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1. Lorentz invariant wave equations.

1.1 LORENTZ INVARIANCE IN KG THEORY.

An arbitrary Lorentz transformation in Minkowski space-time with met-
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ric tensor gµλ can be represented as follows

xµ → x̃µ = Λµ
νx

ν, where Λµ
νΛ

λ
ρg

νρ = gµλ. (1)

It means that the point x with coordinates xµ maps to the point x̃ with

coordinates Λµ
νx

ν.

By the definition, the scalar fields ϕ(x) transforms by the rule

ϕ(x) → ϕ̃(x) = ϕ(Λx). (2)

Suppose the scalar field ϕ(x) obeys KG equation. Let us check that the

transformed field also obeys KG equation:

∂

∂xµ
ϕ̃(x) =

∂

∂xµ
ϕ(Λx) =

∂yν

∂xµ
∂

∂yν
ϕ(y) = (Λ)νµ

∂

∂yν
ϕ(y), where y = Λx

(3)

Then

gµρ∂µ∂ρϕ̃(x) = gµρ(Λ)νµ
∂

∂yν
(Λ)λρ

∂

∂yλ
ϕ(y) = gνλ

∂

∂yν
∂

∂yλ
ϕ(y).

(4)

Therefore

(gµρ∂µ∂ρϕ̃(x) +m2ϕ̃(x)) = gνλ
∂

∂yν
∂

∂yλ
ϕ(y) +m2ϕ(y) = 0.

(5)

Thus, any solution of KG equation still satisfy this equation after the

Lorentz transformation. It means that the KG equations of motion

are Lorentz invariant.

One can also check that the Lagrangian density and hence, the action

of KG theory is Lorentz invariant.

1.2 LORENTZ INVARIANCE OF EM FIELD.
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The EM field is described by the vector potential Aµ(x). By the defini-

tion, the vector potential transforms under the Lorentz transformation (1)

by the rule

Aµ(x) → Ãµ(x) = (Λ)νµAν(Λx). (6)

The vector potential Aµ(x) transforms as a covariant rank-1 ten-

sor.

Let us calculate the derivative of the transformed field

∂

∂xν
Ãµ(x) = (Λ)ρν

∂

∂yρ
(Λ)λµAλ(y) = (Λ)ρν(Λ)

λ
µ

∂

∂yρ
Aλ(y).

(7)

Then, for the electro-magnetic field components we obtain

F̃νµ(x) = ∂νÃµ(x)− ∂µÃν(x) =

(Λ)ρν(Λ)
λ
µ

∂

∂yρ
Aλ(y)− (Λ)ρµ(Λ)

λ
ν

∂

∂yρ
Aλ(y) =

(Λ)ρν(Λ)
λ
µFρλ(Λx).

(8)

Thus, the EM field stress-tensor Fµν transforms as a covariant rank-2

tensor.

Now it is easy to check the Lorentz invariance of Maxwell equations

∂µF̃µν(x) = gµρ∂ρF̃µν(x) =

gµρ(Λ)τρ
∂

∂yτ
(Λ)ϵµ(Λ)

λ
νFϵλ(y) =

gϵτ(Λ)λν
∂

∂yτ
Fϵλ(y) = (Λ)λν∂

ϵFϵλ(y) = 0. (9)

1.3. TENSOR REPRESENTATIONS OF LORENTZ GROUP.

3



One can write out the Lorentz transformation rule for the general p-

covariant and q-contravariant tensor field:

Aν1...νq
µ1...µp

(x) → Ãν1...νq
µ1...µp

(x) = (Λ)σ1
µ1
...(Λ)σp

µp
(Λ−1)ν1τ1 ...(Λ

−1)νqτqA
τ1...τq
σ1...σp

(Λx). (10)

In general one can imagine a tensor field ϕa with multi index a = 1, ..., n

which transforms under the Lorentz transformation (1) by the rule

ϕ̃a(x) =M b
a(Λ)ϕb(Λx). (11)

whereM b
a(Λ) is a n×n matrix depending on Λ. The matrixM must satisfy

the following equations: for a pair of Lorentz transformations Λ1 and Λ2

Ma
b (Λ1)M

b
c (Λ2) =Ma

c (Λ1Λ2), and M
a
b (1) = δab . (12)

in such a case we say that Lorentz group representation is given

on the tensor fields ϕa(x).

1.4. LINEAR REPRESENTATION OF A GROUP.

It makes sense to consider a group G and a vector space V . If for an

arbitrary element g ∈ G there is a linear transformation M(g) of V such

that for a pair of elements g1,2 ∈ G and an arbitrary vector v ∈ V

M(g1)M(g2)v =M(g1g2)v, and M(1)v = v, (13)

where 1 ∈ G is a unity of the group, one says that on V is given linear

representation of G.

An example of representation is a group of orthogonal rotations in R3.

1.5. LIE ALGEBRA OF A LIE GROUP AND ITS REPRESENTATIONS.

Definition.
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A differential manifold G is called a group Lie (continuous group) if it

is a differentil manifold and the group structure mappings

s : G→ G , s(g) = g−1

m : G×G→ G , m(g, h) = gh

(14)

are differential mappings.

If the group G is a Lie group (continuous group) and a representation

of this group in vector space V is given, one can consider a set of trans-

formations of V by the elements from G which are close to the unit of the

group:

g ≈ 1 + ϵiJ
i... (15)

The set of matrices J i constitute a basis of some vector space g (because

G is a manifold). Moreover, because of G is a Lie group, these matrices

satisfy some important property: the commutator of basic matrices J i, J j

is a linear combination of the basic matrices Jk

[J i, J j] = f ijk J
k, f ijk = −f jik .

(16)

It allows to define so called Lie algebra structure on the vector space

g introducing a bilinear skew-symmetric operation (commutator) by the

rule: for a pair of elements ϵiJ
i ∈ g, ηjJ

j ∈ g the commutator is given by

[ϵiJ
i, ηjJ

j] = ϵiηjf
ij
k J

k ∈ g. (17)

Definition of a Lie algebra.

The vector space g is endowed with the bilinear skew- symmetric operation
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called the commutator:

[X, Y ] = −[Y,X] ∈ g

(18)

is called a Lie algebra if for any triple of vectors X, Y, Z ∈ g the Jacobi

identity is true

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]].

(19)

In this situation, the basic vectors J i of g are called the generators of

the Lie algebra, the coefficients f ijk are called the structure constants

of Lie algebra.

Example:

For the group of orthogonal rotations in R3 the corresponding Lie alge-

bra is determined by

[J i, J j] = ϵijkJk, i, j, k = 1, 2, 3

(20)

Having a representation of a Lie group on vector space V one

can obtain a representation of its Lie algebra on V considering a

transformations of V by the elements of G from the vicinity of

the group unit.

1.6. LIE ALGEBRA OF THE LORENTZ GROUP.

The Lorentz group can be determined as a set of 4× 4 real matrices Λ

leaving the Lorentz metric g invariant:

ΛgΛT = g ↔ Λµ
λΛ

ν
σgµν = gλσ. (21)
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As a vector space, the Lie algebra of the Lorentz group (Lorentz algebra)

is spanned over the generators Jµν = −Jνµ, µ, ν = 0, ..., 3, which satisfy

the following commutators

[Jµν, Jρσ] = ı(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ). (22)

2. Spinor representations and Clifford algebras.

2.1.CLIFFORD ALGEBRAS.

We have seen that various tensor spaces give the examples of the Lorentz

group representations. But this set does not exaust all possible linear

representations of the Lorentz group. There are so-called spinor

representations. The construction of spinor representations is closely

related to the Clifford algebras.

Definition.

A Clifford algebra Cl(1, 3) is an associative algebra (that is the vec-

tor space endowed with an assotiative multiplican low which respects the

vector space structure) with unit over the complex numbers, which is gen-

erated by the elements bµ, µ = 0, ..., 3 obeying the relations

{bµ, bν} = 2gµν. (23)

Notice that Clifford algebra can be determined for an arbitrary number of

generators. If the number of generators is d we get Cl(1, d − 1) algebra.

As a (complex) vector space it is spanned by the elements

1, bµ, bµbν, bµbνbλ, ..., b0...bd−1

(24)

and has a dimension 2d.

2.2. EXAMPLES OF CLIFFORD ALGEBRAS.
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In d = 2 dimensions one can take

b0 = γ0 =

(
0 1

1 0

)
, b1 = γ1 =

(
0 1

−1 0

)
(25)

Then one can check

γ20 = −γ21 = 1, {γ0, γ1} = 0 ⇔ {γµ, γν} = 2gµν.

(26)

When d = 4 the Clifford algebra generators are given by

bµ = γ(4)µ = γ(2)µ ⊗

(
−1 0

0 1

)
=

(
−γ(2)µ 0

0 γ
(2)
µ

)
µ = 0, 1

b2 = γ
(4)
2 = 1⊗

(
0 1

−1 0

)
b3 = γ

(4)
3 = 1⊗

(
0 ı

ı 0

)
. (27)

For an arbitrary d the construction goes by iterations

γ(d)µ = γ(d−2)
µ ⊗

(
−1 0

0 1

)
, µ = 0, 1, ..., d− 3

γdd−2 = 1⊗

(
0 1

−1 0

)
, γdd−1 = 1⊗

(
0 ı

ı 0

)
. (28)

Notice that we have constructed thereby a Clifford algebra represen-

tations because the generators are realized as the matrices (linear trans-

formations in a complex vector space).

2.3. CONSTRUCTION OF A CLIFFORD ALGEBRA REPRESENTATION.

To construct a representation of Clifford algebra Cl(1, d− 1) one needs

to realize the generators bµ by a matrices γµ =M(bµ) acting in some (finite

dimensional) vector space (over C) V such that

{γµ, γν} = 2gµν1. (29)
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The constructions of Clifford algebras above were at the same time the

examples of Clifford algebras representations.

For any representation of the Clifford algebra (if d is even) tere is some

canonical construction of representation. Let us introduce the new basis

for generators of the algebra:

γ±0 =
1

2
(±γ0 + γ1),

γ±a =
1

2
(γ2a ± ıγ2a+1), a = 1, ..., k =

d− 2

2
.

(30)

Then

{γ+a , γ−b } = δab , {γ±a , γ±b } = 0

(31)

It is clearly that one can find a vector v0 ∈ V whith the properties

γ−a v0 = 0. (32)

Then all the vectors from V can be generated from v0:

γ+a v0, γ
+
a γ

+
b v0, ... (33)

Proposition.

The vector v0 exits.

Indeed, let us take an arbitrary vector v ∈ V such that γ−0 v ̸= 0. Then

consider the vector

w = γ−0 v ⇒ γ−0 w = 0.

(34)

If γ−1 w ̸= 0 consider the vector

u = γ−1 w ⇒ γ−1 u = 0 , γ−0 u = 0.

(35)
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Going by this way we construct at the end the vector v0 satisfying (32).

One can describe the basic vectors of V by the tuples s = (s0, ..., sk),

where sa = ±1
2 :

vs = (γ+k )
sk+

1
2 ...(γ+0 )

s0+
1
2v0, v0 = v− 1

2 ,...,−
1
2

(36)

and find explicitly the matrix elements of generators:

γµvs =
∑
s′

(γµ)s,s′vs′

(37)

Thus, we have constructed the representation of Cl(1, d−1) in dimV =

2k+1 = 2
d
2 dimensional (complex) vector space V . The space V is called

the space of Dirac’s pinors.

2.4. CLIFFORD ALGEBRA AUTOMORPHYSMS GROUP.

A remarkable property of Clifford algebra: automorphisms group of

Clifford algebra Cl(1, d− 1) is the Lorentz group O(1, d− 1):

bµ → Λν
µbν

{bµ, bρ} → {Λν
µbν,Λ

σ
ρbσ} = Λν

µΛ
σ
ρ{bν, bσ} = 2Λν

µΛ
σ
ρgνσ = 2gµρ. (38)

(In other words, the automorphysm preserve the structure of vector space

and multiplication structure of the algebra.)

This property allows to construct Lorentz group representation

on the space of Dirac’s spinors.

Indeed, suppose we have a representation of Cl(1, d − 1) in a vector

space V . If we could find for each element Λ of the Lorentz group a linear

transformation of V which is given by a matrix S(Λ) such that

S−1(Λ)γµS(Λ) = Λν
µγν (39)
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we would get the representation of Lorent group in V .

It is easy to construct this representation for the subgroup SO(1, d −
1) ⊂ O(1, d − 1) which is given by the Lorentz group elements with unit

determinant.

2.5. DIRAC’S SPINORS AND GROUP Spin(1, d− 1).

Suppose we have already constructed the representation of the Lorentz

group in the space of spinors V . Let us consider then the representation

of the Lie algebra of the Lorentz group in V . For infinitesimal Lorentz

transformation we must get

S(1 + ωµνJµν + ...) = 1 + ıωµνΣµν + ...,

where Σµν ∈ Cl(1, d− 1)

(40)

and ωµν are the parameters of the Lorentz group transformation.

Hence, in order to get the relation (39) we must find the generators Σµν

such that

exp [− ı

2
ωµνΣµν]γρ exp [

ı

2
ωµνΣµν] ≈ γρ −

ı

2
ωµν[Σµν, γρ] =

(1 +
1

2
ωµνJµν)

λ
ργλ.

(41)

The matrix elements (Jµν)
λ
ρ can be calculated from the commutators

[Jµν,
∂

∂xρ
] = [xµ∂ν − xν∂µ, ∂ρ] = −gµρ∂ν + gνρ∂µ ≡ (Jµν)

λ
ρ∂λ

(42)

because γρ must transforms as a co-vector ∂
∂xρ . Hence we must obtain

− ı

2
ωµν[Σµν, γρ] = −ω

µν

2
(gµργν − gνργµ).

(43)
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The answer is

Σµν =
ı

4
[γµ, γν]. (44)

It is easy to check that Lorentz Lie algebra generators are realized indeed

by the Clifford algebra elements Σµν:

[Σµν,Σρσ] = ı(gνρΣµσ − gµρΣνσ − gνσΣµρ + gµσΣνρ).

(45)

Hence, the Lorentz algebra representation in V is given by Σµν. One can

obtain the representation of the group SO(1, d− 1) considering the expo-

nentials of the form

S = S(exp (
ı

2
ωµνJµν)) = exp (

ı

2
ωµνΣµν). (46)

The representation of the group SO(1, d − 1) we just have constructed in

V using the matrices (44), (46) is called spinor representation.

Notice that the transformation S(Λ) and −S(Λ) give the same Lorentz

transformation on the elemnts of Clifford algebra (as well as on the vectors

of Minkowski space) but correspond to different transformations in

the space of Dirac’s spinors V . It means in particular that the set of

elements (46) constitute the group which is not SO(1, d− 1) group but a

double cover of the group SO(1, d− 1):

ϕ : Spin(1, d− 1) → SO(1, d− 1) , ϕ(S) = ϕ(−S) ∈ SO(1, d− 1).

(47)

This group is called Spin(1, d− 1).

2.6. WEYL’S SPINORS.

The spinor representation of the Lorentz group we have constructed

in the space of Dirac’s spinors V is reducible. It means that under the
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Spin(1, d − 1) transformations the space decomposes into the direct sum

of invariant subspaces

V = V+ ⊕ V−.

(48)

The subspaces V± are ± eigenspaces of the operator Γd+1 = γ0γ1...γd−1:

Γd+1V± = ±V±. (49)

This statement follows from the simple calculations:

Γ2
d+1 = 1 ,Γd+1γµ = −γµΓd+1.

(50)

The vectors from V± are called Weyl’s spinors of positive and negative

chiralities correspondingly.

3. Dirac equation and Weyl equation.

3.1. DIRAC EQUATION.

Dirac equation is an equation of motion of Dirac field ψ(x):

(ıγµ∂µ −m)ψ(x) = 0 (51)

ψ(x) is a function taking values in the space of Dirac’s spinors V we consid-

ered above. Dirac equation is Lorentz invariant if we demand the following

rule for the Dirac field transformation

ψ(x) → ψ̃(x) = S(Λ)ψ(Λx). (52)
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Indeed

(ıγµ∂µ −m)ψ̃(x) = (ıγµ(Λ)νµ
∂

∂yν
−m)S(Λ)ψ(y) =

S(Λ)S−1(Λ)(ıγµ(Λ)νµ
∂

∂yν
−m)S(Λ)ψ(y) =

S(Λ)(ıS−1(Λ)γµS(Λ)(Λ)νµ
∂

∂yν
−m)ψ(y) =

S(Λ)(ı(Λ−1)µργ
ρ(Λ)νµ

∂

∂yν
−m)ψ(y) = 0,

(53)

where y = Λx.

To construct the Lagrangian leading to the Dirac equation one needs to

construct first a scalar from spinors. One can check that

ψ̄ ≡ ψ†γ0

(54)

thransforms by

ψ̄ → ψ̄S−1(Λ)

(55)

so that ψ̄(x)ψ(x) is a scalar field. Then one can construct the Dirac field

Lorentz invariant Lagrangian density as

L = ψ̄(x)(ıγµ∂µ −m)ψ(x).

(56)

3.2. WEYL EQUATION.

Because of the space of Dirac’s spinors is reducible representation of the

Lorentz group (V = V+ ⊕ V−) one can try to construct Lorentz invariant

equation for the Weyl’s spinors.
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Let us project the Dirac spinor field on its V+ component by the projec-

tion operator 1
2(1 + Γ5) and find Lorentz invariant equation it may obey.

Acting by the Dirac operator we find

(ıγµ∂µ −m)
1

2
(1 + Γ5)ψ(x) =

1

2
(1− Γ5)ıγ

µ∂µψ − 1

2
(1 + Γ5)mψ.

(57)

It means that Dirac equation is not consistent with the projection

on chiral subspace V+ due to the mass term.

We see that one would obtain the Lorentz invariant equation for Weyl

spinors if we put m = 0:

ıγµ∂µ
1

2
(1± Γ5)ψ(x) = 0.

(58)

Thus, Weyl’s spinors of positive chirality ψL(x) ∈ V+ obey the equation

ı(∂0 − ∇⃗σ⃗)ψL(x) = 0, (59)

while the Weyl spinors of negative chirality ψR(x) ∈ V− obey the equation

ı(∂0 + ∇⃗σ⃗)ψR(x) = 0 (60)

where we have used the following realization of gamma-matrices

γ0 =

(
0 1

1 0

)
γk =

(
0 σk

−σk 0

)
⇒

Γ5 =

(
1 0

0 −1

)
,

(61)

while the Pauli matrices are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 ı

−ı 0

)
, σ3 =

(
1 0

0 −1

)
.

(62)
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The neutrino are described by the Weyl’s spinors and obey the equations

(59), (60) (breaking the parity P ).

3.3. PLANE WAVE SOLUTIONS OF DIRAC EQUATION.

It can be seen that any solution to the Dirac equation is also a solution

to the KG equation, hence one can represent Dirac equation solution in

the form

ψ(x) = u(p) exp (−ıpx) , p2 = m2.

(63)

Let us consider first the solution with p0 =
√
p⃗2 +m2 (p0 > 0). Dirac

equation then reduces to the linear equation for the complex 4-vector u(p)

(γµpµ −m)u(p) = 0.

(64)

It can be analyzed in the rest frame of the particle: p = (m, 0):

(mγ0 −m)u(p) = m

(
−1 1

1 −1

)
u(p0) = 0 ⇒

u(p0) =
√
m

(
ξ

ξ

)
.

(65)

Under the space rotations the vector ξ transforms as a Weyl spinor and

hence determines the spin orientation of a particle. It will also be conve-

nient to normalize ξ as

ξ†ξ = 1.

(66)
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One can apply a boost to generate the solution in an arbitrary frame.

We aplly the boost along the third axis x3. The boost can be parametrized

by a rapidity η. The boost action on the momentum vector is given by(
E

p3

)
= exp (η

(
0 1

1 0

)
)

(
m

0

)
=

(
m cosh (η)

m sinh (η)

)
.

(67)

Now we apply the boost to the Dirac spinor u(m, 0). We have

Σ03 =
ı

4
[γ0, γ3] =

ı

2

(
σ3 0

0 −σ3

)
,

(68)

exp (
ı

2
ηΣ03)

√
m

(
ξ

ξ

)
=

√
m

2

(
(exp (η2)(1− σ3) + exp (−η

2)(1 + σ3))ξ

(exp (η2)(1 + σ3) + exp (−η
2)(1− σ3))ξ

)
=(

(
√
E + p3 1−σ3

2 +
√
E − p3 1+σ3

2 )ξ

(
√
E + p3 1+σ3

2 +
√
E − p3 1−σ3

2 )ξ

)
= u(p),

(69)

where E + p3 = m exp(η), E − p3 = m exp(−η) have been taken into

account. The last expression can be rewritten in the form

u(p) =

( √
pσξ

√
pσ̄ξ

)
(70)

where σ = (1, σ⃗), σ̄ = (1,−σ⃗).
The solutions for p0 = −

√
p⃗2 +m2 can be found similarly. But we use
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the ansatz with reversed p0

ψ(x) = v(p) exp (ıpx),

v(p) =

( √
pσχ

−
√
pσ̄χ

)
. (71)

Lorentz invariant norm of the solutions (70), (71) is given by

ū(p)u(p) = 2mξ†ξ = 2m , v̄(p)v(p) = −2mχ†χ = −2m. (72)

As a result we obtaine the folowing basis of Dirac equation solutions

ψ(x)s = u(p)s exp (−ıpx) , us(p) =

( √
pσξs

√
pσ̄ξs

)

ψ(x) = vs(p) exp (ıpx) , vs(p) =

( √
pσχs

−
√
pσ̄χs

)
, (73)

where ξs, s = 1, 2 is a pair of basic Weyl spinors, χs, s = 1, 2 is another pair

of basic Weyl spinors. The orthogonality conditions for the basic solutions

have the form

ūs(p)ur(p) = 2mδsr , v̄s(p)vr(p) = −2mδsr

ūs(p)vr(p) = v̄s(p)ur(p) = 0. (74)

3.4. SPIN SUMMS.

∑
s

(us(p⃗)ūs(p⃗)) =

( √
pσξs

√
pσ̄ξs

)
(ξ†s

√
pσ̄, ξ†s

√
pσ) =( √

pσ
√
pσ̄

√
pσ

√
pσ

√
pσ̄

√
pσ

√
pσ

√
pσ̄

)
=

(
m pσ

pσ̄ m

)
= γµpµ +m.

(75)
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Similarly one can obtain∑
s

(vs(p⃗)v̄s(p⃗)) = γµpµ −m.

(76)

Appendix.

The differential geometry definition of covariant rank-p tensor:

suppose we have a map of the point x = (x0, ...., xN) to the point x̃ =

(x̃0(x), ..., x̃N(x)). Then the image Ãµ1,...,µp
(x) of covariant rank-p tensor

Aµ1,...,µp
at the point x is given by

Ãµ1,...,µp
(x) =

∂x̃ν1

∂xµ1
...
∂x̃νp

∂xµp
Aν1,...νp(x̃(x)).

(77)

As an exmple let us consider the transformation of covariant rank-1

tensor under the Lorentz transformation, which is given by the map

x→ x̃ = Λx⇔ x̃ν = Λν
µx

µ.

(78)

We have from the definition above

Ãµ(x) =
∂x̃ν

∂xµ
Aν(Λx) = Λν

µAν(Λx).

(79)

Similarly, contravariant rank-p tensor transforms as

Ãµ1,...,µp(x) =
∂xµ1

∂x̃ν1
...
∂xµp

∂x̃νp
Aν1,...νp(x̃(x)).

(80)
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