Lecture 14. LSZ theorem and S-matrix.
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1.1. ASYMPTOTIC STATES AND S-MATRIX.

On the last lecture we introduced the asymtotic in-states
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and f, j_’pje are the wave packets solutions of KG equation in euclidean
space:
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Similarly, we introduced the asymptotic out-operators taking another limit
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It was shown then that the asymptotic in-operators and out-operators
satisfy canonical commutation relations of creation-annihilation operators

(Heisenberg algebra) and the asymptotic in-states
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constitute an in- and out- basises in Hilbert space H of the theory.
The spaces of in-states (5) and out-states (6) do not coincide in the

theory with interaction but are related by a unitary transformation
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where 0u(q) is a Lorentz invariant measure. The unitary operator S is

called S-matrix and
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Thus, matrix elements of S
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describe the overlapping between the in and out states.
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1.2. T-OPERATOR.

Let us consider for example 2 — 2 amplitude
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Besides the scattering, this amplitude contains the probability of

the passage of the particles without collision. Therefore
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The term T'(p7, P2|q1, ¢2) describes the collision. By the definition, so called

differential crossection is determined by the formula
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where s = (p; + p2)?. It describes the probability of collision in per
unit time in unite volume for unite flow of particles.

In general case we can write
S =TI+ (13)

where [ is an identity operator which corresponds to the scattering without
collisions while 7' describes the process with at least one pair of

particles collide.



Example: 3 — 3 amplitude.
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2. LSZ theorem.
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LSZ theorem allows to express the S-matrix elements in terms

of the Green’s functions.

2.1. RELATION BETWEEN IN AND OUT CREATION-ANNIHILATION OPERATO

We have by definition
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The operators Ay", A%” satisfy Heisenberg algebra of creation-annihilation
operators. The same is true for the operators Aj;“t, A%“t. But it is not true
for the commutators between in and out operators in interacting
theory.

Let us consider the operators Az(7), A;;(T) determined in (2) in real

time:
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where f5Z,t), fx(Z,t) are the solutions of KG equation in Minkowski space,

which in the limit ¢ — 0 go to the plane waves solutions and

~

O(Z,t) = exp (LH)H(Z,0) exp (—uHt)
(18)

is Heisenberg field operator.

Let us calculate the difference between these operators in different mo-



ments of time t; > t9:
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where we have applied KG equation for fg and Gauss theorem assuming
that ¢ — 0 as |7] — oc.

Taking the limit 1 — oo, to — —o0 we obtain
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2.2. LSZ REDUCTION FORMULA.

The relation (20) between in and out operators can be used to calculate

the S-matrix element
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In the first term of this expression we can move ay  to the left and use

creation-annihilation commutation relations as well as
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It gives zero or unconnected contribution
M
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to the matrix element.

Let us look at the connected contribution:
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which is correct because ¢ — oo. Now one can use again the arguments

similar to (19) and Gauss formula to get
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Using the creation-annihilation commutation relations in the first term we
obtain again unconnected contribution or zero. The second term gives

connected diagram contribution to the amplitude.



Going by this way we arrive at the end the LSZ-reduction formula
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2.3. LSZ REDUCTION FORMULA IN MOMENTA SPACE.
The above formula looks more simpler for its Fourier image.
First of all we consider Fourier transformation for the Green’s function
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where the Green’s function G ps(ky, ..., kniar) is obtained from the cor-
responding correlation function in euclidean space after the substitution
k) = k.

Notice that factors (m? — k?) vanish on-shell. On the other hand

Gninm(ki, ..., kniar) has a pole when k7 — m? = 0 because
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due to KL representation (see the previous lecture).
We see the pole in G5(k?) which cancels the k* — m? = 0 factor in (31),

As a result we can write
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Therefore, in order to calculate the element of S-matrix we must

calculate the corresponding connected diagrams and cut off the

external legs.



