation functionals.

2.1. DIAGRAMATIC REPRESENTATION OF 4-POINT FUNCTION.

Let us consider the diagram expansion of the 4-point function

< ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) > .

(16)

First of all the vacuum diagrams are again get cancelled by the expansion

of Z in the denominator. However the disconnected diagrams still remain.

In zero order we have:

x1 x2

x3 x4

+

x3

x1

x4

x2

+

x3

x1

x4

x2

(17)

In the first order we obtain:

+ +

(18)

These diagrams and similar disconnected diagrams represent cor-

rections to the 2-point correlation functions.
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We have also the contributions from the truely connected diagrams:

+ +

(19)

It is natural to write thereby

< ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) >=

< ϕ(x1)ϕ(x2) >< ϕ(x3)ϕ(x4) > + < ϕ(x1)ϕ(x3) >< ϕ(x2)ϕ(x4) > +

< ϕ(x1)ϕ(x4) >< ϕ(x2)ϕ(x3) > +

< ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) >c,

(20)

where the first 3 terms combine the contributions of the disconnected di-

agrams. They are expressed in terms of 2-point functions. The connected

diagrams are incorporated in the last term which is called the connected

correlation function.

Similar pattern is observed for the higher-order correlation functions.

There are disconnected diagrams which sum up into the lower or-

der correlation functions, and besides there are truely connected

diagrams which sum up into connected correlation function.

2.2. GENERATING FUNCTIONAL FOR CONNECTED

CORRELATION FUNCTIONS.

Let us define the functional

ξ[J ] =
∞∑
n=0

1

n!

∫
d4x1...d

4xn < ϕ(x1)...ϕ(xn) > J(x1)...J(xn),

(21)
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which depends on J(x) and known as generating functional for corre-

lation functions. Then, by definition

< ϕ(x1)...ϕ(xn) >=
δ

δJ(x1)
...

δ

δJ(xn)
ξ[J ]|J=0.

(22)

It can be written as

ξ[J ] =< exp (

∫
d4xJ(x)ϕ(x)) >=

Z[J ]

Z[0]
,

(23)

where

Z[J ] =

∫
[Dϕ] exp (−

∫
d4xJ(x)ϕ(x)) exp (−A) (24)

is the partition function associated to the action

AJ = A−
∫

d4xJ(x)ϕ(x).

(25)

(The denominator Z[0] cancels the vacuum diagrams again).

The source-dependent action above is a particular case of generic theory

we disscussed in the previous lecture

AI =

∫
d4x(λ1(x)ϕ(x) +

λ2(x)

2!
ϕ2(x) +

λ3(x)

3!
ϕ3(x) +

λ4(x)

4!
ϕ4(x) + ...),

(26)

where now

AI =

∫
d4x(−J(x)ϕ(x) +

λ

4!
ϕ4(x)).

(27)

Therefore its partition function Z[J ] (more precisely Z[J ]
Z0

) is given by a

sum of all vacuum diagrams which now contain 2 kinds of vertices

x =

∫
d4xJ(x)

(28)
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= −λ

∫
d4x

(29)

As we have seen from (11)

ξ[J ] =
Z[J ]

Z[0]
= exp (sum of all connected vacuumdiagrams) (30)

of the theory whose AI action is given by (30).

It make sense therefore to define the new functional

ξ[J ] = exp (W [J ]) (31)

whose expansion in terms of J will generate the connected correlation

functions:

W [J ] =
∞∑
n=0

1

n!

∫
d4x1...d

4xnW
(n)(x1, ..., xn)J(x1)...J(xn),

(32)

where

W (n)(x1, ..., xn) =< ϕ(x1), ..., ϕ(xn) >c

(33)

The functional W [J ] is called the generating functional for con-

nected correlation functions.

In the KG theory one can calculate the Gaussian integral (24) for Z[J ]

explicitly and find

WKG[J ] =
1

2

∫
d4xd4yJ(x)D(x− y)J(y), (34)

which shows that in free field theory all nonvanishing connected correlation

functions are the 2-points only.
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2.3.AMPUTATED CORRELATION FUNCTIONS.

The connected correlation functions can be decomposed in a more ele-

mentary blocks.

Let us consider the diagrams for the connected 4-point function

< ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) >c=

+ + + +

(35)

+ +

(36)

The second, third and fifth diagrams represent the corrections to the propa-

gators (external legs). This shows that the connected correlation functions

can be expressed through so-called amputated correlation functions. The

definition of amputated correlation is given by

W (n)(x1, ..., xn) =

∫
[

n∏
i=1

d4yiW (xi − yi)]W
(n)
amp(y1, ..., yn), (37)

where

W (x− y) ≡ W (2)(x, y) =< ϕ(x)ϕ(y) >c=< ϕ(x)ϕ(y) > .

(38)

Let us give a graphical representation of this relation. Denoting the

connected n-point correlation function by an empty blob with n
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legs

< ϕ(x1)...ϕ(xn) >c=

(39)

x1

xn

(40)

Then the connected n-point correlation function is

=

(41)

(42)
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where small empty blobs here denote the total 2-points correlation

functions (total propagators).

According to this definition the amputated correlation functions

do not contain neither external legs nor corrections to them.

Notice that by this definition W
(2)
amp(x, y) ≡ S(x − y) is inverse to the

2-point function ∫
d4yS(x− y)W (y − z) = δ4(x− z). (43)

Indeed, as it follows from the definition (37):

W (x− x′) = W (2)(x, x′) =

∫
d4yd4y′W (x− y)W (2)

amp(y, y
′)W (y′ − x).

(44)

Therefore W
(2)
amp(y, y′) = S(y − y′).

In free field theory this is inverse to the function D(x− y) i.e.

just the euclidean KG operator

S0(x− y) = (m2 − ∂2
a)δ(x− y). (45)

2.4. PROPER VERTICES.

Proper vertices are also known as one-particle irreducible correla-

tion functions. For n > 2 the n-point proper vertex −Γ(n)(y1, ..., yn)

is the sum of all diagrams contributing to connected correlation

function W (n)(y1, ...yn) which cannot be made disconnected by cut-

ting just one line.

In particular, in ϕ4 theory

Γ(4) = −W (4)
amp. (46)

Indeed, Γ(4) is the sum of all diagrams contributing to W (4)(y1, ..., y4)amp

which can not be made disconnected by cautting just one internal line. But
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for the ϕ4 the connected diagrams contributing to W (4)(y1, ..., y4)amp

are precisely the one-particle irreducible diagrams.

But for the 6-point connected correlation function we have the repre-

sentation

=

(47)

− +

(48)

+ 9 similar terms,

(49)

where the shadowed blobs with n points stand for Γ(n) (the last 9

terms are related with different ways of dividing 6 external points into the

pairs of 3-points groups).
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Two point proper vertex deserves special definition, namely

Γ(2)(x, y) = S(x− y).

(50)

Its relation to the 1-particle irreducible diagrams is as follows. Write

S(x− y) = S0(x− y) + Σ(x− y),

(51)

where S0(x − y) is given by (45). The function Σ(x − y) is called mass

operator.

It is the function −Σ(x−y) which is equal to the sum of all one-

particle irreducible diagrms for the two-point correlation func-

tion. Indeed, denoting −Σ by the two-point shadowed blob we have

x y

xy

+

xy

+ x y +

(52)

where the xy denotes the amputated legs which connect the vertex with

external points x and y.

The full set of diagrams contributing to W (x− y):

+ + +

(53)
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can be obtained by repeating the one-particle irreducible diagrams:

=

+ + +

(54)

Explicitly

W = D −D ∗ Σ ∗D +D ∗ Σ ∗D ∗ Σ ∗D − ...

(55)

Here A ∗B denotes the convolution

A ∗B(x− y) =

∫
d4uA(x− u)B(u− y).

(56)

Using

S0 ∗D = I,

(57)

where I = δ(x− y) is the unit operator, it is straightforward to check that

S0 + Σ is indeed an inverse to W (x− y).

One can also define generating functional for the proper vertices. This

functional Γ[ϕcl] is called Effective action and is given by Legendre trans-

formation

Γ[ϕcl] = W [J ]−
∫

d4xJ(x)ϕcl(x), ϕcl(x) =
δW [J ]

δJ(x)
.

(58)

In order to understand this expression recall the statistical physics in-

terpretation of QFT.
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More precisely, let us consider the statistical system of magnetic with

an external homogeneous magnetic field H. The the partiton function is

Z(H) =

∫
[Ds(x)] exp [−β

∫
dxH(s(x))−Hs(x)] = exp [−βF (H)],

(59)

where s(x) is the spin variable, H is the Hamiltonian density, β = 1/kT

and F is the free energy.

By the definition, the magnetiztion M is given by

−∂F (H)

∂H
|β=const =

1

β

∂

∂H
lnZ =

1

Z

∫
dy

∫
[Ds]s(x) exp [−β

∫
dxH(s(x))−Hs(x)]] =

∫
dy < s(y) >= M.

(60)

Gibbs free energy is given by Legendre transformation

G = F +MH.

(61)

This value satisfy the equation

∂G

∂M
=

∂F

∂M
+M

∂H

∂M
+H =

∂H

∂M

∂F

∂H
+M

∂H

∂M
+H = H.

(62)

If H = 0 Gibbs free energy takes an extreme value. Thus, the most stable

equilibrium state corresponds to the minimum value of the Gibbs energy.

Hence, our expression for Γ[ϕcl] is completely similar to the Gibbs free

energy expression where instead of H we have the J(x) and

ϕcl(x) =
δW [J ]

δJ(x)
=< ϕ(x) >J

(63)
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is an analog of magnetization. Therefore we can write

δΓ[ϕcl]

δϕcl(x)
= −J(x).

(64)

Let us try to can obtain (43) from the definition Γ. Since

δ

δJ(x)

δΓ[ϕcl]

δϕcl(y)
= −δ(x− y).

(65)

Therefore

δ(x− y) = −
∫

d4z
δϕcl

δJ(x)

δ2Γ[ϕcl]

δϕcl(z)δϕcl(y)
=∫

d4z
δ2W [J ]

δJ(x)δJ(z)

δ2Γ[ϕcl]

δϕcl(z)δϕcl(y)
=

∫
d4zW (x− z)

δ2Γ[ϕcl]

δϕcl(z)δϕcl(y)

(66)

which gives (43).

Analogously we find

δ3W

δJ(x)δJ(y)δJ(z)
=

∫
d4ud4vd4wW (x− u)W (y − v)W (z − w)

δ3Γ[ϕcl]

δϕcl(u)δϕcl(v)δϕcl(w)
,

(67)

where we have used inverse matrix derivative formula

δ

δα
(M−1)xy = −(M−1)xβ

δ

δα
Mβγ(M

−1)γy

(68)

for the case when (M−1)xy = δ2Γ
δϕcl(x)δϕcl(y)

and W (x − y) = ( δ2Γ
δϕcl(x)δϕcl(y)

)−1.
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One can find also

δ4W

δJ(x)δJ(y)δJ(z)δJ(s)
=∫

d4ud4vd4wd4tW (x− u)W (y − v)W (z − w)W (s− t)(− δ4Γ[ϕcl]

δϕcl(u)δϕcl(v)δϕcl(w)δϕcl(t)
+

δ3Γ

δϕcl(u)δϕcl(v)δϕcl(r)
W (q − r)

δ3Γ

δϕcl(q)δϕcl(w)δϕcl(t)
+ (v ↔ w) + (v ↔ t)).

(69)

Note that for ϕ4 theory δ3Γ
δϕcl(q)δϕcl(w)δϕcl(t)

= 0, thus we reproduce the relation

(46).

Going by this way farther we find that indeed Γ is the generation func-

tion for the proper vertices.
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