
Lecture 14. LSZ theorem and S-matrix.
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1.1. ASYMPTOTIC STATES AND S-MATRIX.

On the last lecture we introduced the asymtotic in-states

Âin
p⃗ = lim

ϵ→0
lim

t→−∞
Âp⃗,ϵ(τ + ıt),

Â†in
p⃗ = lim

ϵ→0
lim

t→−∞
Â†

p⃗,ϵ(τ + ıt), (1)

where

Âp⃗,ϵ(τ) =
1√
Z

∫
d3x(∂τ ϕ̂fp⃗,ϵ − ϕ̂∂τfp⃗,ϵ)

Â†
p⃗,ϵ(τ) =

1√
Z

∫
d3x(∂τ ϕ̂f̄p⃗,ϵ − ϕ̂∂τ f̄p⃗,ϵ) (2)

and fp⃗,ϵ, f̄p⃗,ϵ are the wave packets solutions of KG equation in euclidean

space:

fp⃗,ϵ(x⃗, τ) = exp (ωpτ − ıp⃗x⃗)ψϵ(x⃗− ıv⃗τ)

f̄p⃗,ϵ(x⃗, τ) = exp (ωpτ + ıp⃗x⃗)ψϵ(x⃗+ ıv⃗τ),

ψϵ(y⃗) = exp (− ϵ
2
y⃗2)

(3)
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Similarly, we introduced the asymptotic out-operators taking another limit

Âout
p⃗ = lim

ϵ→0
lim
t→∞

Âp⃗,ϵ(τ + ıt),

Â†out
p⃗ = lim

ϵ→0
lim
t→∞

Â†
p⃗,ϵ(τ + ıt). (4)

It was shown then that the asymptotic in-operators and out-operators

satisfy canonical commutation relations of creation-annihilation operators

(Heisenberg algebra) and the asymptotic in-states

|p⃗1, ..., p⃗n >in≡ A†in
p⃗1
...A†in

p⃗n
|Ω > (5)

and out-states

|q⃗1, ..., q⃗n >out≡ A†out
q⃗1

...A†out
q⃗n

|Ω > (6)

constitute an in- and out- basises in Hilbert space H of the theory.

The spaces of in-states (5) and out-states (6) do not coincide in the

theory with interaction but are related by a unitary transformation

|p⃗1, ..., p⃗N >in=
∑
M

∫
Ŝ(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M)|q⃗1, ..., q⃗N >out dµ(q⃗1)...dµ(q⃗M),

(7)

where ∂µ(q⃗) is a Lorentz invariant measure. The unitary operator S is

called S-matrix and

Ŝ(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M) ≈ δ4(
N∑
i=1

pi −
M∑
j=1

qj).

(8)

Thus, matrix elements of Ŝ

out < q⃗1, ..., q⃗M |p⃗1, ..., p⃗N >in≡ S(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M) (9)

describe the overlapping between the in and out states.
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1.2. T -OPERATOR.

Let us consider for example 2 → 2 amplitude

S(p⃗1, p⃗2|q⃗1, q⃗2) =out< q⃗1, q⃗2|p⃗1, p⃗2 >in

(10)

Besides the scattering, this amplitude contains the probability of

the passage of the particles without collision. Therefore

S(p⃗1, p⃗2|q⃗1, q⃗2) =

(2π)42ω1ω2(δ(p⃗1 − q⃗1)δ(p⃗2 − q⃗2) + δ(p⃗1 − q⃗2)δ(p⃗2 − q⃗1)) +

(2π)4δ(p⃗1 + p⃗2 − q⃗1 − q⃗2)T (p⃗1, p⃗2|q⃗1, q⃗2)

(11)

The term T (p⃗1, p⃗2|q⃗1, q⃗2) describes the collision. By the definition, so called

differential crossection is determined by the formula

dσ2→2 =

(2π)4δ(p⃗1 + p⃗2 − q⃗1 − q⃗2)
|T (p⃗1, p⃗2|q⃗1, q⃗2)|2√

s(s− 4m2)
dµ(p1)dµ(p2) (12)

where s = (p1 + p2)
2. It describes the probability of collision in per

unit time in unite volume for unite flow of particles.

In general case we can write

Ŝ = I + ıT̂ (13)

where I is an identity operator which corresponds to the scattering without

collisions while T̂ describes the process with at least one pair of

particles collide.
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Example: 3 → 3 amplitude.

out < 3|3 >in=

p1

p2

p3

q1

q2

q3

=
p3 q3

p2 q2

p1 q1

+ permutations +

(14)

p1

p2

p3

q1

q2

q3

+ permutations +

p1

p2

p3

q1

q2

q3

(15)

2. LSZ theorem.
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LSZ theorem allows to express the S-matrix elements in terms

of the Green’s functions.

2.1. RELATION BETWEEN IN AND OUT CREATION-ANNIHILATION OPERATORS.

We have by definition

|p⃗1, ..., p⃗N >in≡ A†in
p⃗1
...A†in

p⃗N
|Ω >,

out < q⃗1, ..., q⃗M | =< Ω|Aout
q⃗1
...Aout

q⃗M
,

S(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M) =out< q⃗1, ..., q⃗M |p⃗1, ..., p⃗N >in=

< Ω|Aout
q⃗1
...Aout

q⃗M
|A†in

p⃗1
...A†in

p⃗N
|Ω > . (16)

The operators A†in
p⃗ , Ain

k⃗
satisfy Heisenberg algebra of creation-annihilation

operators. The same is true for the operators A†out
p⃗ , Aout

k⃗
. But it is not true

for the commutators between in and out operators in interacting

theory.

Let us consider the operators Ap⃗(τ), A
†
p⃗(τ) determined in (2) in real

time:

ap⃗(t) = ı

∫
d3x(ϕ̂(x⃗, t)∂tfp⃗(x⃗, t)− ∂tϕ̂(x⃗, t)fp⃗(x⃗, t))

a†p⃗(t) = −ı
∫
d3x(ϕ̂(x⃗, t)∂tf

∗
p⃗ (x⃗, t)− ∂tϕ̂(x⃗, t)f

∗
p⃗ (x⃗, t)) (17)

where fp⃗(x⃗, t), f
∗
p⃗ (x⃗, t) are the solutions of KG equation in Minkowski space,

which in the limit ϵ→ 0 go to the plane waves solutions and

ϕ̂(x⃗, t) = exp (ıĤt)ϕ̂(x⃗, 0) exp (−ıĤt)

(18)

is Heisenberg field operator.

Let us calculate the difference between these operators in different mo-
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ments of time t1 > t2:

a†p⃗(t1)− a†p⃗(t2) =

−ı
∫
Σ1

d3x(ϕ̂(x⃗, t)∂tf
∗
p⃗ (x⃗, t)− ∂tϕ̂(x⃗, t)f

∗
p⃗ (x⃗, t)) +

ı

∫
Σ2

d3x(ϕ̂(x⃗, t)∂tf
∗
p⃗ (x⃗, t)− ∂tϕ̂(x⃗, t)f

∗
p⃗ (x⃗, t)) =

−ı
∫ t1

t2

dt

∫
d3x∂µ(f ∗p⃗∂µϕ̂− ∂µf

∗
p⃗ ϕ̂) =

−ı
∫ t1

t2

dt

∫
d3xf ∗p⃗ (∂

µ∂µ +m2)ϕ̂ (19)

where we have applied KG equation for f ∗p⃗ and Gauss theorem assuming

that ϕ̂→ 0 as |x⃗| → ∞.

Taking the limit t1 → ∞, t2 → −∞ we obtain

a†inp⃗ = a†outp⃗ + ı

∫
d4xf ∗(∂µ∂µ +m2)ϕ̂ (20)

2.2. LSZ REDUCTION FORMULA.

The relation (20) between in and out operators can be used to calculate

the S-matrix element

S(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M) =< Ω|aoutq⃗1
...aoutq⃗M

a†inp⃗1
...a†inp⃗N

|Ω >=

< Ω|aoutq⃗1
...aoutq⃗M

(a†outp⃗1
+ ı

∫
d4xf ∗p⃗1(x)(∂

2
x +m2)ϕ̂)a†inp⃗2

...a†inp⃗N
|Ω >=

< Ω|aoutq⃗1
...aoutq⃗M

a†outp⃗1
a†inp⃗2

...a†inp⃗N
|Ω > +

ı

∫
d4xf ∗p⃗1(x)(∂

2
x +m2)out < q⃗1, ..., q⃗M |ϕ̂(x)|p⃗2, ..., p⃗N >in .

(21)

In the first term of this expression we can move a†outp⃗1
to the left and use

creation-annihilation commutation relations as well as

< Ω|a†outp⃗1
= 0

(22)
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It gives zero or unconnected contribution

M∑
i=1

2ωp1δ
3(p⃗1 − q⃗i)out < q⃗1, ..., ˇ⃗qi, ..., q⃗M |p⃗2, ..., p⃗N >in

(23)

to the matrix element.

Let us look at the connected contribution:

out < q⃗1, ..., q⃗M−1|aoutq⃗M
ϕ̂(x)|p⃗2, ..., p⃗N >in=

lim
t′→∞

ı

∫
Σ∞

d3xout < q⃗1, ..., q⃗M−1|(ϕ̂(x⃗, t′)
∂

∂t′
fp⃗(x⃗, t

′)− ∂

∂t′
ϕ̂(x⃗, t′)fp⃗(x⃗, t

′))ϕ̂(x)

|p⃗2, ..., p⃗N >in

(24)

We can write the integral as

lim
t′→∞

ı

∫
Σ∞

d3x[
∂fp⃗(x

′)

∂t′ out
< q⃗1, ..., q⃗M−1|T ϕ̂(x′)ϕ̂(x)|p⃗2, ..., p⃗N >in −

fp⃗(x
′)
∂

∂t′ out
< q⃗1, ..., q⃗M−1|T ϕ̂(x′)ϕ̂(x)|p⃗2, ..., p⃗N >in]

(25)

which is correct because t′ → ∞. Now one can use again the arguments

similar to (19) and Gauss formula to get

out < q⃗1, ..., q⃗M−1|ϕ̂(x)ainq⃗M |p⃗2, ..., p⃗N >in +

ı

∫
d4x′fq⃗M−1

(x′)(∂2x′ +m2)out < q⃗1, ..., q⃗M−1|T ϕ̂(x′)ϕ̂(x)|p⃗2, ..., p⃗N >in .

(26)

Using the creation-annihilation commutation relations in the first term we

obtain again unconnected contribution or zero. The second term gives

connected diagram contribution to the amplitude.
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Going by this way we arrive at the end the LSZ-reduction formula

S(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M) =

sum of unconnected parts +

ıN+M

∫
d4x1...d

4xNd
4y1...d

4yMf
∗
p⃗1
(x1)...f

∗
p⃗N
(xN)fq⃗1(y1)...fq⃗M (yM)

(∂2x1
+m2)...(∂2xN

+m2)(∂2y1 +m2)...(∂2yM +m2)

< Ω|T (ϕ̂(x1)...ϕ̂(xN)ϕ̂(y1)...ϕ̂(yM))|Ω > (27)

2.3. LSZ REDUCTION FORMULA IN MOMENTA SPACE.

The above formula looks more simpler for its Fourier image.

First of all we consider Fourier transformation for the Green’s function

GN+M(k1, ..., kN+M) =∫
d4x1...d

4xN+M exp (ık1x1)... exp (ıkN+MxN+M) < Ω|T (ϕ̂(x1)...ϕ̂(xN+M)|Ω >

(28)

Then, we form two sets

ki = (−ωp⃗i,−p⃗i) , i = 1, ..., N

ki = (ωq⃗i, q⃗i) , i = N + 1, ..., N +M

(29)

Let us take also into account that∫
d4x exp (ıkx)(∂2x +m2)f(x) = (−kµkµ +m2)f(k),

(30)

where kµkµ = (k0)2 − (k⃗)2. As a result we obtain

S(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M) =

sum of unconnected parts +

ıN+M
N+M∏
i=1

(m2 − k2i )GN+M(k1, ..., kN+M) (31)
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where the Green’s function GN+M(k1, ..., kN+M) is obtained from the cor-

responding correlation function in euclidean space after the substitution

k0i = −ık4i .
Notice that factors (m2 − k2i ) vanish on-shell. On the other hand

GN+M(k1, ..., kN+M) has a pole when k2i −m2 = 0 because

GN+M(k1, ..., kN+M) =
∏
i

G2(k
2
i )GN+M,amp(k1, ..., kN+M),

(32)

where

G2(k
2) =

Z

k2 −m2
+

∫ ∞

4m2

dµ2

(2π)

ρ(µ2)

k2 + µ2

(33)

due to KL representation (see the previous lecture).

We see the pole in G2(k
2) which cancels the k2 −m2 = 0 factor in (31).

As a result we can write

Sc(p⃗1, ..., p⃗N |q⃗1, ..., q⃗M) = Z
N+M

2 GN+M,amp(k1, ..., kN+M)

(34)

where

ki = −pi , i = 1, ..., N

ki = qi , i = N + 1, ..., N +M

(35)

Therefore, in order to calculate the element of S-matrix we must

calculate the corresponding connected diagrams and cut off the

external legs.
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