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1. Green’s functions in complex time and euclidean QFT.
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1.1. FEYNMAN PROPAGATOR, ANALYTIC PROPERTIES OF

GREEN’S FUNCTIONS IN COMPLEX TIME.

In the previous lecture we found that vacuum expectations of KG fields

can be represented as certain limits of a single analytic function Dc(x⃗, t)

of a complex time variable t. As an example we found that Feynman

propagator DF (x⃗, t) is the function Dc(x⃗, t) when the time is going along

the countour CF which goes above the real t-axis in the region Ret < −|x⃗|,
crosses the segment −|x⃗| < t < −|x⃗| and goes below the real t-axis in the

region Ret > |x⃗|.
One can define a new function which is called euclidean, or imaginary-

time expectation value. Another name for this quantity is Correlation

Function. Consider the function Dc(x⃗, t) for the time running along con-

tour CE which is the imaginary axis in comlex t plane going from +∞ to

−∞. The imaginary time gives euclidean interval

t = ıx4 ⇒ −dτ 2 → ds2 = dx24 + dx⃗2. (1)

Thus, instead of Lorentz group we get O(4) group of rotations in euclidean

space (x⃗, x4).

Let us introduce the notation

D(xE) = D(x⃗, x4) = Dc(x⃗,−ıx4) (2)

and call this function as euclidean correlation function.

It is clear that

(m2 − ∂2

∂x24
− (∇)2)D(xE) = δ(x4)δ(x⃗) ⇔

(m2 −∆E)D(xE) = δ4(xE) (3)

The solution of this equation is given by

D(xE) =

∫
d4pE
(2π)4

exp (ıpExE)

p2E +m2
(4)
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where pE = (p⃗, p4) and p2E = p⃗2+p24. (In this euclidean version of Feynman

propagator the poles are at ±ıωp⃗, so the contour over p4 can be closed from

above if x4 > 0 or it is closed from below if x4 < 0.)

The form (4) is similar to covariant representation for the Feynman

propagator. Indeed, if one introduces real variable ω as p4 = ıω, then this

integral takes the form

−ı

∫
C̃E

dω

2π

∫
d3pE
(2π)3

exp (−ωx4 + ıp⃗x⃗)

−ω2 + p⃗2 +m2
(5)

where the ω-integration is going along the imaginary p4-axis (contour C̃E)

from −∞ to +∞. Thus, it relates to the Fourier transform of DF by 90◦

rotation of C̃F .

Another form for this solution is given by introducing auxilliary inte-

gration:

D(xE) =

∫ ∞

0

dτ

∫
d4pE
(2π)4

exp (−τ(p2E +m2)) exp (ıpExE) (6)

This form is known as Schwinger’s proper time representation.

1.2. REAL TIME QFT/ IMAGINARY TIME QFT RELATION.

That was an example of relation between euclidean (or imagi-

nary time) correlation function, and real time (Minkowski) Green’s

function. In other words, the analytic function Dc(x⃗, t) is an analytic con-

tinuation of D(xE) for the complex values x4 = ıt. We have seen that all

interesting characteristics of our QKG in real time, such as DF and com-

mutator of fields, are expressed in terms of appropriate limiting values of

Dc.

1.3. QFT/STATISTICAL MECHANICS RELATION.

In a more general case the relation between the euclidean QFT (QFT in

imaginary time) and real-time QFT is the following: the time-ordered
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expectation value in Minkowski space are obtained by analytic

continuation from the euclidean space correlation functions.

The advantages of euclidean point of view:

� one can apply the path integral method to quantize FT and the path

integral (functional integral) is easier to define and to handle in imaginary

time formulation.

� in the euclidean formulation QFT shows deep connection to Statistical

Machanics.

2. Path integral in quantum and statistical mechanics.

2.1. TRANSITION AMPLITUDE IN QUANTUM MECHANICS.

In quantum mechnics we are interested in calculation of matrix ele-

ment of evolution operator between two states:

< f | exp (− ı

ℏ
Ĥt)|i >=

∑
n

< f |n >< n|i > exp (− ı

ℏ
Ent) (7)

where |n > and En are stationary states and associated energies. Due to

our main postulate that Ĥ is bounded from below and allowing t to be

complex we see that the above sum defines an analytic function in

the lower half-plane Imt < 0. Then the real-time matrix elements

are limiting values of this analytic function.

2.2. IMAGINARY TIME TRANSITION AMPLITUDE.

It make sense therefore to take t = −ıτ and evaluate imaginary-time

transition amplitude

< f | exp (−1

ℏ
Ĥτ)|i >, τ > 0 (8)

and then analytically continue the result to real-time value.

2.3. PATH INTEGRAL CALCULATION OF IMAGINARY TIME

4



TRANSITION AMPLITUDE.

Consider a quantum mechanical system described by the Hamiltonian

Ĥ(p̂, q̂). By the definition, the (imaginary-time) evolution operator Û(τ, τ0)

satisfies the equation

− ∂

∂τ
Û(τ, τ0) = ĤÛ(τ, τ0), Û(τ0, τ0) = 1. (9)

Notice that Û(τ, τ0) does not exists for τ < τ0 because the energy

spectrum is bounded from below but not from above.

It is easy to check that

Û(τ, τ1)Û(τ1, τ0) = Û(τ, τ0), τ ≥ τ1 ≥ τ0 (10)

Therefore

Û(τ, τ0) = Û(τn, τn−1)Û(τn−1, τn−2)...Û(τ1, τ0) (11)

where τk = τ0 + k∆, ∆ = τ−τ0
n and τn = τ .

Suppose Ĥ is local in the basis of states which diagonalize q̂

(this means that < qf |Ĥ|qi > have a support at qf = qi) the composition

property above allows to construct a path integral representation for

< qf |Û(τ, τ0)|qi >:

< qf |Û(τ, τ0)|qi >=

∫ n−1∏
k=1

dqk

n∏
k=1

< qk|U(τk, τk−1)|qk−1 >, (12)

where q0 = qi, qn = qf . Taking the large n, small ∆ limit the problem

reduces to

< q|Û(τ +∆, τ)|q′ >

(13)

calculation. Because of the locality of Ĥ only the matrix elements with

small |q − q′| will contribute in this limit.
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2.4. HEAT EQUATION AND ITS SOLUTION.

Let us consider the following local Hamiltonian

Ĥ =
p2

2
+ V (q). (14)

Then the equation (9) takes the form of heat equation

− ∂

∂τ
< q|Û(τ, τ0)|q′ >= (−1

2

∂2

∂q2
+ V (q)) < q|Û(τ, τ0)|q′ >,

where < q|Û(τ0, τ0)|q′ >= δ(q − q′). (15)

Indeed

∂

∂τ
< qf |Û(τ, τ0)|qi >=

lim∆τ→0
1

∆τ
[

∫
dq(τ) < qf |Û(τ +∆τ, τ)|q(τ) >< q(τ)|Û(τ, τ0)|qi > −

< qf |Û(τ, τ0)|qi >] =

lim∆τ→0
1

∆τ

∫
dq(τ)[< qf |(1−∆τĤ)|q(τ) >< q(τ)|Û(τ, τ0)|qi > −

< qf |Û(τ, τ0)|qi >] =

−lim∆τ→0

∫
dq(τ) < qf |(

p2

2
+ V (q))|q(τ) >< q(τ)|Û(τ, τ0)|qi >=

−
∫

dq(τ)(−1

2

∂2

∂q(τ)2
+ V (q(τ))) < qf |q(τ) >< q(τ)|Û(τ, τ0)|qi >=

(
1

2

∂2

∂q2f
− V (qf)) < qf |Û(τ, τ0)|qi > .

(16)

Let us find first V = 0 solution for (15):

< q|Û(τ0 +∆, τ0)|q′ >=
1√
2π∆

exp (−(q − q′)2

2∆
). (17)

For V ̸= 0 we can take the solution in the form

1√
2π∆

exp (−(q − q′)2

2∆
−∆σ(q, q′) +O(∆2)).

(18)
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Substituting this into (15) we find

σ(q, q′) =
1

q − q′

∫ q

q′
V (y)dy. (19)

We see that leading term does not depend on V , while σ is given by the

potential overaged over the interval [q′, q]. One can easy to see also that

< q|Û(τ0, τ0)|q′ >= δ(q − q′).

The function < q|Û(τ0+∆, τ0)|q′ > is sharply peaked around |q−q′| = 0,

with the width |q−q′| ≈ ∆
1
2 = |τ − τ0|

1
2 which is typical for the Brownian

motion.

2.5. IMAGINARY TIME ACTION.

If the potential is differentiable function we can write

σ(q, q′) =
1

2
(V (q) + V (q′)) + ....

(20)

Therefore (12) takes the form

< qf |Û(τf , τi)|qi >= lim
n→∞

(
1

2π∆
)
n
2

∫
(
n−1∏
k=1

dqk) exp (−A(qk))

where

A(qk) =
∑
k=1

[
(qk − qk−1)

2

2∆
+∆

V (qk) + V (qk−1)

2
],

∆ =
τf − τi

n
, τk = τi + k∆, q0 = qi, qn = qf . (21)

The integration here can be understood as going over the piece-

wise linear trajectories q(τ) going from qi to qf . In the limit ∆ → 0,

n → ∞ one can write the function in the exponential as

A[q(τ)] =

∫ τf

τi

dτ [
1

2
(
dq

dτ
)2 + V (q)]. (22)
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That is A[q(τ)] is an imaginary-time action. It is also possible in this

limit to rewrite the n-fold integral as

< qf |Û(τf , τi)|qi >=

∫ q(τf )

q(τi)

[Dq(τ)] exp (−A[q(τ)]) (23)

and call it imaginary-time path integral, where

exp (
ı

ℏ
S[q(t)]) → exp (−A[q(τ)])

(24)

because in r.h.s. we integrate over all continous paths going from qi to qf .

2.6. PATH INTEGRAL AS A SUPERPOSITION PRINCIPLE.

The path integral representation is most explicit expression for the su-

perposition principle in quantum mechanics, which states that the tran-

sition amplitude is a superposition of transition amplitudes asso-

ciated to each possible way to go from initial state to final state.

2.7. FRACTAL PATHS GIVE MAIN CONTRIBUTION.

One can see that in n → ∞ limit the absolute majority of paths entering

the integration are not smooth curves. This is in agreement with the fact

that for |τ1−τ2| → 0, |q(τ1)−q(τ2)| ≈
√
|τ1 − τ2|, not |τ1−τ2| as one would

expect for differential curves. So the typical path entering the integral is

an example of geometrical object know as fractal.

From this point of view the 2 terms in euclidean action play different

role. The kinetic term selects the class of path entering the integral, namely

it selects those path for which (q(τ+∆)−q(τ))2

∆ remains finite as ∆ → 0.

Hence the factor

exp (−
∫

(
dq

dτ
)2dτ)

(25)
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shoud be considered as a part of functional mesure. The factor

exp (−
∫

V (q(τ))dτ)

(26)

weights the path according to the average potential energy.

2.8. VACUUM ENERGY AND PATH INTEGRAL PREFACTOR.

The symbol

[Dq(τ)] = lim
n→∞

(
1

2π∆
)
n
2

n−1∏
k=1

dq(τk)

(27)

entering the path integral (23) contains an infinite factor

(
1

2π∆
)
n
2 ≈ exp (−(

log 2π∆

2∆
)T )

(28)

where T = τf −τi = n∆ is a volume of the system in imaginary time. This

is similar to the infinity we had for the vacuum energy in the KG

theory. Thus absorbing it into [Dq] is analogous to subtracting E0 from

Ĥ. One can get rid of this factor considering the ratio of the given path

integral to some reference path integral (when V = 0 for example).

2.9. PATH INTEGRAL IN REAL TIME AND LAGRANGIAN

APPROACH TO QM.

One can repeat the above calculations considering real time t instead of

imaginary time τ . This way we arrive at

< qf | exp (−
ı

ℏ
ĤT )|qi >=

∫ qf

qi

[Dq(t)] exp (
ı

ℏ
S[q(t)]). (29)
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Because of the action functional is given by integral of a Lagrangian we

come back thereby to the Lagrangian approach to quantum mechan-

ics.

2.10. MANY DEGREES OF FREEDOM GENERALIZATION.

In case we have system with many degrees of freedom qµ and the Hamil-

tonian

H =
∑
µ

(
1

2
p2µ + V (qµ)) (30)

the path integral expression can be generalized starightforwardly∫
[Dqµ] exp (−A[qµ(τ)]) (31)

Also the path integral in the phase space may appear for more complicated

Hamiltonians.

QFT can be treated as QM with infinite number of degrees

of freedom. Thus, in QFT the path integral becomes functional integral

where we integrate over all possible field configurations in space-time (or

in euclidean spase) weighted by the action. From this point of view the

functional integral can be considered as a Lagrangian approach

to QFT.

3. Feynman propagator as a path integral.

Now we represent the Feynman propagator DF in terms of path inte-

gral. More precisely, we want to represent the function DF (xf − xi) as a

relativistic particle transtion amplitude from the point xi to the

point xf using the path integral.

3.1. RELATIVISTIC PARTICLE ACTION.
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In classical mechanics the relativistic particle action going from the point

xi to the point xf is

S = −m

∫ xf

xi

√
dxµdxµ,

dxµdx
µ = dt2 − dx⃗2 = (1− (

dx⃗

dt
)2)dt2 ⇒

S = −m

∫ tf

ti

√
(1− (

dx⃗

dt
)2)dt (32)

The transition amplitude is given by∫
path(i→f)

[Dx⃗(t)] exp (ıℏS) (33)

The problem 1 whith this expression as that the dxµdx
µ in S can be

positive or negative depending on whether dxµ is time like or space like.

This causes the problem of choosing the right branch of the square root.

But we can not exclude the paths with space like dxµ because DF does not

vanish outside the light cone, thought it is exponentially small there.

The problem 2 is that the relativistic invariance demands admitting

also the paths going backward in time once we admit space like dxµ (as one

can check). For such paths the x⃗(t) is not a function of t, so the integral

over [Dx⃗(t)] does not make sense.

3.2. EUCLIDEAN FORMULATION.

These problems can be solved going to euclidean (imaginary

time) picture:

t → −ıx4, x → xE

− ı

ℏ
S → A = m

∫ √
dx2E

dx2E = dx24 + dx⃗2 ≥ 0. (34)
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So one needs to compute∫
path(i→f)

[DxE] exp (−A) (35)

and then analytically continue the result to the real time. Note that

A[path] = m0L[path],

(36)

where L[path] is the euclidean length of given path and we replaced

m by m0.

3.3. EUCLIDEAN PATH INTEGRAL CALCULATION.

We define the paths integral as a limit of finite dimensional

integral. Namely, for a given large integer N we consider a piecewise-

linear paths from the point 0 to the point xE, with each linear piece having

the lenght ∆. The lenght of such path is

LN = N∆.

(37)

Thus, we use discrete approximation considering a lattice with the spacing

∆ instead of continuous euclidean space.

Let nk be the unit vector in the direction of k-th piece. The discret

approximation of the path integral is given by

∞∑
N=0

exp (−m0N∆)

∫
(

N∏
k=1

dnk)δ
4(∆

∑
k

nk − xE), (38)

where dnk is the standard mesure on S3 and δ-function extracts the vec-

tors ∆nk to add up to xE. We also have taken into account the paths with

arbitrary lengths by the summation over N . In this discrete approxi-

mation of the path integral the continuous limit is achieved when

∆ → 0, N → ∞. Our aim is to determine this limit
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First of all we have to look what kind of paths give the main contribution

to the integral in the continuous limit. We have

δ4(∆
∑
k

nk − xE) =

∫
d4P

(2π)4
exp (ıP · (xE −∆

∑
k

nk)). (39)

Then

N∏
k=1

∫
dnk exp (−ı∆nk · P ) = (I(P∆))N . (40)

The integral I can be evaluated by the Bessel functions but its explicit form

does not matter. Instead, its behaviour at large N and small ∆ matter

I ≈ 4π2(1− 1

8
P 2∆2 + ...),

(I)N ≈ (4π2)N exp (−∆2N

8
P 2). (41)

Now we can calculate the (Gaussian) integral over P for given N∫
d4P

(2π)4
exp (ıPxE − ∆2N

8
P 2) ≈ exp (− 2x2E

∆2N
). (42)

Hence, the result for (38) is

∞∑
N=0

(4π2)N exp (−m0N∆) exp (− 2x2E
∆2N

).

(43)

Notice here that ∆ enters in the combination ∆2N not as ∆N = L,

as one would expect. By this reason taking the limit

∆ → 0, N → ∞, ∆N = finite

(44)

we find that integral (42) is equal zero for any finite xE.

3.4. THE CORRECT LIMIT AND FRACTAL GEOMETRY OF PATHS.

13



The above calculation is nearly identical to the probability calculation

for Brownian particle. We know that Brownian particle with typical mi-

croscopic velocity v travels the distance

x̄ = v
√
T∆t

(45)

in time T , not vT , where ∆t is typical intercollision time. In this analogy

∆ ≈ v∆t, N ≈ T

∆t
⇒ x̄ =

∆

∆t

√
N(∆t)2 = ∆

√
N.

(46)

Therefore, the correct continous limit is achieved by taking

∆ → 0, N → ∞, s ≡ 1

8
∆2N = finite (47)

so that s is the parameter characterizing geometry of typical path.

The microsopic length L = ∆N becomes infinite in this limit so the typical

path dominating in this limit becomes fractal so that

s ≈ [length = ∆
√
N ]2,

(48)

which means that typical path has a fractal dimension 2.

3.5. MASS RENORMALIZATION.

There is also a factor

(4π2)N exp (−m0N∆) = exp (−N(m0∆− log(4π2))).

(49)

It makes sense to consider the parameter m0 as depending on ∆:

m0 = m0(∆)

(50)
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so that it can be adjusted as

∆m0(∆)− log(4π2) → ∆2

8
m2, as ∆ → 0 (51)

Then the above 2 factors become

(4π2)N exp (−m0N∆) = exp (−m2∆
2N

8
) → exp (−m2s). (52)

3.6. FEYNMAN PROPAGATOR.

In the limit N → ∞ we can replace the sum over N by the integral over

s and obtain∫ ∞

0

ds exp (−m2s)

∫
d4P

(2π)4
exp (−sP 2) exp (ıPxE), (53)

which is exactly the correlation function D(xE) from (6). Taking the

analytic continuation to the real time we obtain path integral representa-

tion for Feynman propagator DF .
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