Lecture 13.

Plan.

1. LSZ theory1.

- 1.1. Claster property.
- 1.2. Locality.
- 1.3. Additivity of the spectrum.
- 1.4. Källen-Lehmann spectral representation.

2. Asymptotic states.

- 2.1. Correlation functions at large distances.
- 2.2. Conserved currents and Heisenberg algebra in KG.
- 2.3. Asymptotic in-states.
- 2.4. Asymptotic out-states.

1. LSZ theory.

As we have seen the QFT has two mutually complementary points of view: one can consider the theory in euclidean space (statistical mechanics) or one can consider it in the Minkowski space (quantum mechanics). The important ussumption is boundness of spectrum of H from below.

For the Lorentz invariant theory it make sense to analyze the spectrum \mathcal{P} of the momentum operator P^{μ} , basing on the Lorentz invariance property. Boundnes from below means that there is the unique vacuum state $|\Omega\rangle$ (one can also cosider the theories with degenerate vacuum state), which is determined by

$$P^{\nu}|\Omega>=0, \ \nu=0,...,3 \tag{1}$$

and for any other state $|\alpha\rangle$ of the theory

$$H|\alpha \rangle = E_{\alpha}|\alpha \rangle, \ E_{\alpha} > 0 \ iff \ \alpha \neq \Omega$$

$$\tag{2}$$

Note also that for each \hat{P}^{ν} -eigenstate $|\alpha\rangle$ with eigenvalues P_{α}^{ν} its Lorentz group orbit is also in the spectrum of the theory. This orbit $\mathcal{P}_{\mu^2} \subset \mathcal{P}$ is the surface $P^{\nu}P_{\nu} = \mu^2$ and $\mathcal{P} = \bigcup_{\mu^2} \mathcal{P}_{\mu^2}$.

1.1. CLASTER PROPERTY.

The ussumptions (1), (2) allows to prove so called **claster property** of the correlation functions

$$\lim_{R \to \infty} \langle O_1(\vec{x}_1, \tau_1 + R) ... O_N(\vec{x}_N, \tau_N + R) O_{N+1}(\vec{x}_{N+1}, \tau_{N+1} ... O_{N+M}(\vec{x}_M, \tau_{N+M}) \rangle = \langle O_1(\vec{x}_1, \tau_1) ... O_N(\vec{x}_N, \tau_N) \rangle \langle O_{N+1}(\vec{x}_{N+1}, \tau_{N+1} ... O_{N+M}(\vec{x}_M, \tau_{N+M}) \rangle .$$
(3)

Proof.

If
$$\tau_1 \ge \tau_2 \ge ... \tau_N$$

 $< O_1(\vec{x}_1, \tau_1) ... O_N(\vec{x}_N, \tau_N) > = < \Omega |\hat{O}_1(\vec{x}_1, \tau_1) ... \hat{O}_N(\vec{x}_N, \tau_N)|\Omega >,$
(4)

where

$$\hat{O}(\vec{x},\tau) = \exp\left(\hat{H}\tau\right)O(\vec{x},0)\exp\left(-\hat{H}\tau\right)\ (\tau = \imath t).$$
(5)

Hence

$$<\Omega|\hat{O}_{1}(\vec{x}_{1},\tau_{1}+R)...\hat{O}_{N}(\vec{x}_{N},\tau_{N}+R)\hat{O}_{N+1}(\vec{x}_{N+1},\tau_{N+1})......\hat{O}_{N+M}(\vec{x}_{N+M},\tau_{N+M})|\Omega> =$$

$$<\Omega|\hat{O}_{1}(\vec{x}_{1},\tau_{1})...\hat{O}_{N}(\vec{x}_{N},\tau_{N})\exp(-\hat{H}R)\hat{O}_{N+1}(\vec{x}_{N+1},\tau_{N+1})...\hat{O}_{N+M}(\vec{x}_{N+M},\tau_{N+M})|\Omega>.$$

(6)

Now we insert the identity operator $\sum_{\alpha} |\alpha\rangle < \alpha|$ and use that $|\alpha\rangle$ is a Hamiltonian eigenstate:

$$\sum_{\alpha} < \Omega | \hat{O}_{1}(\vec{x}_{1},\tau_{1})...\hat{O}_{N}(\vec{x}_{N},\tau_{N}) \exp(-\hat{H}R) | \alpha > < \alpha | \hat{O}_{N+1}(\vec{x}_{N+1},\tau_{N+1}) ...\hat{O}_{N+M}(\vec{x}_{N+M},\tau_{N+M}) | \Omega > = \exp(-E_{\alpha}R) \sum_{\alpha} < \Omega | \hat{O}_{1}(\vec{x}_{1},\tau_{1})...\hat{O}_{N}(\vec{x}_{N},\tau_{N}) | \alpha > < \alpha | \hat{O}_{N+1}(\vec{x}_{N+1},\tau_{N+1}) ...\hat{O}_{N+M}(\vec{x}_{N+M},\tau_{N+M}) | \Omega > \Rightarrow \lim_{R \to \infty} < \Omega | \hat{O}_{1}(\vec{x}_{1},\tau_{1}+R)...\hat{O}_{N}(\vec{x}_{N},\tau_{N}+R) \hat{O}_{N+1}(\vec{x}_{N+1},\tau_{N+1}) ...\hat{O}_{N+M}(\vec{x}_{N+M},\tau_{N+M}) | \Omega > = < \Omega | \hat{O}_{1}(\vec{x}_{1},\tau_{1})...\hat{O}_{N}(\vec{x}_{N},\tau_{N}) | \Omega > < \Omega | \hat{O}_{N+1}(\vec{x}_{N+1},\tau_{N+1})...\hat{O}_{N+M}(\vec{x}_{M},\tau_{N+M}) | \Omega >$$
(7)

Thus, the claster property follows from boundedness of the sperctrum from below.

1.2. LOCALITY.

Let us consider $\langle O_1(\vec{x},\tau)O_2(\vec{0},0) \rangle$. If $\tau > 0$

$$< O_{1}(\vec{x},\tau)O_{2}(\vec{0},0) > = < \Omega |O_{1}(\vec{x},\tau)O_{2}(\vec{0},0)|\Omega > = < \Omega |O_{1}(\vec{x},0) \exp(-\hat{H}\tau)O_{2}(\vec{0},0)|\Omega > = \sum_{\alpha} \exp(-E_{\alpha}\tau) < \Omega |O_{1}(\vec{x},0)|\alpha > < \alpha |O_{2}(\vec{0},0)|\Omega > .$$
(8)

The eigenvalues $E_{\alpha} \ge 0$ and we assume that the series is convergent (so that 2-point function exists). It then defines analytic function $G_+(\vec{x},\tau)$

for $Re(\tau) > 0$.

Let us analogously calculate the correlation function with opposit order,

$$< O_{2}(\vec{0}, 0)O_{1}(\vec{x}, \tau) > = < \Omega |O_{2}(\vec{0}, 0)O_{1}(\vec{x}, \tau)|\Omega > = < \Omega |O_{2}(\vec{0}, 0) \exp(\hat{H}\tau)O_{1}(\vec{x}, 0)|\Omega > = \sum_{\alpha} < \Omega |O_{1}(\vec{x}, 0)|\alpha > < \alpha |O_{2}(\vec{0}, 0)|\Omega > \exp(E_{\alpha}\tau)$$
(9)

This correlator determines analytic function $G_{-}(\vec{x},\tau)$ for $Re(\tau) < 0$. The imaginary $\tau = it$ axis corresponds to the theory in Minkowski space.

When $-|\vec{x}| < t < |\vec{x}|$ the vector (\vec{x}, t) is space-like. Due to Lorentz invariance we conclude that

$$G_{-}(\vec{x}, \imath t - 0) = G_{+}(\vec{x}, \imath t + 0) \ when \ -|\vec{x}| < t < |\vec{x}|$$
(10)

(recall similar arguments for the KG theory where we rotated the 3-vector \vec{x} to the vector $-\vec{x}$ in the framework t = 0). Thus, $G_{-}(\vec{x}, \tau)$ is analitic continuation of $G_{+}(\vec{x}, \tau)$ into the half-plane $Re(\tau) < 0$. But in the region $t > \pm |\vec{x}|$ the limiting values of $G_{\pm}(\vec{x}, \tau)$ may not coinside. In other words, similar to KG theory

$$G_{+}(\vec{x}, \imath t + 0) - G_{-}(\vec{x}, \imath t - 0) \equiv <\Omega |[\hat{O}_{1}(\vec{x}, t), \hat{O}_{2}(\vec{0}, 0)]|\Omega>$$
(11)

and it vanishes for the space-like vectors (\vec{x}, t) . This is locality property of the Green's functions in the theory with interaction.

1.3. ADDITIVITY OF THE SPECTRUM.

Let us consider the correlation function

$$< O(\vec{x}, \tau) O(\vec{x}, 0) O(\vec{0}, \tau) O(\vec{0}, 0) >$$
(12)

In euclidean space the correaltion functions are invariant w.r.t. O(4) (it is the Lorentz group in imaginary time). Hence, one can take any linear combination of components of P^{ν} as a Hamiltonian and use the claster property above to show that

$$\lim_{|\vec{x}| \to \infty} \langle O(\vec{x}, \tau) O(\vec{x}, 0) O(\vec{0}, \tau) O(\vec{0}, 0) \rangle = \langle O(\vec{0}, \tau) O(\vec{0}, 0) \rangle^2 .$$
(13)

On the other hand, because of the correlation functions are related with the vacuum expectation value of the product of time-ordered (in our case, τ -ordered) Heisenberg field operators, one can write

$$< O(\vec{x}, \tau) O(\vec{x}, 0) O(\vec{0}, \tau) O(\vec{0}, 0) > = < \Omega | T(\hat{O}(\vec{x}, \tau) \hat{O}(\vec{x}, 0) \hat{O}(\vec{0}, \tau) \hat{O}(\vec{0}, 0)) | \Omega > = < \Omega | \hat{O}(\vec{0}, \tau) \hat{O}(\vec{x}, 0) \hat{O}(\vec{0}, 0) | \Omega > = \sum_{\gamma} < \Omega | \hat{O}(\vec{0}, 0) \hat{O}(\vec{x}, 0) \exp(-\hat{H}\tau) | \gamma > < \gamma | \hat{O}(\vec{x}, 0) \hat{O}(\vec{0}, 0) | \Omega > = \sum_{\gamma} \exp(-E_{\gamma}\tau) < \Omega | \hat{O}(\vec{0}, 0) \hat{O}(\vec{x}, 0) | \gamma > < \gamma | \hat{O}(\vec{x}, 0) \hat{O}(\vec{0}, 0) | \Omega > = \sum_{\gamma} \exp(-E_{\gamma}\tau) | < \Omega | \hat{O}(\vec{0}, 0) \hat{O}(\vec{x}, 0) | \gamma > |^{2}.$$
(14)

At the same time

$$< O(\vec{0},\tau)O(\vec{0},0) >^{2} = < \Omega |\hat{O}(\vec{0},\tau)\hat{O}(\vec{0},0)|\Omega >^{2} = \sum_{\alpha,\beta} |< \Omega |\hat{O}(\vec{0},0)|\alpha > |^{2} |< \Omega |\hat{O}(\vec{0},0)|\beta > |^{2} \exp\left(-(E_{\alpha} + E_{\beta})\tau\right)$$
(15)

which shows that if $E_{\alpha}, E_{\beta} \in \mathcal{P}$ then $E_{\alpha} + E_{\beta} \in \mathcal{P}$. Due to the Lorentz (O(4) invariance in euclidean formulation) invariance we conclude that if $P_{\alpha}^{\mu}, P_{\beta}^{\mu} \in \mathcal{P}$ then $P_{\alpha}^{\mu} + P_{\beta}^{\mu} \in \mathcal{P}$. It is clear also that if $P_{\alpha}^{\mu} \in \mathcal{P}$ then $\Lambda_{\nu}^{\mu}P_{\alpha}^{\nu} \in \mathcal{P}$ for any Lorentz transformation Λ . If the spectrum \mathcal{P} contains at least one 1-particle state with the mass m then the spectrum contains also a surface of states $P^2 = m^2$.

1.4. KÄLLEN-LEHMANN SPECTRAL REPRESENTATION.

Let us consider 2-point correlation function with $\tau>0$

$$<\phi(\vec{x},\tau)\phi(\vec{0},0) > = <\Omega|\hat{\phi}(\vec{x},\tau)\hat{\phi}(\vec{0},0)|\Omega> =$$

$$\sum_{\alpha} \int \frac{d^{3}q}{(2\pi)^{3}2E_{\vec{q}}(\alpha)} <\Omega|\hat{\phi}(\vec{x},\tau)|\alpha_{\vec{q}} > <\alpha_{\vec{q}}|\hat{\phi}(\vec{0},0)|\Omega> =$$

$$\sum_{\alpha} \int \frac{d^{3}q}{(2\pi)^{3}2E_{\vec{q}}(\alpha)} <\Omega|\hat{\phi}(\vec{x},0)\exp(-\hat{H}\tau)|\alpha_{\vec{q}} > <\alpha_{\vec{q}}|\hat{\phi}(\vec{0},0)|\Omega> =$$

$$\sum_{\alpha} \exp(-E_{\alpha}\tau) \int \frac{d^{3}q}{(2\pi)^{3}2E_{\vec{q}}(\alpha)} <\Omega|\hat{\phi}(\vec{x},0)|\alpha_{\vec{q}} > <\alpha_{\vec{q}}|\hat{\phi}(\vec{0},0)|\Omega> .$$
(16)

Due to translation invariance

$$[\hat{\vec{P}}, \hat{\phi}(\vec{x}, 0)] = -i\nabla\hat{\phi}(\vec{x}, 0)$$
(17)

we can write

$$\hat{\phi}(\vec{x},0) = \exp\left(i\hat{P}_{i}x^{i}\right)\hat{\phi}(0,0)\exp\left(-i\hat{P}_{i}x^{i}\right), \ i = 1, 2, 3.$$
(18)

Therefore

$$<\Omega|\phi(\vec{x},\tau)\phi(\vec{0},0)|\Omega> =$$

$$\sum_{\alpha} \int \frac{d^{3}q}{(2\pi)^{3}2E_{\vec{q}}(\alpha)} <\Omega|\hat{\phi}(\vec{0},0)|\alpha> <\alpha|\hat{\phi}(\vec{0},0)|\Omega> \exp\left(-E_{\vec{q}}(\alpha)\tau + i\vec{q}\vec{x}\right) =$$

$$\sum_{\alpha} \int \frac{d^{3}q}{(2\pi)^{3}2E_{\vec{q}}(\alpha)}|<\Omega|\hat{\phi}(\vec{0},0)|\alpha>|^{2}\exp\left(-E_{\vec{q}}(\alpha)\tau + i\vec{q}\vec{x}\right),$$
(19)

where $|\alpha\rangle$ is a momentum $\hat{\vec{P}} = \vec{q}$ state. (Recall also that $\frac{d^3q_{\alpha}}{(2\pi)^3 2E(\alpha)}$ is Lorentz invariant and 4-vector $q^{\mu} = (q^0, q^i) = (q^0, \vec{q})$, while $q_{\mu} = (q^0, -q^i) = (q^0, -\vec{q})$. Now we take into account the Lorentz invariance of the spectrum so that the summation over the states $|\alpha\rangle\rangle$ can be decomposed in the integration over the Lorentz orbits $q^2 = \mu^2$:

$$\int_{0}^{\infty} \frac{d\mu^{2}}{2\pi} (2\pi \sum_{\alpha} | < \Omega | \hat{\phi}(\vec{0}, 0) | \alpha > |^{2} \delta(\mu^{2} - m_{\alpha}^{2})) \int \frac{d^{3}q}{(2\pi)^{3} 2E_{\vec{q}}} \exp\left(-E_{\vec{q}}\tau + \imath \vec{q}_{\alpha}\vec{x}\right) = \int_{0}^{\infty} \frac{d\mu^{2}}{2\pi} \rho(\mu^{2}) \int \frac{d^{3}q}{(2\pi)^{3} 2E_{\vec{q}}} \exp\left(-E_{\vec{q}}\tau + \imath \vec{q}_{\alpha}\vec{x}\right),$$
(20)

where

$$\rho(\mu^2) = 2\pi \sum_{\alpha} |<\Omega|\hat{\phi}(\vec{0},0)|\alpha>|^2\delta(\mu^2 - m_{\alpha}^2).$$
(21)

For the case $\tau < 0$ we should change $\exp(-E_{\vec{q}}\tau) \to \exp(E_{\vec{q}}\tau)$. In both cases one can use

$$\frac{1}{2E_{\vec{q}}}\exp\left(-E_{\vec{q}}|\tau|\right) = \int \frac{dq_4}{(2\pi)} \frac{1}{q_4^2 + \vec{q}^2 + \mu^2} \exp\left(iq_4\tau\right)$$
(22)

It allows to write finally

$$<\phi(\vec{x},\tau)\phi(\vec{0},0)> = \int_0^\infty \frac{d\mu^2}{2\pi}\rho(\mu^2)D(|x|,\mu^2),$$
(23)

where $|x| = \sqrt{\tau^2 + \vec{x}^2}$ and

$$D(|x|, \mu^2) = \int \frac{d^4k}{(2\pi)^4} \frac{\exp\left(ik_4\tau + i\vec{k}\vec{x}\right)}{k_4^2 + \vec{k}^2 + \mu^2}.$$
(24)

The 2-point correlation function expression above is called **Källen-Lehmann** spectral representation.

If the theory contains 1-particle state |1> with mass m the function $\rho(\mu^2)$ must take the form

$$\rho(\mu^2) = 2\pi Z \delta(\mu^2 - m^2) + \tilde{\rho}(\mu^2) , \ \tilde{\rho}(\mu^2) = 0 , \ for \ \mu^2 < 4m^2$$
(25)

(this is true if the spacetrum does not contain bound states whose mass $M^2 < 4m^2$), where

$$Z^{\frac{1}{2}} = <\Omega|\hat{\phi}|1>.$$
(26)

2. Asymptotic states.

We need asymptotic states to formulate the scattering problem.

2.1. CORRELATION FUNCTIONS AT LARGE DISTANCES.

The 2-point function (Källen-Lehmann spectral representation) can be written as

$$<\phi(x)\phi(0)>=ZD(|x|,m^2)+\int_{4m^2}^{\infty}\frac{d\mu^2}{(2\pi)}\rho(\mu^2)D(|x|,\mu^2),$$
(27)

where

$$D(|x|, \mu^2) = \int \frac{d^4k}{(2\pi)^4} \frac{\exp(ikx)}{k^2 + \mu^2}$$
(28)

is euclidean propagator for the free field with mass μ . Its asymptotic at large distancies is

$$D(|x|, m^2) \approx \frac{m^{\frac{1}{2}}}{|x|^{\frac{3}{2}}} \exp\left(-m|x|\right).$$
(29)

Hence, at large distances the contributions from the multiparticle states are less essential because they are more massive, so we can write

$$\langle \phi(x)\phi(0) \rangle \approx ZD(|x|,m^2)$$
(30)

if $Z \neq 0$. Therefore

$$(m^{2} - \partial_{\tau}^{2} - \vec{\nabla}^{2}) < \phi(x)\phi(0) >= 0 + O(exp(-2m|x|)),$$
(31)

(the δ -function in the right hand side is equal zero when $x \neq 0$). It means that at large distances the 2-point function satisfy KG equation with a mass m. Due to the cluster property, the same is true for the N-point correlation function:

$$(m^2 - \partial_{\mu}^2) < \phi(x)\phi(x_1)...\phi(x_{N-1}) > \approx 0 \text{ when } |x - x_i| \to \infty.$$
(32)

This fact is important to understand the Hilbert space of states in the theory with interaction. It also allows to introduce the notion of asymptotic states.

2.2. CONSERVED CURRENTS AND HEISENBERG ALGEBRA IN KG.

In KG theory we have introduced creation-annihilation operators

$$\hat{A}_f = \imath \int_{\Sigma} d^3 x (\frac{\partial \hat{\phi}}{\partial \tau} f - \hat{\phi} \frac{\partial f}{\partial \tau}), \qquad (33)$$

where the integration is going over the 3-dim. surface Σ fixed by an arbitrary chosen value of τ . The function f satisfy KG equation

$$(m^2 - \partial_\mu^2) f(\vec{x}, \tau) = 0 \tag{34}$$

and $\hat{\phi}(\vec{x},\tau)$ is a Heisenberg operator

$$\hat{\phi}(\vec{x},\tau) = \exp\left(\hat{H}\tau\right)\phi(\vec{x},0)\exp\left(-\hat{H}\tau\right), \ \frac{\partial\phi}{\partial\tau} = [\hat{H},\hat{\phi}]$$
(35)

The operators \hat{A}_f satisfy Heisenberg algebra commutation relations

$$[\hat{A}_f, \hat{A}_g] = \int_{\Sigma} d^3 x (\frac{\partial f}{\partial \tau} g - f \frac{\partial g}{\partial \tau}), \qquad (36)$$

where

$$\hat{A}_f = i \int_{\Sigma} d^3 x \left(\frac{\partial \hat{\phi}}{\partial \tau} f - \hat{\phi} \frac{\partial f}{\partial \tau}\right). \tag{37}$$

To prove (36) notice first that for f fulfilling KG equation, we have the conservation low

$$\partial_{\mu}J_{f}^{\mu} = 0 , \ J_{f}^{\mu} = \partial^{\mu}\phi f - \phi\partial^{\mu}f.$$
(38)

Therefore the correlation function

 $\langle A_f(\tau)\phi(\vec{x}_0,\tau_0)\rangle > \tag{39}$

does not change when we change the integration surface Σ in (39) by its smooth deformation $\tilde{\Sigma}$

$$i \int_{\Sigma} d^3 x \left(\frac{\partial \phi}{\partial \tau} f - \phi \frac{\partial f}{\partial \tau}\right) = i \int_{\tilde{\Sigma}} d\Sigma^{\mu} (\partial_{\mu} \phi f - \partial_{\mu} f \phi)$$
(40)

We may in particular make a shift Σ along τ direction by a small value $\delta \tau$. Hence, we can write

$$\frac{\partial}{\partial \tau} < A_f(\tau)\phi(\vec{x}_0,\tau_0) >= 0 , \ \tau \neq \tau_0.$$
(41)

However, the correlation function (39) changes if during the deformation the surface $\tilde{\Sigma}$ crosses the point (\vec{x}_0, τ_0) . Indeed, let us consider two surfaces $\Sigma_1 = \{(\vec{x}, \tau = \tau_1 = \tau_0 - \Delta)\}$ and $\Sigma_2 = \{(\vec{x}, \tau = \tau_2 = \tau_0 + \Delta)\}$. Then

$$< A_{f}(\tau_{2})\phi(\vec{x}_{0},\tau_{0}) > - < A_{f}(\tau_{1})\phi(\vec{x}_{0},\tau_{0}) > =$$

$$i \int_{\Sigma_{0}} d\Sigma_{\mu} < J_{f}^{\mu}(\vec{x},\tau)\phi(\vec{x}_{0},\tau_{0}) >,$$
(42)

where the integration is going over the surface Σ_0 surrounding point (\vec{x}_0, τ_0) . Using Gauss theorem we can write

$$< A_{f}(\tau_{2})\phi(\vec{x}_{0},\tau_{0}) > - < A_{f}(\tau_{1})\phi(\vec{x}_{0},\tau_{0}) > =$$

$$i \int_{D_{0}} d^{4}x \partial_{\mu} < J_{f}^{\mu}(x)\phi(\vec{x}_{0},\tau_{0}) > .$$
(43)

In KG theory

$$\partial_{\mu} < J_f^{\mu}(x)\phi(\vec{x}_0,\tau_0) > = -\delta^4(x-x_0)f(x)$$

(44)

because

$$\langle \phi(x)\phi(x_0) \rangle = D(x-x_0)$$
, where $(m^2 - \partial_{\mu}^2)D(x-x_0) = \delta^4(x-x_0).$

(45)

Therefore for the Heisenberg operators

$$<0|[\hat{A}_{f},\hat{\phi}(\vec{x},\tau_{0})]|0>=-\imath f(\vec{x}_{0},\tau_{0}),$$
(46)

which gives the commutator (36).

2.3. ASYMPTOTIC IN-STATES IN THE THEORY WITH INTERACTION.

Let us now consider similar operators in the theory with interaction

$$\hat{A}_f = i \int_{\Sigma} d^3 x \left(\frac{\partial \hat{\phi}}{\partial \tau} f - \hat{\phi} \frac{\partial f}{\partial \tau}\right), \tag{47}$$

where the function f is still obeys KG equation (34) but $\hat{\phi}(x)$ is now Heisenberg operator of the theory with interaction.

Because the field $\hat{\phi}$ does not satisfy KG eq. the current

$$J_f^{\mu} = \partial^{\mu} \hat{\phi} f - \hat{\phi} \partial^{\mu} f \tag{48}$$

is not a conserved current and hence, the operator \hat{A}_f is not an integral of motion so that \hat{A}_f , \hat{A}_g do not satisfy in general Heisenberg algebra commutation relations (36).

But one can take the special limit of these operators

$$\hat{A}_{f}^{in} = \lim_{t \to -\infty} \hat{A}_{f}(\tau + \imath t).$$
(49)

Due to claster property it appears then that \hat{A}_{f}^{in} does not depend on τ and satisfy Heisenberg algebra relations (36).

To show this let us consider the wave packets

$$f_{\vec{p},\epsilon}(\vec{x},\tau) = \int \frac{d^3q}{(2\pi)^3} \exp\left(\omega_q \tau - \imath \vec{q} \vec{x}\right) \exp\left(-\frac{(\vec{q}-\vec{p})^2}{2\epsilon}\right)$$
$$\bar{f}_{\vec{p},\epsilon}(\vec{x},\tau) = \int \frac{d^3q}{(2\pi)^3} \exp\left(\omega_q \tau + \imath \vec{q} \vec{x}\right) \exp\left(-\frac{(\vec{q}-\vec{p})^2}{2\epsilon}\right)$$
(50)

For the small ϵ the packets have the form of localized packets

$$f_{\vec{p},\epsilon}(\vec{x},\tau) = \exp\left(\omega_p \tau - \imath \vec{p} \vec{x}\right) \psi_\epsilon(\vec{x} - \imath \vec{v} \tau),$$

$$\bar{f}_{\vec{p},\epsilon}(\vec{x},\tau) = \exp\left(\omega_p \tau + \imath \vec{p} \vec{x}\right) \psi_\epsilon(\vec{x} + \imath \vec{v} \tau),$$

(51)

where

$$\psi_{\epsilon}(\vec{y}) = \exp\left(-\frac{\epsilon}{2}\vec{y}^2\right) \tag{52}$$

and $\vec{v} = \frac{\vec{p}}{2\omega_{\vec{p}}}, \, \omega_p = \sqrt{\vec{p}^2 + m^2}.$

In the limit $t \to -\infty$ the packet $f_{\vec{p},\epsilon}(\vec{x},\tau+\imath t)$ is centered at $\vec{x} = \vec{v}t$. It differs sufficiently from zero in some domain of the size $\frac{1}{\sqrt{\epsilon}}$. Hence, in this limit the wave packets $f_{\vec{p}_i,\epsilon}(\vec{x},\tau+\imath t)$ with different $\vec{v}_i = \frac{\vec{p}_i}{2\omega_{\vec{p}_i}}$ are well spaced.

Let us define

$$\hat{A}_{\vec{p},\epsilon} = \imath \int_{\Sigma} d^3 x \left(\frac{\partial \hat{\phi}(\vec{x},\tau)}{\partial \tau} f_{\vec{p},\epsilon} - \hat{\phi}(\vec{x},\tau) \frac{\partial f_{\vec{p},\epsilon}}{\partial \tau} \right)$$
$$\hat{A}_{\vec{p},\epsilon}^{\dagger} = \imath \int_{\Sigma} d^3 x \left(\frac{\partial \hat{\phi}(\vec{x},\tau)}{\partial \tau} \bar{f}_{\vec{p},\epsilon} - \hat{\phi}(\vec{x},\tau) \frac{\partial \bar{f}_{\vec{p},\epsilon}}{\partial \tau} \right)$$
(53)

and consider the correlation function

$$< A^{\dagger}_{\vec{p}_{1},\epsilon}(\tau_{1}+\imath t)...A_{\vec{p}_{n},\epsilon}(\tau_{n}+\imath t) >$$
(54)

in the limit $t \to -\infty$. In view of (32), the correlators $\langle \phi(\vec{x}_1, \tau_1 + it)...\phi(\vec{x}_n, \tau_n + it) \rangle$ will satisfy in this limit the euclidean KG equation with a good precision because the (4-dimensional) euclidean distances $|x_i - x_j|$ become large. Therefore, the correlation function (54) will not be dependent on τ_i (unless they are still τ -ordered: $\tau_1 < ... < \tau_n$) similar to the KG theory. This means that the operators

$$\lim_{t \to -\infty} \hat{A}_{\vec{p},\epsilon}(\tau + \imath t) \equiv \hat{A}_{\vec{p},\epsilon}^{in}$$
(55)

do not depend on τ .

Moreover, one can repeat the analysis for KG theory and show that

$$[\hat{A}^{in}_{\vec{p}_1,\epsilon}, \hat{A}^{\dagger in}_{\vec{p}_2,\epsilon}] = \int d^3x (f_{\vec{p}_1,\epsilon}\partial_\tau \bar{f}_{\vec{p}_2,\epsilon} - \bar{f}_{\vec{p}_2,\epsilon}\partial_\tau f_{\vec{p}_1,\epsilon})$$
(56)

In the limit $\epsilon \to 0$ we obtain the Heisenberg algebra in the standard form

$$[\hat{A}_{\vec{p}_{1}}^{in}, \hat{A}_{\vec{p}_{2}}^{\dagger in}] = (2\pi)^{3} 2\omega_{\vec{p}_{1}} \delta(\vec{p}_{1} - \vec{p}_{2}) [\hat{A}_{\vec{p}_{1}}^{in}, \hat{A}_{\vec{p}_{2}}^{in}] = [\hat{A}_{\vec{p}_{1}}^{\dagger in}, \hat{A}_{\vec{p}_{2}}^{\dagger in}] = 0$$

$$(57)$$

The operators $\hat{A}_{\vec{p}}^{in}, \hat{A}_{\vec{p}}^{\dagger in}$ are called **asymptotic in-operators**. One can create the space of asymptotic scatteringstates determining the vacuum state $|\Omega\rangle$ which is determined by the equation

$$\hat{A}_{\vec{p}}^{in}|\Omega\rangle = 0 \tag{58}$$

Then the state

$$|\vec{p}_1, ..., \vec{p}_n >_{in} \equiv A_{\vec{p}_1}^{\dagger in} ... A_{\vec{p}_n}^{\dagger in} |\Omega >$$
 (59)

is called asymptotic scattering state, in-state.

Thus, we have

$$\hat{A}_{\vec{p}}^{in} = \lim_{\epsilon \to 0} \lim_{t \to -\infty} \hat{A}_{\vec{p},\epsilon}(\tau + it)$$
$$\hat{A}_{\vec{p}}^{\dagger in} = \lim_{\epsilon \to 0} \lim_{t \to -\infty} \hat{A}_{\vec{p},\epsilon}^{\dagger}(\tau + it)$$
(60)

where

$$\hat{A}_{\vec{p},\epsilon}(\tau) = \frac{1}{\sqrt{Z}} \int d^3 x (\partial_\tau \hat{\phi} f_{\vec{p},\epsilon} - \hat{\phi} \partial_\tau f_{\vec{p},\epsilon})$$
$$\hat{A}^{\dagger}_{\vec{p},\epsilon}(\tau) = \frac{1}{\sqrt{Z}} \int d^3 x (\partial_\tau \hat{\phi} \bar{f}_{\vec{p},\epsilon} - \hat{\phi} \partial_\tau \bar{f}_{\vec{p},\epsilon})$$
(61)

and $f_{\vec{p},\epsilon}$, $\bar{f}_{\vec{p},\epsilon}$ are the wave packets solutions of KG equation in euclidean space. The asymptotic in-operators $\hat{A}_{\vec{p}}^{in}$, $\hat{A}_{\vec{p}}^{\dagger in}$ satisfy canonical commutation relations of creation-annihilation operators (Heisenberg algebra) and the asymptotic in-states

$$|\vec{p}_1, ..., \vec{p}_n \rangle_{in} \equiv A_{\vec{p}_1}^{\dagger in} ... A_{\vec{p}_n}^{\dagger in} |\Omega \rangle$$
 (62)

constitute an in- basis in Hilbert space \mathcal{H} of the theory.

2.4. ASYMPTOTIC OUT-STATES IN THE THEORY WITH INTERACTION.

One can introduce another basis of out-states in the Hilbert space \mathcal{H} :

$$|\vec{q}_1, \dots, \vec{q}_n\rangle_{out} \equiv A^{\dagger out}_{\vec{q}_1} \dots A^{\dagger out}_{\vec{q}_n} |\Omega\rangle, \tag{63}$$

where $\hat{A}_{\vec{q}}^{\dagger out}$, $\hat{A}_{\vec{q}}^{out}$ are given by taking another limit

$$\hat{A}_{\vec{p}}^{out} = \lim_{\epsilon \to 0} \lim_{t \to \infty} \hat{A}_{\vec{p},\epsilon}(\tau + \imath t),$$
$$\hat{A}_{\vec{p}}^{\dagger out} = \lim_{\epsilon \to 0} \lim_{t \to \infty} \hat{A}_{\vec{p},\epsilon}^{\dagger}(\tau + \imath t).$$
(64)

One can check completely similar that they do not depend on τ and satisfy canonical commutation relations of creation-annihilation operators (Heisenberg algebra) and the asymptotic out-states

$$|\vec{p}_1, \dots, \vec{p}_n \rangle_{out} \equiv A_{\vec{p}_1}^{\dagger out} \dots A_{\vec{p}_n}^{\dagger out} |\Omega\rangle$$
(65)

constitute an out- basis in Hilbert space \mathcal{H} of the theory.