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1. Path integral in QM and T-ordered expectation values.

1.0. Dc, DF , DE AS A FUNCTIONS IN COMPLEX TIME (reminder).

Function Dc.

First of all we considered the function

[ϕ̂(x), ϕ̂(y)] = D−(x− y)−D+(x− y)

(1)
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and found that there is a single analytic function of complex variable t:

Dc(x⃗, t) =

∫
p2=m2

dµ(p) exp (−ıωp⃗t+ ıp⃗x⃗), Imt < 0

Dc(x⃗, t) =

∫
p2=m2

dµ(p) exp (ıωp⃗t− ıp⃗x⃗), Imt > 0

D−(x⃗, t) = Dc(x⃗, t− ı0), Imt = 0

D+(x⃗, t) = Dc(x⃗, t+ ı0), Imt = 0 (2)

such that for x is timelike and real t, the last limiting values do not coincide,

so Dc(x⃗, t) has a branch cuts along the real t which extend from t = |x⃗|
to ∞ and from t = −|x⃗| to ∞. And these cuts are due to the causality

principle for KG theory.

Function DF .

This function which is known as Feynmam propagator is the first

example of time-ordered expectation value of Heisenberg’s oper-

ators:

DF (x− y) =< 0|T (ϕ̂(x⃗, tx)ϕ̂(y⃗, ty))|0 > . (3)

We found that Feynman propagator DF (x⃗, t) is the limiting value of the

function Dc(x⃗, t) when the time is going along the countour CF which

goes slightly above the real t-axis in the region Ret < −|x⃗|, cross the

segment −|x⃗| < t < |x⃗| and goes slightly below the real t-axis in the

region Ret > |x⃗|. This representation allowed us to write

DF (x) =

∫
p2=m2

dµ(p) exp (−ıωp⃗t+ ıp⃗x⃗), t > 0,

DF (x) =

∫
p2=m2

dµ(p) exp (ıωp⃗t− ıp⃗x⃗), t < 0,

⇔

DF (x) =

∫
C̃F

dω

2π

∫
d3p⃗

(2π)3
ı exp (−ıωt+ ıp⃗x⃗)

ω2 − p⃗2 −m2
⇔

DF (x) =

∫
d4p⃗

(2π)4
ı exp (−ıpµx

µ)

p2 −m2 + ı0
(4)
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where dµ(p⃗) = d3p
(2π)3

1
2ωp

. We saw from the last expression that DF (x) is a

Green’s function for the KG equation

(∂µ∂
µ +m2)DF (x) = ıδ(x). (5)

Function D(xE).

It has been determined also the euclidean, or imaginary-time expecta-

tion value (or correlation function) as the limiting value of the function

Dc(x⃗, t) for the time running along contour CE which is the imaginary axis

in comlex t-plane going from +∞ to −∞:

D(xE) ≡ D(x⃗, x4) = Dc(x⃗,−ıx4). (6)

We used Schwinger’s proper time representation:

D(xE) =

∫ ∞

0

dτ

∫
d4pE
(2π)4

exp (−τ(p2E +m2) + ıpExE) (7)

to express this function by the path integral in euclidean space:

D(xE) =

∫
path(i→f)

[DxE] exp (−A) =∫ ∞

0

ds exp (−m2s)

∫
d4P

(2π)4
exp (−sP 2) exp (ıPxE). (8)

And we got path integral representation for Feynman propagatorDF taking

the analytic continuation of D(xE) to the real time, in such a way that to

get

exp (
ı

ℏ
S[q(t)]) → exp (−A[q(τ)]).

(9)

1.1. PRELIMINARIES FROM STATISTICAL MECHANICS.

The connection between the vacuum average of the T -ordered product

of Heisenberg operators and the Euclidean expectation, which holds for the

cases DF (x) and D(xE), can be generalized.
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Let us consider some dynamical system with the canonical coordinates

in phase-space {Qi, Pi} and Hamiltonian function H(Qi, Pi). In thermal

equilibrium state with some temeperature T , the probability distribution

of microscopic states is given by Hibbs formula

ρ(Qi, Pi)
∏
i

dQidPi =
1

Z
exp (−βH(Qi, Pi))

1

N !

∏
i

dQidPi, (10)

where β = 1
kT , and

Z =

∫ ∏
i dQidPi

N !
exp (−βH(Qi, Pi)). (11)

We assume also that typical form of H is

H =
∑
i

1

2
P 2
i +W (Qi). (12)

Then one can integrate out the momenta Pi using Gaussian integral formula∫
dy exp(−by2) =

√
π

b
(13)

so that one can write

Z =
1

N !
(
2π

β
)
N
2 Zconf , (14)

where

Zconf =

∫ ∏
i

dQi exp (−βW (Qi)) (15)

is the configuration-space integral which contains most of interesting

physics.

1.2. STATISTICAL MECHANICS OF ELASTIC STRING IN POTENTIAL.

Let us consider a particular case of statistical system which is elastic

string whose configuration is given by a function q(τ), τ ∈ (0, T ) and which
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lies in a potential valley V (q). So the potential energy of the string is

W [q(τ)] =

∫ T

0

dτ(
1

2
(
dq

dτ
)2 + V (q)), (16)

where the first term accounts for the elastic energy of the string (whose

tension is equal 1).

Calculating configuration part of the partition function we have to in-

tegrate over the functions q(τ) with the boundary conditions q(0) = qi,

q(T ) = qf so that the configuration-space integral is given by

Zconf =

∫ qf

qi

[Dq(τ)] exp (−βW [q(τ)]). (17)

This expression is identical to the path integral for the imaginary-

time quantum mechanical transition amplitude

Zconf =< qf |U(T, 0)|qi >=

∫ qf

qi

[Dq(τ)] exp (−A[q(τ)]), qf = q(T ), qi = q(0)

(18)

provided we made also the identification

β =
1

ℏ
, W [q(τ)] = A[q(τ)]. (19)

Thus, we conclude that quantum mechanics with Hamiltonian op-

erator

Ĥ =
1

2
p2 + V (q)

(20)

is related in this way to the classical Statistical Mechanics of a

system with continously many degrees of freedom q(τ).

1.3. CORRELATION FUNCTIONS.
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Besides the partition function one may be interested in correlation

functions. In our string case this correlation function is given by the

integral

< q(τ1), ...q(τN) >=
1

Z

∫
[Dq(τ)]q(τ1), ...q(τN) exp (−A[q(τ)]) (21)

because [Dq(τ)] exp (−A[q(τ)]) is a statistical weight of the microstate q(τ).

1.4. PATH INTEGRAL REPRESENTATION OF τ -ORDERED EXPECTATION

VALUES OF HEISENBERG OPERATORS IN QM.

Now we consider the interpretation of this quantity from the

point of view of QM.

Without loss of generality we can take

−T

2
≤ τ1 ≤ τ2 ≤ ... ≤ τN ≤ T

2
.

(22)

One can perform this integral in 2 steps: at the first step we fix the

values of q(τ) at the points τ1,...τN to be

q(τ1) = q1, ..., q(τN) = qN

(23)

and integrate over the q(τ) with these constraints. At the second step we

integrate over the values q1,..., qN .

Step 1: Using the path integral representation for the transition apm-

litude in imaginary time

< qi+1|U(τi+1, τi)|qi >=

∫ qi+1

qi

[Dq(τ)] exp (−A[q(τ)]) (24)
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we can write

< q(τ1)...q(τN) >=

1

Z

∫ N∏
k=1

dqk < qf |U(
T

2
, τN)|qN > qN < qN |U(τN , τN−1)|qN−1 > qN−1...

...q1 < q1|U(τ1,−
T

2
)|qi > .

(25)

Here we have not yet integrated over the positions of qk, but only over the

intermediate configurations that led to the insertions (24).

Step 2: Recall that for τi ≥ τj we can write

U(τi, τj) = exp (−(τi − τj)Ĥ),

(26)

because of the spectrum of Ĥ is bounded from below.

Using

q̂|q >= q|q >

(27)

we see that∫ N∏
k=1

dqk < qf |U(
T

2
, τN)|qN > qN < qN |U(τN , τN−1)|qN−1 > ...

q1 < q1|U(τ1,−
T

2
)|qi >=

< qf | exp (−(
T

2
− τN)Ĥ)q̂ exp (−(τN − τN−1)Ĥ)q̂...

q̂ exp (−(τ1 +
T

2
)Ĥ)|qi >=

< qf | exp (−
T

2
Ĥ)q̂E(τN)q̂E(τN−1)...q̂E(τ1) exp (−

T

2
Ĥ)|qi >, (28)
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where

q̂E(τ) = exp (τĤ)q̂ exp (−τĤ)

(29)

is the imaginary-time Heisenberg operator. It is related to the real-

time Heisenberg operator q̂(t) by continuation

t = −ıτ.

(30)

1.5. T → ∞ LIMIT.

One can simplify our relation between N -point correlation function and

τ -ordered Heisenberg operators expectation value considering the limit

T → ∞, thus getting to the correlation function of the infinite string.

Notice that the states |qf,i > can be expanded in stationary states |n >

of Ĥ:

|qf,i >=
∑
n

|n >< n|qf,i >=
∑
n

Ψ∗
n(qf,i).

(31)

We then observe that in the limit T → ∞ only the ground state survives,

so that we obtain

< q(τ1)...q(τN) >=

< qf |0 >< 0|qi > exp (−E0T )

Z
< 0|q̂E(τN)q̂E(τN−1)...

q̂E(τ1)|0 > . (32)

Taking into account that (see (18))

Z =< qf | exp (−TĤ)|qi >

(33)
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we see that the first factor in (32) is equal 1 so that we find the relation

between the N-point correlation function and expectation value

of τ-ordered Heisenberg operators q̂E(τk).

It is important to note that by construction, the operators q̂E(τ) are

nessesserily placed in the order of τ increasing from the right to

the left. Thus, the expectation values of imaginary-time Heisen-

berg operators make sense only if they are τ-ordered, for other

wise the sums over the intermediate states are diverge.

1.6. IMAGINARY-TIME/REAL-TIME EXPECTATION VALUES RELATION.

Actually, the expectation value above makes sense even for com-

plex values of τk if

Re(τ1) ≤ Re(τ2) ≤ ... ≤ Re(τN) (34)

so that the correlation function is analytic (because the serieses are

converge).

By this reason one can relate naturally the imaginary-time ex-

pectation values to the real-time ones setting

τk = exp (ıα)tk, tk ∈ R, 0 ≤ α <
π

2
.

(35)

Therefore, taking

t1 ≤ t2 ≤ ... ≤ tN

(36)

we satisfy the inequalities (34). Then, sending αk → π
2 − 0 we obtain the

relation:

< q(τ1)...q(τN) >=< 0|T (q̂(t1)...q̂(tN))|0 >, where τk = (ı− 0)tk, tk ∈ R

(37)
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and q̂(t) is usual real-time Heisenberg operators. The relation between

Feynman propagator DF and the correlation function D(xE) previously

discussed is a particular example of (37).

Taking into account the expression (21) for the correlation function:

< q(τ1), ...q(τN) >=
1

Z

∫
[Dq(τ)]q(τ1), ...q(τN) exp (−A[q(τ)])

(38)

as well as the relation between imaginary-time action and real-time action

exp (
ı

ℏ
S[q(t)]) → exp (−A[q(τ)])

(39)

the relation (37) can be represented in the form

< 0|T (q̂(t1)...q̂(tN))|0 >=

lim
T→∞

∫
[Dq(t)]q(t1), ...q(tN) exp [

ı
ℏ
∫ T

−T L(q(t))dt]∫
[Dq(t)] exp [ ıℏ

∫ T

−T L(q(t))dt]
. (40)

2. Functional integral in KG theory.

We would like to generalize the formula (40) for the case of QFT. For

simplicity we consider KG theory, though the discussion to be presented is

true for any physically acceptable model of QFT.

2.1. DEFINITION OF FUNCTIONAL INTEGRAL BY AN EUCLIDEAN

LATTICE.

We start from the definition of the euclidean path integral (functional

integral) for the KG field.

First of all we replace the coordinate q by a field

q(τ) → ϕ(x⃗, τ) = ϕ(x⃗, x4) = ϕ(x).

(41)
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The euclidean action is obtained by the substitution t → −ıx4:

A =

∫
dx4dx⃗

1

2
((∂4ϕ)

2 + (∇ϕ)2 +m2ϕ2) =∫
d4x

1

2
((∂aϕ)

2 +m2ϕ2) =

∫
d4xL(ϕ(x), ∂ϕ(x)), (42)

where a = 1, ..., 4. We are interested in the path integral

Z =

∫
[Dϕ(x)] exp (−A[ϕ(x)]). (43)

To explain this expression we define it first as an integral over the finite

number of variables introducing instead of 4-dimensional euclidean space

4-dimensional (euclidean) lattice with spacing ∆:

xa = na∆, na ∈ Z. (44)

Then

ϕ(x) → ϕ(n), n = (n1, ..., n4) ∈ Z4,

∂aϕ(x) →
1

∆
(ϕ(n+ ea∆)− ϕ(n)),∫

d4x → ∆4
∑
n∈Z4

,

A =

∫
d4xL(ϕ(x), ∂ϕ(x)) → ∆4

∑
n∈Z4

L(n),∫
[Dϕ(x)] →

∏
n

dϕ(n),

(45)

so that we have an integral∫ ∏
n

dϕ(n) exp (−A[ϕ(n)]).

(46)
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The right hand side of (43) can be understood as a limit ∆ → 0 of the

lattice integral above

Z =

∫
[Dϕ(x)] exp (−A[ϕ(x)]) = lim

∆→0

∫ ∏
n

dϕ(n) exp (−A[ϕ(n)]). (47)

2.2. CORRELATION FUNCTIONS.

We are interested also in the correlations functions

< ϕ(xN)...ϕ(x1) >=
1

Z

∫
[Dϕ]ϕ(xN)...ϕ(x1) exp (−A[ϕ]). (48)

The points xi are in euclidean space and [Dϕ] exp (−A[ϕ]) can be con-

sidered as a statistical weight of microstate ϕ(x⃗, x4). Therefore, this

expression can also be interprated from the Statistical Mechanics point of

view.

We would like to continue this expression into the complex

values of (xi)4 and relate it to the real-time ordered expectation

values of Heisenberg operators

< 0|T (ϕ̂H(x⃗N , tN)...ϕ̂H(x⃗1, t1))|0 >, (49)

where (xi)4 = ıti.

2.3. PATH INTEGRAL REPRESENTATION OF τ -ORDERED EXPECTATION

VALUES OF HEISENBERG OPERATORS IN QFT.

Without loss of generality we can take

−T

2
≤ τ1 ≤ τ2 ≤ ... ≤ τN ≤ T

2
(50)

and perform the functional integral on the r.h.s of (48) by 2 steps. First

of all we fix the configurations of ϕ(x) at the imaginary time moments
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τ1,...,τN as the following

ϕ(x⃗,−T

2
) = ϕi(x⃗), ϕ(x⃗, τ1) = ϕ1(x⃗), ..., ϕ(x⃗, τN) = ϕN(x⃗), ϕ(x⃗,

T

2
) = ϕf(x⃗).

(51)

Then we integrate over the ϕ(x) with these constraints. At the second step

we integrate over the values ϕ1(x⃗),...,ϕN(x⃗).

Step 1: At the first step we use the path integral representation for the

transition amplitude in imaginary time

< ϕk+1|U(τk+1, τk)|ϕk >=

∫ ϕk+1

ϕk

[Dϕ(x⃗, τ)] exp (−A[ϕ])

where U(τk+1, τk) = exp (−(τk+1 − τk)Ĥ) (52)

and we integrate over the all configurations ϕ(x) such that ϕ(x⃗, τk) = ϕk(x⃗),

ϕ(x⃗, τk+1) = ϕk+1(x⃗).

This expression can be obtained similar to the QM derivation. The

main assumption is used to derive this formula is that the spec-

trum of the Hamiltonian is bounded from below so that r.h.s of

this expression is an analytic function of real values τk+1− τk when

τk+1 ≥ τk.

(53)

Therefore we can write

< ϕ(xN)...ϕ(x1) >=

1

Z

∫ N∏
k=1

[Dϕk] < ϕf |U(
T

2
, τN)|ϕN > ϕN(x⃗N) < ϕN |U(τN , τN−1)|ϕN−1 >

...ϕ2(x⃗2) < ϕ2|U(τ2, τ1)|ϕ1 > ϕ1(x⃗1) < ϕ1|U(τ1,−
T

2
)|ϕi > .

(54)
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Thus, we have integrated over the intermediate configurations ϕ(x⃗, τ)

such that for the moments of (imaginary) time τk the field configurations

are fixed by ϕk(x⃗). Moreover, the initial configuration ϕi(x⃗) at the moment

−T
2 and the finite configuration ϕf(x⃗) at the moment T

2 are also fixed.

Step 2: Now we replace the functions ϕk(x⃗) with the Schrödinger op-

erators which are defined by

ϕ̂S(x⃗)|ϕk >= ϕk(x⃗)|ϕk >

(55)

and use the relation ∫
[Dϕk]|ϕk >< ϕk| = 1

(56)

at the second step. We obtain thereby∫ N∏
k=1

[Dϕk] < ϕf |U(
T

2
, τN)|ϕN > ϕN(x⃗N) < ϕN |U(τN , τN−1)|ϕN−1 > ...

...ϕ1(x⃗1) < ϕ1|U(τ1,−
T

2
)|ϕi >=

< ϕf |U(
T

2
, τN)ϕ̂S(x⃗N)U(τN , τN−1)...U(τ2, τ1)ϕ̂S(x⃗1)U(τ1,−

T

2
)|ϕi >,

(57)

where the amplitudes < ϕk|U(τk, τk−1)|ϕk−1 > are given by the integrals

(52).

The Schrödinger operators can be replaced by imaginary-time Heisen-

berg operators according to the definition

exp (τĤ)ϕ̂S(x⃗) exp (−τĤ) = ϕ̂H(x⃗, τ)

(58)
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and hence

< ϕf |U(
T

2
, τN)ϕ̂S(x⃗N)U(τN , τN−1)...U(τ2, τ1)ϕ̂S(x⃗1)U(τ1,−

T

2
)|ϕi >=

< ϕf | exp (−
T

2
Ĥ)ϕ̂H(x⃗N , τN)...ϕ̂H(x⃗1, τ1) exp (

T

2
Ĥ)|ϕi > .

(59)

2.4. T → ∞ LIMIT.

Now we take the limit T → ∞. Similar to the QM case we obtain in

this limit

< ϕ(x⃗N , τN)...ϕ(x⃗1, τ1) >=

< ϕf |0 >< 0|ϕi > exp (−E0T )

Z
< 0|ϕ̂H(x⃗N , τN)...ϕ̂H(x⃗1, τ1)|0 > . (60)

But the first factor is equal 1 if we take into account that

Z =

∫ ϕf (x⃗)

ϕi(x⃗)

[Dϕ(x)] exp (−A[ϕ(x)]).

(61)

2.5. IMAGINARY-TIME/REAL-TIME EXPECTATION VALUES RELATION.

The expression (60) have been obtained in euclidean space. But it can

be defined for the complex values of x4i similarly to the QM case.

When continued to the complex values of x4i = τi and special-

ized to x4i = ıti, where ti are real, the correlation functions give the

time-ordered expectation values of Heisenberg operators. Thus,

the rule is the following:

< ϕ(x⃗N , τN)...ϕ(x⃗1, τ1) >=< 0|T (ϕ̂(x⃗N , tN)...ϕ̂(x⃗1, t1)|0 >, τk = (ı− 0)tk,

(62)
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where ϕ̂(x⃗, t) is the real-time Heisenberg field operator. Taking into

account (48):

< ϕ(xN)...ϕ(x1) >=
1

Z

∫
[Dϕ]ϕ(xN)...ϕ(x1) exp (−A[ϕ])

(63)

and euclidean action definition

exp (
ı

ℏ
S[ϕ(x⃗, t)]) → exp (−A[ϕ(x⃗, τ)])

(64)

we obtain functional integral representation for the expectation value of

real time-ordered Heisenberg operators

< 0|T (ϕ̂(x⃗N , tN)...ϕ̂(x⃗1, t1))|0 >=

lim
T→∞

∫
[Dϕ]ϕ(x⃗1, t1)...ϕ(x⃗N , tN) exp [

ı
ℏ
∫ T

−T dtd
3xL(ϕ, ∂ϕ)]∫

[Dϕ] exp [ ıℏ
∫ T

−T dtd
3xL(ϕ, ∂ϕ)]

. (65)
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