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1. Wick’s theorem in KG theory.

As we have seen from previous lectures there is the functional integral

representation for the expectation value of time-ordered Heisenberg oper-
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ators (Green’s functions)

< 0|T (ϕ̂(x⃗N , tN)...ϕ̂(x⃗1, t1)|0 >=

lim
T→∞

∫
[Dϕ]ϕ(x⃗1, t1)...ϕ(x⃗N , tN) exp [

ı
ℏ
∫ T

−T dtd
3xL(ϕ, ∂ϕ)]∫

[Dϕ] exp [ ıℏ
∫ T

−T dtd
3xL(ϕ, ∂ϕ)]

(1)

This representation in turn, has been obtained as a result of certain contin-

uation of the functional integral representation for the correlation function

determined in euclidean space

< ϕ(x1)...ϕ(xN) >=
1

Z

∫
[Dϕ]ϕ(x1)...ϕ(xN) exp (−A[ϕ]) (2)

where the euclidean KG theory action A[ϕ])

A[ϕ] =

∫
d4x(

1

2
(∂aϕ)

2 +
m2

2
ϕ2)

(3)

is obtained from KG action in Minkowski space-time by the substitution

t = −ıx4 and

Z =

∫
[Dϕ] exp (−A[ϕ])

(4)

Wick’s theorem allows to calculate the correlation functions

above in QKG theory using the formal properties of the func-

tional integral.

1.1. THE THEOREM.

1. The correlation function of odd number of KG fields vanish:

< ϕ(x1)...ϕ(x2N+1) >= 0 (5)

The statement follows from the fact that action A is even under the change

ϕ → −ϕ but the integrand is odd.

2



2. 2-point correlation function is

< ϕ(x1)ϕ(x2) >= D(x1 − x2), D(x) =

∫
d4p

(2π)4
exp (ıpx)

p2 +m2
(6)

(euclidean space propagator).

3. 2N-point correlation function is a sum of (2N−1)!! ≡ 135...(2N−
1) terms, such that each term corresponds to one of (2N−1)!! pair-

ings between the fields ϕ(x1)...ϕ(x2N) and the paired fields produce

a factor

D(x1 − x2)

(7)

This pairing rule can be expressed as a reccurent relation

< ϕ(x1)...ϕ(x2N) >=
2N∑
j=1

D(x1 − xj) < ϕ(x2)...ϕ̌(xj)...ϕ(x2N) > (8)

where the field ϕ(xj) is missing. Thus, to prove the theorem it sufficies to

derive this reccurrent relation.

1.2. PROOF OF THE THEOREM BY SCHWINGER-DYSON EQUATION.

Consider the change of variables

ϕ(x) → ϕ̃(x) = ϕ(x) + ϵ(x) (9)

in the above path integral defining 2N − 1 correlation function:

1

Z

∫
[Dϕ̃]ϕ̃(x1)...ϕ̃(x2N−1) exp (−A[ϕ̃])

(10)

where ϵ(x) is an arbitrary infinitesimal function going to zero as x → ∞.

Then

A[ϕ+ ϵ] = A[ϕ] +

∫
d4xϵ(x)(m2 − ∂2

a)ϕ(x) + ...

(11)
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The value of the path integral does not change under the change of vari-

ables, moreover, the mesure [Dϕ] is invariant under the change (9) and

hence

0 =
2N−1∑
j=1

ϵ(xj)

∫
[Dϕ]ϕ(x1)...ϕ̌(xj)...ϕ(x2N−1) exp (−A[ϕ])−∫

d4xϵ(x)(m2 − ∂2
a)

∫
[Dϕ]ϕ(x)ϕ(x1)...ϕ(x2N−1) exp (−A[ϕ]) + ...

(12)

Because of ϵ(x) is an arbitrary this equation is equivalent to

(m2 − (
∂

∂xa
)2) < ϕ(x)ϕ(x1)...ϕ(x2N−1) >=

2N−1∑
j=1

δ4(x− xj) < ϕ(x1)...ϕ̌(xj)...ϕ(x2N−1) > (13)

This equation, known as Schwinger-Dyson equation is a quantum

version of the classical equation of motion in KG theory. Indeed,

when x ̸= xj the field ϕ(x) obeys KG equation of motion.

The solution of this equation is expressed by the function D which is

determined by

(m2 − ∂2
a)D(x− y) = δ4(x− y)

(14)

and is given by (6). We have thus proved the recurrent relation (8).

1.3. DIAGRAMS.

The Wick’s theorem rule can be represented by diagrams.

The function D(x− y) is represented by a line connecting x and y

D(x− y) = x y
(15)
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Then applying the recurrent formula we obtain a sum of terms with all

possible pairings between the fields which can be represented as a set of

lines.

Let us consider for example the result of 4-point function calculation

< ϕ(x1)...ϕ(x4) >=

x1

x2

x4

x3

+

x1

x2 x3

x4

+

x1

x2 x3

x4

(16)

2. Correlation functions Path Integral representation

and Schwinger-Dyson equation for ϕ4 field theory model.

2.1 THE EUCLIDEAN ACTION AND CORRELATION FUNCTIONS

PATH INTEGRAL REPRESENTATION.

The euclidean action is given by

A[ϕ] =

∫
d4x(

1

2
(∂aϕ)

2 +
m2

2
ϕ2 +

λ

4!
ϕ4) (17)

It is not a free field theory due to the self-interaction term λ
4!ϕ

4 which is

characterized by the coupling constant λ.

We consider first the theory in euclidean space, where we are interested

in the correlation functions. As we have discussed in the previous lectures

the correlation functions are given by the functional integral:

< ϕ(x1)...ϕ(xN) >=
1

Z

∫
[Dϕ]ϕ(x1)...ϕ(xN) exp (−A[ϕ])

(18)

This functional integral representation is used to get the expectation val-

ues of (real) time-ordered Heisenberg operators in Minkowski space-time
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(Green’s functions) by the continuation from the complex values x4i to the

limiting values x4i = ıti.

The action is not quadratic in ϕ so the functional integral can

not be evaluated in an explicit form.

2.2 SCHWINGER-DYSON EQUATION.

Similar to the KG theory, one can deduce certain equations for the

correlation fuctions using the invariance of [Dϕ] under the shift

ϕ(x) → ϕ(x) + ϵ(x)

(19)

with arbitrary function ϵ(x). This is an QFT analog of minimal action

principal in CFT.

Consider the change of variables

ϕ(x) → ϕ̃(x) = ϕ(x) + ϵ(x) (20)

in the above path integral defining N -points correlation function:

1

Z

∫
[Dϕ̃]ϕ̃(x1)...ϕ̃(xN) exp (−A[ϕ̃])

(21)

where ϵ(x) is an arbitrary infinitesimal function going to zero as x → ∞.

Then

A[ϕ+ ϵ] = A[ϕ] +

∫
d4xϵ(x)(m2ϕ− ∂2

aϕ+
λ

3!
ϕ3)(x) + ...

(22)

The value of the path integral does not change under the change of variable
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and the mesure [Dϕ] is invariant under the change (20), hence

0 =
N∑
j=1

ϵ(xj)

∫
[Dϕ]ϕ(x1)...ϕ̌(xj)...ϕ(xN) exp (−A[ϕ])−∫

[Dϕ]

∫
d4xϵ(x)(m2ϕ(x)− ∂2

aϕ(x) +
λ

3!
ϕ3(x))ϕ(x1)...ϕ(xN) exp (−A[ϕ])

(23)

Because of ϵ(x) is an arbitrary this equation is equivalent to

< (m2ϕ(x)− (
∂

∂xa
)2ϕ(x) +

λ

3!
ϕ3(x))ϕ(x1)...ϕ(xN) >=

N∑
j=1

δ4(x− xj) < ϕ(x1)...ϕ̌(xj)...ϕ(xN) > (24)

This equation (Schwinger-Dyson equation) is a quantum version of the clas-

sical equation of motion in ϕ4 theory. Indeed, the Euler-Lagrange equation

in the classical ϕ4 theory is

m2ϕ(x)− (
∂

∂xa
)2ϕ(x) +

λ

3!
ϕ3(x) = 0

(25)

The Schwinger-Dyson equation means that field insertion ϕ(x) in any

correlation function satisfies the same equation in the week sense.

In other words, it is satisfied everywhere except the points x1, ...xN .

Unlike the KG theory, SD equation for interacting ϕ4 theory is not a

closed equation for correlator < ϕ(x)... > and can not be solved for

the correlator because it involves the correlation function

< ϕ3(x)... >

(26)

which has no simple expression in terms of < ϕ(x)... >.
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3. Perturbation theory and Feynman Diagrams.

3.1. PERTURBATION THEORY.

The perturbation theory is the practical way to calculate the correlation

functions in an interacting theory. The idea is to write

A = A0 + AI

(27)

such that functional integral with A0 alone can be evaluated explicitely

and expand in AI :

exp (−A0 − AI) = exp (−A0)(1− AI +
1

2
A2

I − ...)

(28)

In our case

A0 = AKG , AI =
λ

4!

∫
d4xϕ4(x)

(29)

Thus, the perturbation expansion is an expansion in the coupling

constant λ.

3.2. 2-POINT CORRELATION FUNCTION AND WICK’S.

Let us apply the perturbation expansion to the 2-point correlation func-

tion

< ϕ(x1)ϕ(x2) >=
1

Z

∫
[Dϕ]ϕ(x1)ϕ(x2) exp (−A0) exp (−

λ

4!

∫
d4xϕ4(x)) =

1

Z

∫
[Dϕ]ϕ(x1)ϕ(x2) exp (−A0)(1−

λ

4!

∫
d4xϕ4(x) + ...)

(30)
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We see that zero-order term is the correaltion function for the KG theory

so that we have a series

< ϕ(x1)ϕ(x2) >=< ϕ(x1)ϕ(x2) >0 −
λ

4!

∫
d4x < ϕ(x1)ϕ(x2)ϕ

4(x) >0 +...

(31)

where < ... >0 means the correlation function of the KG theory and the

factor 1/Z is omitted for a moment. This is the general situation:

the perturbation theory represents the correlation function of

interacting theory as a power series whose coefficients are certain

integrals of correlation functions of the unperturbed theory.

The correlation functions of unperturbed theory are calculated by the

Wick’s rule. For example, in the first order the contribution is given by

the integral of 6-point correlation function of KG theory

< ϕ(x1)ϕ(x2)ϕ
4(x) >0=< ϕ(x1)ϕ(x2)ϕ(x)ϕ(x)ϕ(x)ϕ(x)ϕ(x)ϕ(x) >0

(32)

According to the Wick’s rule this correaltion function is given by a sum of

products of propagators corresponding to all possible pairings.

3.3. TYPES OF PAIRINGS AND DIAGRAMS.

There are two different pairings here:

1. We can contract ϕ(x1)ϕ(x2) and then pair the fields ϕ(x)ϕ(x)ϕ(x)ϕ(x)

to each other by 3 different ways:

< ϕ(x1)ϕ(x2)ϕ(x)ϕ(x)ϕ(x)ϕ(x) > + < ϕ(x1)ϕ(x2)ϕ(x)ϕ(x)ϕ(x)ϕ(x) > +...

(33)

As a result we obtain

3D(x1 − x2)D(x− x)D(x− x)

(34)
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2. One can contract ϕ(x1) with one of ϕ(x), contract ϕ(x2) with another

ϕ(x) and then contract to each other the remaining ϕ(x):

< ϕ(x1)ϕ(x2)ϕ(x)ϕ(x)ϕ(x)ϕ(x) >

(35)

We obtain

12D(x1 − x)D(x2 − x)D(x− x)

(36)

The resulting contribution is

− λ

4!
[3D(x1 − x2)

∫
d4xD(x− x)2 + 12

∫
d4xD(x1 − x)D(x2 − x)D(x− x)]

(37)

These terms can be represented by the following diagrams: 3 diagrams of

type

x1 x2 x

(38)

plus 12 diagrams of the type

x1
x x2 (39)

where

= D(x− x)

(40)

The main elements in these diagrams are:
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1. The lines (propagators)

x1 x2 = D(x1 − x2) (41)

showing how the paticle propagates, and

2. The interaction vertices:

x
= −λ

∫
d4x, (42)

the points where 4 propagators meet and the point x associated with the

vertex is integrated out.

Though the last 12 diagrams describe the process of self-interaction

during the particle is propagating from the point x1 to the point x2 the

first 3 diagrams contain the factor describing the process of creation and

annihilation of particles from vacuum in the point x which is not affecting

the propagation of a particle from x1 to x2. This is an example of so

called vacuum diagram. Moreover the diagram (38) is an example of

disconnected diagram describing two processes that do not affect each

other.

3.4. SECOND ORDER DIAGRAMS AND SYMMETRY FACTORS.

Second order in λ contribution is given by

1

2!
(− λ

4!
)2 < ϕ(x1)ϕ(x2)

∫
d4xϕ(x)ϕ(x)ϕ(x)ϕ(x)

∫
d4yϕ(y)ϕ(y)ϕ(y)ϕ(y) >

(43)

where again Z−1 is ignored. In orter to calculate this one has to consider all

possible ways of contracting all the fields operators inside this correlation

function.

Let us consider an example of the contribution which is given by all

possible contractions of the fields ϕ(x1) and ϕ(x2) with the fields from the
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first integration, contractions of the remaining couple of fields from the

first integration with the fields from the second integration as well as the

contraction of the remaining pair of fields from the second integration with

themselves:

1

2!
(− λ

4!
)2
∫

d4xd4y < ϕ(x1)ϕ(x2)ϕ(x)ϕ(x)ϕ(x)ϕ(x)ϕ(y)ϕ(y)ϕ(y)ϕ(y) >

(44)

The total number of contractions of this type is equal

(2× 4) · 3 · 4 · 3 · 1 = 288 = (12)2 · 2

(45)

Indeed, we have (4 · 3)(4 · 3) ways to contract a pair of fields ϕ(x) with a

pair of fields ϕ(y). For each of these variants there are two ways of pairing

the fields ϕ(x1)ϕ(x2) with the rest pair of the fields ϕ(x) and the only

contraction for the pair of fields ϕ(y).

The diagram associated with this contractions is

x1
x x2

y

(46)

By our rules, each propagator is D, and each vertex is −λ
∫
d4x, hence

the contribution is

(−λ)2
∫

d4xD(x1 − x)D(x2 − x)

∫
d4yD(x− y)D(x− y)D(y − y)

(47)

This contribution comes with the factor

2(12)2

2!(4!)2
=

1

4

(48)
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Thus the nominator and denominator factors nearely cancell each other.

The n-th order diagrams comes with the factor

(−λ)n

n!(4!)n

(49)

But now the actual contribution involves integrations like∫
d4y1ϕ

4(y1)...

∫
d4ynϕ

4(yn)

(50)

Therefore, any contruction gives a combinatoric factor n! due to the pos-

sibility to permute these integrations. Next, each integration∫
d4yϕ(y)ϕ(y)ϕ(y)ϕ(y)

(51)

is typically contracted with 4 distinct external fields ϕ(x):

(ϕ(y)ϕ(y)ϕ(y)ϕ(y))ϕ1ϕ2ϕ3ϕ4

(52)

It corresponds to the following diagram fragment

y

1 2

34

(53)

The possibility to permute the fields ϕ(y) typically yields the factor 4! for

such vertex. That is why we associate the vertex the factor (−λ) instead

of (− λ
4!).
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The above calculation of multiplicity of each contraction may over-

estimate the actual multiplicity of diagram. For example, if two ϕ in

one vertex are contracted with two ϕ in another one, as in the diagram

fragment

1 3

42

(54)

ϕ1ϕ2(ϕϕϕϕ)(ϕϕϕϕ)ϕ3ϕ4

(55)

we obtain the factor

(4× 3)2 · 2 =
(4!)2

2
(56)

not (4!)2. The additional factor 1
2 here is called a symmetry factor, as it

reflects the symmetry of the above fiagram fragment w.r.t. the permutation

of two propagators. In general, each diagram carries the symmetry factor

1

S
, where S is the order of diagrams symmetry group

(57)

The factor 1/4 we observed in the diagram (46) is just this symmetry

factor, as we can permute two propagators from the point x to y and

permute also two ends in the propagator from y to y. Also we saw that

the first order diagrams (38) and (39) come with the factors 1/8 and 1/2.
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In the symmetry factor 1/8 the first and second 1/2 appear because the

contractions

ϕ(x)ϕ(x)

(58)

are symmetric w.r.t. permutations of the ends of contraction. The third

1/2 comes from the permutations of the two contractions:

ϕ(x)ϕ(x) ↔ ϕ(x)ϕ(x)

(59)

3.5. FEYNMAN RULES.

Now we can formulate the rules of diagramatics, or Feynman rules,

to find the actual contribution of a diagram.

To find λn contribution to

< ϕ(x1)...ϕ(xN) >

(60)

1. Draw all diagrams with n vertices and N external points x1,...,xN .

2. For each diagram associate:

A. the propagator line

x1 x2 = D(x1 − x2) (61)

for each propagator.

B. the vertex diagram

x
= −λ

∫
d4x (62)
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for each interaction vertex.

C. Multiply the diagram by the symmetry factor 1/S.

3. Sum over the values of all diagrams.

3.6. FEYNMAN RULES IN MINKOWSKI SPACE-TIME.

The Feynman rules above have been obtained in euclidean space. As

we know, one can continue the functional integral definition of correlation

functions to the complex values (xi)
4 = τi and specialize it to x4i = ıti. In

this situation, we obtain functional representation for the Green’s functions

or the time-ordered expectation values in Minkowski space-time. Thus, the

perturbation theory we have applied for the correlation functions

calculation of ϕ4 theory in euclidean space after the continuation

gives the perturbation theory in Minkowski space-time. It leads

to the Feynman rules for the calculation of Green’s functions.

To find these rules we write first the action of ϕ4-theory in Minkowski

space:

S[ϕ] =

∫
d4x(

1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − λ

4!
ϕ4) (63)

One can again expand the action into the sum of KG action and interaction

term

S = S0 + SI , S0 =

∫
d4x(

1

2
∂µϕ∂

µϕ− m2

2
ϕ2) , SI = − λ

4!

∫
d4xϕ4(x)

(64)

The continuation into Minkowski space gives the expansion:

exp (ıS0 + ıSI) = exp (ıS0)(1 + ıSI +
ı2

2!
S2
I ...)

(65)
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as well as the expansion for the 2-points Green’s function

< T (ϕ(x1)ϕ(x2)) >=
1

Z

∫
[Dϕ]ϕ(x1)ϕ(x2) exp (ıS0) exp (−ı

λ

4!

∫
d4xϕ4(x)) =

1

Z
(

∫
[Dϕ]ϕ(x1)ϕ(x2) exp (ıS0)− ı

λ

4!

∫
[Dϕ]ϕ(x1)ϕ(x2)

∫
d4xϕ4(x) exp (ıS0) + ...)

(66)

It leads to the following Feynman rules in Minkowski space:

A. For each propagator

x1 x2 = DF (x1 − x2) (67)

B. For each vertex

x
= (−ıλ)

∫
d4x (68)

C. Multiply the diagram by the symmetry factor 1/S.

3.7. FEYNMAN RULES IN MOMENTA REPRESENTATION.

It is convenient also to represent the Feynman rules in momentum space

taking the Fourier transformation for each Feynman propagator DF

DF (x− y) =

∫
d4p

(2π)4
ı

p2 −m2 + ıϵ
exp (−ıp(x− y))

(69)

Thus, in momenta space this propagator can be represented by a line with

an arrow and momentum p indicated:

p
=

ı

p2 −m2 + ıϵ
(70)
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Then if 4 lines meet at interaction vertex at x the integration over x gives∫
d4x exp (−ıp1x) exp (−ıp2x) exp (−ıp3x) exp (−ıp4x) =

(2π)4δ4(p1 + ...+ p4)

(71)

where all momenta pi inflow to the point x. It means that total momentum

is conserved at the point.

It gives the following Feynman rules in momenta representation:

A. For each propagator

p
=

ı

p2 −m2 + ıϵ
(72)

B. For each vertex

= (−ıλ) (73)

3.8. GENERALIZATION OF ϕ4 THEORY.

The strightforward generalization of scalar ϕ4 theory is to consider the

following interaction functional

AI =

∫
d4x(λ1(x)ϕ(x) +

λ2(x)

2!
ϕ2(x) +

λ3(x)

3!
ϕ3(x) +

λ4(x)

4!
ϕ4(x) + ...)

(74)

Here the coupling constants λi are taken to be arbitrary (fixed) functions

of x. interaction includes the linear and quadratic terms in ϕ, although

they can be attributed to the free action A0. The generalization of the

above Feynman rules amounts to including new vertices

x = −
∫

d4xλ1(x)

(75)
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x = −
∫

d4xλ2(x)

(76)

x

= −
∫

d4xλ3(x)

(77)

x

= −
∫

d4xλ4(x)

(78)

x

= −
∫

d4xλ5(x)

(79)

... ... ... ...

Allowing coupling constants to be a functions is often just a usefull

technical trick and in most of the practical applications one deals with the

homogeneous interaction.
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