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1. KG field quantization in Hamiltonian formalism (reminder).

1.1. Conserved charges and algebra of creation-annihilation operators.

The action of KG field is invariant under some special symmetry:

φ(x)→ φ̃(x) = φ(x) + f(x) (1)

where the function f(x) is an arbitrary solution of KG equation. Due to

Noether theorem this symmetry allows to conclude that

∂µJ
µ
f = 0, Jµf = f∂µφ− φ∂µf (2)
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So the corresponding conserved charges (integrals of motion) are given by

Af =

∫
d3x(φ̇f − ḟφ) =

∫
d3x(πf − ḟφ) (3)

From the last formula we calculate the Poisson brackets

{Af , Ag} =

∫
d3x(ḟ g − fġ) (4)

Using the plane waves basis of solutions of KG equations

A~p ≡ Af~p, f~p = exp (ı(ω~pt− ~p~x)),

A∗~p ≡ Af∗~p
, f ∗~p = exp (−ı(ω~pt− ~p~x)),

ω~p =
√
~p2 +m2 (5)

we find the following algebra

{A~p, A
∗
~p′} = ı(2π)32ω~pδ(~p− ~p′),

{A~p, A~p′} = {A∗~p, A∗~p′} = 0 (6)

Thus, in quantum theory we must postulate

A~p → Â~p, A
†
~p → Â†~p

[Â~p, Â
†
~p′] = (2π)32ω~pδ(~p− ~p′),

[Â~p, Â~p′] = [Â†~p, Â
†
~p′] = 0 (7)

Renormalizing the operators above:

Â~p =
√

2ω~pa~p, Â
†
~p =

√
2ω~pa

†
~p. (8)

we find the Heisenberg algebra they satisfy

[a~p, a
†
~p′] = (2π)3δ(~p− ~p′) (9)

1.2. Hamiltonian and momentum operators.
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Then the KG Hamiltonian takes the form

Ĥ =

∫
d3p

(2π)3
ω~p
2

(a†~pa~p + a~pa
†
~p). (10)

The KG field momentum operator is given by

~̂P =

∫
d3p

(2π)3
~p

2
(a†~pa~p + a~pa

†
~p) (11)

The operators a~p, a
†
~p diagonalize the KG Hamiltonian:

[Ĥ, a†~p] = ω~pa
†
~p, [Ĥ, a~p] = −ω~pa~p (12)

and we have also

[P̂ , a~p] = −~pa~p, [P̂ , a∗~p] = ~pa∗~p. (13)

1.3. Ground state postulate and space of states.

We constructed the space of states of KG theory demanding that the

energy spectrum is bounded from below: it was postulated that there

is a state |0 > with minimal energy E0 such that

a~p|0 >= 0 for all ~p (14)

Then the space of states of KG theory H is spanned by the vectors

|~p1, ..., ~pN >= a†~p1...a
†
~pN
|0 >,

Ĥ|~p1, ..., ~pN >= (ω~p1 + ...+ ω~pN + E0)|~p1, ..., ~pN >

P̂ |~p1, ..., ~pN >= (~p1 + ...+ ~pN + ~P0)|~p1, ..., ~pN > . (15)

1.4. Particle interpretation.

We noticed that infinite value of vacuum energy could be ignored as long

as the difference between the energy of a given state and vacuum energy
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matters. Therefore we redefined Ĥ by subtracting E0:

: Ĥ := Ĥ − E0 =

∫
d3p

(2π)3
ω~pa

†
~pa~p (16)

and do similar subtraction for the momentum operator (though the P0 = 0)

: ~̂P :=

∫
d3p

(2π)3
~pa†~pa~p (17)

It allowed us to interprate the operator a†~p as creating a particle with the

energy ω~p and momentum ~p so that the vector |~p1, ..., ~pN >= a†~p1...a
†
~pN
|0 >

is an N -particles state with the momenta ~p1, ..., ~pN because of the cor-

rect relation ω~pi =
√
~p2i +m2 between the momentum and energy of each

particle.

2. Heisenberg picture in KG theory.

One can rewrite the relations (5), (8) in opposit direction:

φ̂(~x) =

∫
d3p

(2π)3
1√
2ωp

(a~p + a†−~p) exp (ı~p~x)

π̂(~x) = −ı
∫

d3p

(2π)3

√
ωp
2

(a~p − a†−~p) exp (ı~p~x)

(18)

and deduce the following:

∂φ̂

∂~x
= −ı[ ~̂P, φ̂],

∂π̂

∂~x
= −ı[ ~̂P, π̂] (19)

These relations are the quantization of the qlassical statements that the

momentum operator generate translations in space. Thus we get

translation invariance statement for the KG theory along the space direc-

tions.

In Heisenberg picture the operators evaluate in time while the wave

functions do not depend on time. The time dependent Heisenberg opera-

tors are related to the time independent operators in Schrödinger picture
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as

Ô(t) = exp (ıĤt)Ô exp (−ıĤt) (20)

Hence, the Heisenberg field and canonical momentum operators are given

by

φ̂(~x, t) = exp (ıĤt)φ̂(~x) exp (−ıĤt)

π̂(~x, t) = exp (ıĤt)π̂(~x) exp (−ıĤt) (21)

where Ĥ is KG Hamiltonian (10). Using the explicit form of Ĥ we find

from (18)

φ̂(~x, t) =

∫
d3p

(2π)3
1√
2ωp

(a~p exp (ı~p~x− ıω~pt) + a†~p exp (−ı~p~x+ ıω~pt)))

π̂(~x, t) = −ı
∫

d3p

(2π)3
1√
2ωp

(ω~pa~p exp (ı~p~x− ıω~pt)− ω~pa†~p exp (−ı~p~x+ ıω~pt)))(22)

2.1. Heisenberg equations of motion for KG field.

The Heisenberg operators satisfy Heisenberg equations of motion

ı
∂

∂t
Ô = [Ô, Ĥ] (23)

In the case of KG field we find

∂

∂t
φ̂ = π̂,

∂

∂t
π̂ = (∇2 −m2)φ̂ (24)

that is the Heisenberg field φ̂(~x, t) satisfy the KG equation. This is a linear

equation so that the general solution is given by the first line from (22).

The creation-anihilation operators appear in this solution as the integration

constants.

2.2. Relativistics invariance.
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Similar to

∂φ̂

∂t
= ı[Ĥ, φ̂] (25)

one can check also

∂φ̂

∂~x
= −ı[ ~̂P, φ̂] (26)

They can be combined into the covariant form

∂φ̂

∂xµ
= ı[P̂ µ, φ̂], µ = 0, ..., 3 (27)

where P̂ 0 = Ĥ and P̂ i = −~Pi, i = 1, ..., 3. The eq. (27) express transla-

tional invariance of the theory. Similar relations for the KG field orbital

momentum operator M̂µν (which can be found from Noether theorem)

M̂µν =

∫
d3x(xµT̂ 0ν − xνT̂ 0µ) (28)

expresses the Lorentz invariance of the theory:

xµ
∂φ̂

∂xν
− xν ∂φ̂

∂xµ
= ı[M̂µν, φ̂(x)] (29)

As an exercise one can check the Poincare algebra of commutators

[P̂ µ, P̂ ν] = 0, [M̂µν, P̂ λ] = ı(gλµP̂ ν − gλνP̂ µ),

[M̂µν, M̂λρ] = ı(gµλM̂ νρ − gνλM̂µρ + gνρM̂µλ − gµρM̂ νλ) (30)

The relations (27), (29), (30) all together expresses the relativistics invari-

ance of the theory.

3. KG in space-time, analitical properties of Green’s functions,

causality in QFT, Feynman propagator.

3.1. [φ(x), φ(y)] calculation and D± functions.
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Let us calculate the commutator

[φ̂(x), φ̂(y)] (31)

using the expression (22). To do that it is helpfull first to use the decom-

position

φ̂(x) = φ̂−(x) + φ̂+(x), where

φ̂−(x) =

∫
d3p

(2π)3
1√
2ωp

a~p exp (ı~p~x− ıω~pt)

φ̂+(x) =

∫
d3p

(2π)3
1√
2ωp

a†~p exp (−ı~p~x+ ıω~pt))) (32)

φ̂+(x) can be interpreted as an operator creating a particle at a

space-time point x, while φ̂−(x) absorbs a particle at that point.

We can write

[φ̂(x), φ̂(y)] = D−(x− y)−D+(x− y)

where

D−(x− y) = [φ̂−(x), φ̂+(y)],

D+(x− y) = [φ̂−(y), φ̂+(x)] = D−(y − x) (33)

Explicitly, one finds

D−(x) = D−(~x, t) =

∫
dµ(~p) exp (−ıωpt+ ı~p~x)

D+(x) = D+(~x, t) =

∫
dµ(~p) exp (ıωpt− ı~p~x) (34)

where the notation

dµ(~p) =
d3p

(2π)3
1

2ωp
(35)

has been used for the invariant volume form d3p
(2π)3

1
2ωp

.
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3.2. Properties of D±(x).

1. First af all D±(x) are Lorentz invariant functions:

D±(Rx) = D±(x) (36)

where (Rx)µ = Rµ
νx

ν and R is a Lorentz group element that can be conti-

nously connected to the identity element.

Let us consider for example

D−(x) =

∫
p2=m2

dµ(p) exp ıpµx
µ (37)

The transformation xµ → Rµ
νx

ν is compensated by the transformation

pµ → Rλ
µpλ which leaves the mass shell condition p2 = m2 and the mesure

dµ(~p) invariant.

It means in particular that

D+(x) = D−(x) if x is spacelike : x2 = t2 − ~x2 < 0 (38)

because in this case −x can be continously transformed to x. (One needs

first to chose the frame where t = 0 and transform then (0,−~x) to (0, ~x)

by a rotation.)

2. Consider D~x,t as a function of complex variable t. From the defini-

tion

D−(x) =

∫
p2=m2

dµ(p) exp (−ıω~pt+ ı~p~x) (39)

we see that integral converges absolutely as long as Imt < 0 (because

ω~p > 0). Therefore this integral defines a function Dc(~x, t) of complex

variable t which is analytic in the lower half-plane. For real t the value

of D−(~x, t) is obtained as the limiting value of this analytic function from

Imt < 0:

D−(~x, t) = Dc(~x, t− ı0) (40)
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Analogously, the integral for D+(x):

D+(x) =

∫
p2=m2

dµ(p) exp (ıω~pt− ı~p~x) (41)

converges absolutely as long as Imt > 0 and defines a function D̃c(~x, t)

which is analytic in the upper half-plane, such that for real t D+(~x, t) is

understood as a limiting value of this analytic function from Imt > 0:

D+(~x, t) = D̃c(~x, t+ ı0) (42)

3. The segment −|~x| < t < |~x| of the real axis corresponds to the real

spacelike x = (~x, t) and due to 1 we have

D+(~x, t) = D−(~x, t), when − |~x| < t < |~x| (43)

This means that Dc(~x, t) can be analytically continued to the upper half

plane across this segment so that we obtain a single analytic function:

Dc(~x, t) =

∫
p2=m2

dµ(p) exp (−ıω~pt+ ı~p~x), Imt < 0

Dc(~x, t) =

∫
p2=m2

dµ(p) exp (ıω~pt− ı~p~x), Imt > 0

D−(~x, t) = Dc(~x, t− ı0), Imt = 0

D+(~x, t) = Dc(~x, t+ ı0), Imt = 0 (44)

For x is timelike and real t, these limiting values do not coinside, so Dc(~x, t)

has a branch cuts along the real t which extends from t = |~x| to ∞ and

from t = −|~x| to ∞.

3.3. Causality in quantum KG theory.

Due to the arguments above one can write

[φ̂(~x, t), φ̂(0, 0)] = Dc(~x, t− ı0)−Dc(~x, t+ ı0) (45)
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Because of there is no discontinuity at −|~x| < t < |~x| we can make impor-

tant conclusion

[φ̂(x), φ̂(y)] = 0, when (x− y)2 < 0 (46)

To understand what does it mean remember that in quantum mechanics

a commutator of two operators says how a disturbance introduced by one

operator affects the mesurement of observable described by another oper-

ator. The result (46) says that a perturbation caused by a field operator

φ̂ at the point x can not affect a mesurement of the field at y if the points

are separated by a spacelike interval. It expresses causality of the theory

(which is also known as a local commutativity). Causality is a general

requirement in QFT.

We can conclude also that commutator of field operators is nonzero for

the timelike x−y (inside the light-cone) because of discontinuity is nonzero

at the branch cuts, that is at tx − ty > |~x− ~y|.

3.4. Feynman propagator.

The functions D± can be related also to the vacuum expectation values

of the Heisenberg field operators

< 0|φ̂(x)φ̂(y)|0 >=< 0|φ̂−(x)φ̂+(y)|0 >=

< 0|[φ̂−(x), φ̂+(y)]|0 >= D−(x− y) = D+(y − x) (47)

and is obtained from the analytic function of the complex variable t Dc(~x, t)

as Dc(~x, t − ı0). One can use this function to define another important

quantity.

Consider the value of Dc(x) as t approaches the real t-axis along the

contour CF which goes above the real t-axis in the region Ret < −|~x|,
crosses the segment −|~x| < t < −|~x| and goes below the real t-axis in the

region Ret > |~x|.
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We can see that this limiting function is

D− =< 0|φ̂(~x, t), φ̂(0, 0)|0 >, Ret > |~x| (48)

while this limiting function is given by

D+(~x, t) = D−(−~x,−t) =< 0|φ̂(0, 0), φ̂(~x, t)|0 >, Ret < −|~x| (49)

Hence, this new limiting function can be written as the time− ordered

expectation value

DF (x− y) =< 0|T (φ̂(~x, tx)φ̂(~y, ty)|0 > (50)

where time-ordering symbol T means

T (φ̂(~x, tx)φ̂(~y, ty)) = φ̂(~x, tx)φ̂(~y, ty), when tx > ty

T (φ̂(~x, tx)φ̂(~y, ty)) = φ̂(~y, ty)φ̂(~x, tx), when ty > tx (51)

Equivalently

DF (x) =

∫
p2=m2

dµ(p) exp (−ıω~pt+ ı~p~x), t > 0

DF (x) =

∫
p2=m2

dµ(p) exp (ıω~pt− ı~p~x), t < 0 (52)

This function, known as Feynmam propagator can also be represented as

an 4d integral

DF (x) =

∫
C̃F

dω

2π

∫
d3~p

(2π)3
ı exp (−ıω~pt+ ı~p~x)

ω2 − ~p2 −m2
(53)

As a function of ω, the integrand has the poles at ω = ±ω~p and contour

goes along the real t axis from t = −∞ to t =∞ axis and bypasses

the pole −ω~p from below, while it bypasses the pole ω~p from above.

Let us show that this integral reproduces the formula (52). Indeed, if

t > 0, the integrand exponentially decays in the lower ω-half-plane (Imω <
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0) and the contour can be closed on the pole ω~p so we obtain D−(~x, t).

Similarly for t < 0 the contour can be closed on −ω~p, yelding D+(~x, t).

More convenient way to write DF is∫ ∞

−∞

dω

2π

d3~p

(2π)3
ı exp (−ıω~pt+ ı~p~x)

ω2 − ~p2 −m2 + ı0
(54)

It is equivalent formula, since ı0 term in the denominator shifts the poles

ω~p → ω~p − ı0,−ω~p + ı0. It can be rewritten also in the covariant form

DF (x) =

∫
d4~p

(2π)4
ı exp (−ıpµxµ)

p2 −m2 + ı0
(55)

In other words it is a Fourier transform of the function

DF (p) =
ı

p2 −m2 + ı0
(56)

3.5. Feynman propagator as a Green function of KG equation.

The last formula shows that DF (x) is a Green’s function for the KG

equation

(∂µ∂
µ +m2)DF (x) = ıδ(x) (57)

At the same time, the D±(x) are the solutions of homogeneous KG equa-

tion:

(∂µ∂
µ +m2)D±(x) = 0 (58)
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