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1. LSZ theory.

As we have seen the QFT has two mutually complementary points of
view: one can consider the theory in euclidean space (statistical mechanics)
or one can consider it in the Minkowski space (quantum mechanics). The
important ussumption is boundness of spectrum of H from below.

For the Lorentz invariant theory it make sense to analyze the spectrum P
of the momentum operator P*, basing on the Lorentz invariance property.
Boundnes from below means that there is the unique vacuum state Q2 >
(one can also cosider the theories with degenerate vacuum state), which is

determined by
P'|Q>=0,v=0,..,3 (1)
and for any other state |a > of the theory

Hla>=E,la >, E,>0iff a#Q (2)
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Note also that for each P”-eigenstate |a > with eigenvalues P its Lorentz
group orbit is also in the spectrum of the theory. This orbit P, C P is
the surface PYP, = pi* and P = (J 2 P2.

1.1. CLASTER PROPERTY.

The ussumptions (1), (2) allows to prove so called claster property of

the correlation functions

]%E;IOIO < Ol(fl,Tl + R)...ON(fN,TN + R)ON—i—l(fN—f—l;TN+1---ON—|—M(fM77_N+M) >=

< O1(Z1,7)...On(@N, TN) >< Ong1(Zns1, TN41--Onpnr (Tar, T 1) >

(3)

Proof.

Ifrn>mn>.1N5
< O1(Z1,11)...0n(ZN, T7) >=< Q|O1(Z1,71)...0n(Zn, 7)) |2 >,
(4)
where

O(Z,7) = exp (HT)O(Z,0) exp (—HT) (T = 1t).

Hence

< Q‘Ol(fl, 1 + R)ON(fN, ™ + R)ON+1(fN+1, TN_|_1)...
On (T sars ) |Q >=
< Qlol(flﬂ'l)---OAN(fN,TN) exp (—ﬁR)ONH(fNH, TN+1)

---ON+M(fN+M7 TN+M)|Q > .



Now we insert the identity operator ) |a >< «| and use that |a > is a

Hamiltonian eigenstate:
> < Q|0y(#,71)..0Ox(Ex, 7v) exp (~HR) | >
(6]

< a|On1(Zn1, Tv41)

On (@ aar Tnn)|Q >=
exp (—EaR) Y < QO01(#1,7)...0n (Fy, 7v) | >

< @’OAN+1(3Z"N+177'N+1)
On e (Ensar, TN ea)|Q >=

lim < Q\Ol(:pl,ﬁ + R).. ON(fN, TN + R)ONH(IENHJNH)

R—

On it (Enyars Tv ) |Q >=
< Q|01(Z1,71)...0n(Zn, Tv)|Q >
< Q|ON+1(37N+1,TN+1)---ON+M(37M,TN+M)\Q >

(7)

Thus, the claster property follows from boundedness of the sperc-

trum from below.
1.2. LOCALITY.
Let us consider < Oy(Z,7)04(0,0) >. If 7 > 0

< 01(%,7)04(0,0) >=< Q|O1(Z, 7)02(0,0)|Q >=
< Q|O1(Z,0) exp (—HT)05(0,0)|Q >=
Zexp —E,7) < Q|01(Z,0)|ac >< a|05(0,0)|2 > .

(8)

The eigenvalues E, > 0 and we assume that the series is convergent (so

that 2-point fuction exists). It then defines analytic function G (7, 1)
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for Re(7) > 0.

Let us analogously calculate the correlation function with opposit order,
< 05(0,0)0.(Z, 7) >=< Q]02(0,0)01(Z, 7)|Q >=

< 0|05(0,0) exp (HT)O1(Z,0)|Q >=
> < Q|0:(Z,0)]a >< a]05(0,0)|Q > exp (E,7)

>

(9)

This correlator determines analytic function G_ (7, 7) for Re(7) < 0. The
imaginary 7 = 1t axis corresponds to the theory in Minkowski
space.

When —|7] < t < |Z] the vector (Z,t) is space-like. Due to Lorentz

invariance we conclude that

G_(Z,1t — 0) = G4(Z, 1t +0) when —|7] <t < |Z|
(10)
(recall similar arguments for the KG theory where we rotated the 3-vector
Z to the vector —Z in the framework ¢ = 0). Thus, G_(Z,7) is analitic
continuation of G (&, 7) into the half-plane Re(7) < 0. But in the region

t > £|Z| the limiting values of G (&, 7) may not coinside. In other words,

similar to KG theory
G (Z,1t +0) — G_(Z,1t — 0) =< Q[[01(Z, 1), 05(0,0)]|2 >
(11)

and it vanishes for the space-like vectors (7, t). This is locality property

of the Green’s functions in the theory with interaction.

1.53. ADDITIVITY OF THE SPECTRUM.



Let us consider the correlation function

— —

< O(7,7)0(z,0)0(0,7)0(T,0) >
(12)

In euclidean space the correaltion functions are invariant w.r.t. O(4) (it
is the Lorentz group in imaginary time). Hence, one can take any linear
combination of components of P” as a Hamiltonian and use the claster

property above to show that

lim < O(Z,7)0(£,0)0(0,7)0(0,0) >=< O(0,7)0(0,0) >2.

| %] =00
(13)
On the other hand, because of the correlation fucntions are related with
the vacuum expectation value of the product of time-ordered (in our case,

T-ordered) Heisenberg field operators, one can write

gl
(14)
At the same time
< 0(0,7)0(0,0) >*=< Q|O(0,7)0(0,0)|Q >*=
> 1 <9000, 0)la > [ < Q|0(0,0)|8 > |” exp (—(Ea + Ep)7)
" (15)



which shows that if £/, E3 € P then E, + Eg € P. Due to the Lorentz
(O(4) invarince in euclidean formulation) invariance we conclude that
if P),P; € P then Py + PJ € P. It is clear also that if P} € P
then AJPY € P for any Lorentz transformation A. If the spectrum P
contains at least one l-particle state with the mass m then the

spectrum contains also a surface of states P? = m?.
1.4. KALLEN-LEHMANN SPECTRAL REPRESENTATION.
Let us consider 2-point correlation function with 7 > 0

< ¢(Z,7)9(0,0) >=< Q(Z, 7)(0, 0)[2 >=

d3q . o
Z/ 2r)2E(a) Q|o(Z, 7)|ag >< agld(0,0)|Q >=

d? . . L
Z/ (2@323(@) < QI6(2,0) exp (—Hr)lag >< aglo(0,0)|Q >=
a q

d3q ~ -
Zexp(—EaT) / 2r 2B ) < Qlo(7,0)|ag >< agp(0,0)]Q > .

«

(16)
Due to translation invariance
[P, 6(,0)] = —1V(,0)
(17)

we can write

A~ A~

&(Z,0) = exp (1Pz")$(0,0) exp (—Pz?), i = 1,2,3.
(18)



Therefore
< Q|o(&, 7)¢(0,0)|Q >=

d? A -
Z/ (27T)32%6'(O‘) < Q|9(0,0)|a >< a|p(0,0)]Q > exp (—E(j(oz)’]' +1q7T) =

3 P
Z/ (QW)%Z%(OM < Q]¢(0,0)|a > [*exp (—E#a)T +147),
(19)

where o > is a momentum P = § state. (Recall also that #ﬁg@ is
Lorentz invariant and 4-vector ¢* = (¢°, ¢') = (¢°, ), while ¢, = (¢°, —¢') =
(¢°, —q)). Now we take into account the Lorentz invariance of the spectrum
so that the summation over the states |& > can be decomposed in the

integration over the Lorentz orbits ¢* = u?:

> dy? 2R 250 2 2 d’q - o
i §(2W2| < Qo(0,0)|a > [70(u” — my)) (—GXP(—EJTJF%I) =

27T)32Eq-*
OO dﬂz 2 dgq >
—_— —_— -F
| Geet) [ g e (B + 1),
(20)
where
p(4?) = 21 3| < QU0 > P5(s® — m?). (21)

For the case 7 < 0 we should change exp (—FEz7) — exp (Ey7). In both

cases one can use

1 dga 1
——exp (—E4|7]) = / 70 exp (1q47)

QEq* (27T) qi +q° +
(22)
It allows to write finally
- > _ < dp? 2 2
< (2. 7)o(0.0) >= | GEp(ut) D ).
(23)



where |z| = V72 + 22 and

4 7
D(la]. 12) = d*k exp (zkg—i—zkw).
’ (2m) k2 4 k2 + g2

(24)

The 2-point correlation function expression above is called Kallen-Lehmann

spectral representation.
If the theory contains 1-particle state |1 > with mass m the function

p(11?) must take the form

p(p?) = 2mZ6(u* —m?) + p(u®) , p(p?) =0, for p* < 4m?
(25)

(this is true if the spaectrum does not contain bound states whose mass
M? < 4m?), where

2 =< Qg1 > .

B

(26)

2. Asymptotic states.
We need asymptotic states to formulate the scattering problem.
2.1. CORRELATION FUNCTIONS AT LARGE DISTANCES.

The 2-point function (Kdllen-Lehmann spectral representation) can be

written as

< 0(2)o(0) >= ZDllal.m®) + | S plu)Dilal, 1),

4m?



where

d*k exp (1kx)
2
D(‘x|,,u):/(2ﬂ_>4 k_?_‘_MQ

(28)

is euclidean propagator for the free field with mass p. Its asymptotic at

large distancies is

1
m2

]2

D(Jz|,m?) = —5 exp (—mlz]).

(29)
Hence, at large distances the contributions from the multiparticle

states are less essential because they are more massive, so we can

write

< ¢(2)¢(0) >~ ZD(|z],m?)

if Z # 0. Therefore

(m* — 82 = V?) < ¢(2)$(0) >= 0+ O(exp(—2mla)),
(31)

(the d-function in the right hand side is equal zero when x # 0). It means
that at large distances the 2-point function satisty KG equation with a
mass m. Due to the cluster property, the same is true for the N-point

correlation function:
(m? — (‘)ﬁ) < p(x)p(x1)...0(xN—1) >~ 0 when |z — x;| — oo. (32)

This fact is important to understand the Hilbert space of states
in the theory with interaction. It also allows to introduce the

notion of asymptotic states.



2.2. CONSERVED CURRENTS AND HEISENBERG ALGEBRA IN KG.

In KG theory we have introduced creation-annihilation operators
; 09 of
Ap = / 2(5-f = cb )
(33)

where the integration is going over the 3-dim. surface X fixed by an arbi-

trary chosen value of 7. The function f satisfy KG equation
(m* =) f(%,7) =0 (34)

and ¢(Z, 7) is a Heisenberg operator

“ . = R 0 o
o(Z,7) = exp (HT)p(Z,0) exp (—HT) , a—f = [H, ¢]
(35)
The operators A s satisfy Heisenberg algebra commutation relations
i A of dg
A A 3
A Al = [ daGho- 15D, (36)
where
A= [ a2 -520) (37)

To prove (36) notice first that for f fulfilling KG equation, we have the

conservation low

Ot =0, Jf = d"of — 60" .
(38)

Therefore the correlation function
< Af(T)¢(fo,To) > (39)
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does not change when we change the integration surface ¥ in (39) by its

smooth deformation 3
el = o5 = [ ar,0r 0,50
(40)

We may in particular make a shift > along 7 direction by a small value d7.

Hence, we can write

57 < Aol ) >=0, 7 7, (a1

However, the correlation function (39) changes if during the deformation

the surface 3 crosses the point (Zy, 7). Indeed, let us consider two surfaces
Y1 ={@1t=1n=7—-A)}and Xy = {(#,7 = =7+ A)}. Then

< Af(Tg)gb(fo,T()) > — <K Af(Tl)qb(fo,To) >=
Z/EO dZu < J}L(f, T)gb(fo,’i'o) >,
(42)

where the integration is going over the surface ¥y surrounding point (Zy, 7).

Using Gauss theorem we can write
< Ap(12)9(Zo, 70) > — < Ap(11) (o, T0) >=
z/ d'zd, < J5 (2)(Zo, T0) > .
) (13)
In KG theory
O < Jj(2)(Zo, T0) >= —6*(x — x0) f(z)
(44)
because
< ¢p(x)p(xg) >= D(x — x0) , where (m* — 82)D(x — x9) = §*(x — ).
(45)
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Therefore for the Heisenberg operators
< 0[[Ay, (Z,70)]|0 >= —1f (T, o), (46)
which gives the commutator (36).

2.8. ASYMPTOTIC IN-STATES IN THE THEORY WITH INTERACTION.

Let us now consider similar operators in the theory with interaction

~

[ 6, 0f
Ar=1 [ da(GEr - o3, (47)

where the function f is still obeys KG equation (34) but ¢(z) is now

Heisenberg operator of the theory with interaction.

Because the field qg does not satisfy KG eq. the current

Jf = 0"of — go"f
(48)

is not a conserved current and hence, the operator A s is not an integral of
motion so that flf, flg do not satisfy in general Heisenberg algebra
commutation relations (36).

But one can take the special limit of these operators

fllj}”: lim Af(r +t).

t——00
(49)
Due to claster property it appears then that A}” does not depend
on 7 and satisfy Heisenberg algebra relations (36).

To show this let us consider the wave packets

d3q

SN2
fﬁ,e(fﬁ):/@ﬂ)g eXP(qu—uﬁ')eXp(—(q p)

)

2€
_ d3 2 \2
Jre(@, ) = / (2753 exp (wW,T + 1G%) exp (_(q 26]53 ) (50)
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For the small € the packets have the form of localized packets

(51)

where

(52)

and ¥ = %ﬁ, wy = /D% + m?.
In the limit ¢ = —oo the packet fz (%, 7+1t) is centered at ¥ = vt. It

differs sufficiently from zero in some domain of the size % Hence,

in this limit the wave packets fj (7, 7+1t) with different 0; = i are well

QWZ-,‘Z,
spaced.
Let us define

. 00(Z, 7) NG

o= Br(Z L fe (T, )

o= [ En(F T gy — () )

. 00(T,7) ;. . 0f

T 3 ) L (= D€

Al =1 [ @al P gy — o)) (53)
and consider the correlation function

< AL (m1+at). A, (70 +1t) > (54)

in the limit ¢ — —oo. In view of (32), the correlators < ¢(z1, 71 +
1t)...0(Z,, To+1t) > will satisfy in this limit the euclidean KG equation with
a good precision because the (4-dimensional) euclidean distances |x; — x|
become large. Therefore, the correlation function (54) will not be depen-

dent on 7; (unless they are still 7-ordered: 7 < ... < 7,,) similar to the KG
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theory. This means that the operators

lim Ay (7 +at) = flgle

t——o00

(55)

do not depend on 7.

Moreover, one can repeat the analysis for KG theory and show that

[Agb,e’ AE:J - /dgx(fﬁhE@Tfﬁzyﬁ - fiﬁz,ﬁanﬁhE)
(56)

In the limit ¢ — 0 we obtain the Heisenberg algebra in the standard form

(A A“"] (27)32w;5,0 (1 — 1)

P1?

(Al Al = [A;j”,Ag”] —0 (57)

2%

The operators Am ATZ are called asymptotic in-operators. One can
create the space of asymptotic scatteringstates determining the vacuum

state |2 > which is determined by the equation

AZQ >=0
(58)
Then the state

B, ooes B >m= AL ALYQ > (59)

is called asymptotic scattering state, in-state.

Thus, we have
=ty tm (o

ATm = lim lim A (7 +at) (60)

e—0t—s—o0 D€
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where
1 “ .
Ap(r) = — / Br(0-F5e — 60 Fr)

A;[i’,e(T) - % / dgx(aTéfﬁ,e - ¢267']Eﬁ,6)
(61)

and fj., fﬁe are the wave packets solutions of KG equation in euclidean

space. The asymptotic in-operators A;l”‘, fl;m satisfy canonical com-

mutation relations of creation-annihilation operators (Heisenberg

algebra) and the asymptotic in-states

[Py oo B = AL AT > (62)

constitute an in- basis in Hilbert space H of the theory.
2.4. ASYMPTOTIC OUT-STATES IN THE THEORY WITH INTERACTION.

One can introduce another basis of out-states in the Hilbert space H:
= - __ ptTout tout
[ — A671 "'Acfn 1 >, (63)
where flgout, Agf‘t are given by taking another limit

A(’“t — lim lim Ay (7 + t),

e—0t—o0

Atout At
A" =lim lim A} (7 + o). (64)

e—0t—o0 ’

One can check completely similar that they do not depend on 7 and satisfy
canonical commutation relations of creation-annihilation opera-

tors (Heisenberg algebra) and the asymptotic out-states

‘ﬁlv . 7pn > out= A;[)TUt A;[)ZUIL’Q > (65)

constitute an out- basis in Hilbert space H of the theory.
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