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1. LSZ theory.

As we have seen the QFT has two mutually complementary points of

view: one can consider the theory in euclidean space (statistical mechanics)

or one can consider it in the Minkowski space (quantum mechanics). The

important ussumption is boundness of spectrum of H from below.

For the Lorentz invariant theory it make sense to analyze the spectrum P
of the momentum operator P µ, basing on the Lorentz invariance property.

Boundnes from below means that there is the unique vacuum state |Ω >

(one can also cosider the theories with degenerate vacuum state), which is

determined by

P ν|Ω >= 0, ν = 0, ..., 3 (1)

and for any other state |α > of the theory

H|α >= Eα|α >, Eα > 0 iff α ̸= Ω (2)

1



Note also that for each P̂ ν-eigenstate |α > with eigenvalues P ν
α its Lorentz

group orbit is also in the spectrum of the theory. This orbit Pµ2 ⊂ P is

the surface P νPν = µ2 and P =
⋃

µ2 Pµ2.

1.1. CLASTER PROPERTY.

The ussumptions (1), (2) allows to prove so called claster property of

the correlation functions

lim
R→∞

< O1(x⃗1, τ1 +R)...ON(x⃗N , τN +R)ON+1(x⃗N+1, τN+1...ON+M(x⃗M , τN+M) >=

< O1(x⃗1, τ1)...ON(x⃗N , τN) >< ON+1(x⃗N+1, τN+1...ON+M(x⃗M , τN+M) > .

(3)

Proof.

If τ1 ≥ τ2 ≥ ...τN

< O1(x⃗1, τ1)...ON(x⃗N , τN) >=< Ω|Ô1(x⃗1, τ1)...ÔN(x⃗N , τN)|Ω >,

(4)

where

Ô(x⃗, τ) = exp (Ĥτ)O(x⃗, 0) exp (−Ĥτ) (τ = ıt).

(5)

Hence

< Ω|Ô1(x⃗1, τ1 +R)...ÔN(x⃗N , τN +R)ÔN+1(x⃗N+1, τN+1)...

...ÔN+M(x⃗N+M , τN+M)|Ω >=

< Ω|Ô1(x⃗1, τ1)...ÔN(x⃗N , τN) exp (−ĤR)ÔN+1(x⃗N+1, τN+1)

...ÔN+M(x⃗N+M , τN+M)|Ω > .

(6)
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Now we insert the identity operator
∑

α |α >< α| and use that |α > is a

Hamiltonian eigenstate:∑
α

< Ω|Ô1(x⃗1, τ1)...ÔN(x⃗N , τN) exp (−ĤR)|α >

< α|ÔN+1(x⃗N+1, τN+1)

...ÔN+M(x⃗N+M , τN+M)|Ω >=

exp (−EαR)
∑
α

< Ω|Ô1(x⃗1, τ1)...ÔN(x⃗N , τN)|α >

< α|ÔN+1(x⃗N+1, τN+1)

...ÔN+M(x⃗N+M , τN+M)|Ω >⇒

lim
R→∞

< Ω|Ô1(x⃗1, τ1 +R)...ÔN(x⃗N , τN +R)ÔN+1(x⃗N+1, τN+1)

...ÔN+M(x⃗N+M , τN+M)|Ω >=

< Ω|Ô1(x⃗1, τ1)...ÔN(x⃗N , τN)|Ω >

< Ω|ÔN+1(x⃗N+1, τN+1)...ÔN+M(x⃗M , τN+M)|Ω >

(7)

Thus, the claster property follows from boundedness of the sperc-

trum from below.

1.2. LOCALITY.

Let us consider < O1(x⃗, τ)O2(⃗0, 0) >. If τ > 0

< O1(x⃗, τ)O2(⃗0, 0) >=< Ω|O1(x⃗, τ)O2(⃗0, 0)|Ω >=

< Ω|O1(x⃗, 0) exp (−Ĥτ)O2(⃗0, 0)|Ω >=∑
α

exp (−Eατ) < Ω|O1(x⃗, 0)|α >< α|O2(⃗0, 0)|Ω > .

(8)

The eigenvalues Eα ≥ 0 and we assume that the series is convergent (so

that 2-point fuction exists). It then defines analytic function G+(x⃗, τ)
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for Re(τ) > 0.

Let us analogously calculate the correlation function with opposit order,

< O2(⃗0, 0)O1(x⃗, τ) >=< Ω|O2(⃗0, 0)O1(x⃗, τ)|Ω >=

< Ω|O2(⃗0, 0) exp (Ĥτ)O1(x⃗, 0)|Ω >=∑
α

< Ω|O1(x⃗, 0)|α >< α|O2(⃗0, 0)|Ω > exp (Eατ)

(9)

This correlator determines analytic function G−(x⃗, τ) for Re(τ) < 0. The

imaginary τ = ıt axis corresponds to the theory in Minkowski

space.

When −|x⃗| < t < |x⃗| the vector (x⃗, t) is space-like. Due to Lorentz

invariance we conclude that

G−(x⃗, ıt− 0) = G+(x⃗, ıt+ 0) when − |x⃗| < t < |x⃗|

(10)

(recall similar arguments for the KG theory where we rotated the 3-vector

x⃗ to the vector −x⃗ in the framework t = 0). Thus, G−(x⃗, τ) is analitic

continuation of G+(x⃗, τ) into the half-plane Re(τ) < 0. But in the region

t > ±|x⃗| the limiting values of G±(x⃗, τ) may not coinside. In other words,

similar to KG theory

G+(x⃗, ıt+ 0)−G−(x⃗, ıt− 0) ≡< Ω|[Ô1(x⃗, t), Ô2(⃗0, 0)]|Ω >

(11)

and it vanishes for the space-like vectors (x⃗, t). This is locality property

of the Green’s functions in the theory with interaction.

1.3. ADDITIVITY OF THE SPECTRUM.
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Let us consider the correlation function

< O(x⃗, τ)O(x⃗, 0)O(⃗0, τ)O(⃗0, 0) >

(12)

In euclidean space the correaltion functions are invariant w.r.t. O(4) (it

is the Lorentz group in imaginary time). Hence, one can take any linear

combination of components of P ν as a Hamiltonian and use the claster

property above to show that

lim
|x⃗|→∞

< O(x⃗, τ)O(x⃗, 0)O(⃗0, τ)O(⃗0, 0) >=< O(⃗0, τ)O(⃗0, 0) >2 .

(13)

On the other hand, because of the correlation fucntions are related with

the vacuum expectation value of the product of time-ordered (in our case,

τ -ordered) Heisenberg field operators, one can write

< O(x⃗, τ)O(x⃗, 0)O(⃗0, τ)O(⃗0, 0) >=

< Ω|T (Ô(x⃗, τ)Ô(x⃗, 0)Ô(⃗0, τ)Ô(⃗0, 0))|Ω >=

< Ω|Ô(⃗0, τ)Ô(x⃗, τ)Ô(x⃗, 0)Ô(⃗0, 0)|Ω >=∑
γ

< Ω|Ô(⃗0, 0)Ô(x⃗, 0) exp (−Ĥτ)|γ >< γ|Ô(x⃗, 0)Ô(⃗0, 0)|Ω >=∑
γ

exp (−Eγτ) < Ω|Ô(⃗0, 0)Ô(x⃗, 0)|γ >< γ|Ô(x⃗, 0)Ô(⃗0, 0)|Ω >=∑
γ

exp (−Eγτ)| < Ω|Ô(⃗0, 0)Ô(x⃗, 0)|γ > |2.

(14)

At the same time

< O(⃗0, τ)O(⃗0, 0) >2=< Ω|Ô(⃗0, τ)Ô(⃗0, 0)|Ω >2=∑
α,β

| < Ω|Ô(⃗0, 0)|α > |2| < Ω|Ô(⃗0, 0)|β > |2 exp (−(Eα + Eβ)τ)

(15)
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which shows that if Eα, Eβ ∈ P then Eα+Eβ ∈ P . Due to the Lorentz

(O(4) invarince in euclidean formulation) invariance we conclude that

if P µ
α , P

µ
β ∈ P then P µ

α + P µ
β ∈ P . It is clear also that if P µ

α ∈ P
then Λµ

νP
ν
α ∈ P for any Lorentz transformation Λ. If the spectrum P

contains at least one 1-particle state with the mass m then the

spectrum contains also a surface of states P 2 = m2.

1.4. KÄLLEN-LEHMANN SPECTRAL REPRESENTATION.

Let us consider 2-point correlation function with τ > 0

< ϕ(x⃗, τ)ϕ(⃗0, 0) >=< Ω|ϕ̂(x⃗, τ)ϕ̂(⃗0, 0)|Ω >=∑
α

∫
d3q

(2π)32Eq⃗(α)
< Ω|ϕ̂(x⃗, τ)|αq⃗ >< αq⃗|ϕ̂(⃗0, 0)|Ω >=

∑
α

∫
d3q

(2π)32Eq⃗(α)
< Ω|ϕ̂(x⃗, 0) exp (−Ĥτ)|αq⃗ >< αq⃗|ϕ̂(⃗0, 0)|Ω >=

∑
α

exp (−Eατ)

∫
d3q

(2π)32Eq⃗(α)
< Ω|ϕ̂(x⃗, 0)|αq⃗ >< αq⃗|ϕ̂(⃗0, 0)|Ω > .

(16)

Due to translation invariance

[
ˆ⃗
P, ϕ̂(x⃗, 0)] = −ı∇ϕ̂(x⃗, 0)

(17)

we can write

ϕ̂(x⃗, 0) = exp (ıP̂ix
i)ϕ̂(0, 0) exp (−ıP̂ix

i), i = 1, 2, 3.

(18)
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Therefore

< Ω|ϕ̂(x⃗, τ)ϕ̂(⃗0, 0)|Ω >=∑
α

∫
d3q

(2π)32Eq⃗(α)
< Ω|ϕ̂(⃗0, 0)|α >< α|ϕ̂(⃗0, 0)|Ω > exp (−Eq⃗(α)τ + ıq⃗x⃗) =

∑
α

∫
d3q

(2π)32Eq⃗(α)
| < Ω|ϕ̂(⃗0, 0)|α > |2 exp (−Eq⃗(α)τ + ıq⃗x⃗),

(19)

where |α > is a momentum
ˆ⃗
P = q⃗ state. (Recall also that d3qα

(2π)32E(α) is

Lorentz invariant and 4-vector qµ = (q0, qi) = (q0, q⃗), while qµ = (q0,−qi) =
(q0,−q⃗)). Now we take into account the Lorentz invariance of the spectrum

so that the summation over the states |α > can be decomposed in the

integration over the Lorentz orbits q2 = µ2:∫ ∞

0

dµ2

2π
(2π

∑
α

| < Ω|ϕ̂(⃗0, 0)|α > |2δ(µ2 −m2
α))

∫
d3q

(2π)32Eq⃗
exp (−Eq⃗τ + ıq⃗αx⃗) =∫ ∞

0

dµ2

2π
ρ(µ2)

∫
d3q

(2π)32Eq⃗
exp (−Eq⃗τ + ıq⃗αx⃗),

(20)

where

ρ(µ2) = 2π
∑
α

| < Ω|ϕ̂(⃗0, 0)|α > |2δ(µ2 −m2
α). (21)

For the case τ < 0 we should change exp (−Eq⃗τ) → exp (Eq⃗τ). In both

cases one can use

1

2Eq⃗
exp (−Eq⃗|τ |) =

∫
dq4
(2π)

1

q24 + q⃗2 + µ2
exp (ıq4τ)

(22)

It allows to write finally

< ϕ(x⃗, τ)ϕ(⃗0, 0) >=

∫ ∞

0

dµ2

2π
ρ(µ2)D(|x|, µ2),

(23)
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where |x| =
√
τ 2 + x⃗2 and

D(|x|, µ2) =
∫

d4k

(2π)4
exp (ık4τ + ı⃗kx⃗)

k24 + k⃗2 + µ2
.

(24)

The 2-point correlation function expression above is calledKällen-Lehmann

spectral representation.

If the theory contains 1-particle state |1 > with mass m the function

ρ(µ2) must take the form

ρ(µ2) = 2πZδ(µ2 −m2) + ρ̃(µ2) , ρ̃(µ2) = 0 , for µ2 < 4m2

(25)

(this is true if the spaectrum does not contain bound states whose mass

M 2 < 4m2), where

Z
1
2 =< Ω|ϕ̂|1 > .

(26)

2. Asymptotic states.

We need asymptotic states to formulate the scattering problem.

2.1. CORRELATION FUNCTIONS AT LARGE DISTANCES.

The 2-point function (Källen-Lehmann spectral representation) can be

written as

< ϕ(x)ϕ(0) >= ZD(|x|,m2) +

∫ ∞

4m2

dµ2

(2π)
ρ(µ2)D(|x|, µ2),

(27)
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where

D(|x|, µ2) =
∫

d4k

(2π)4
exp (ıkx)

k2 + µ2

(28)

is euclidean propagator for the free field with mass µ. Its asymptotic at

large distancies is

D(|x|,m2) ≈ m
1
2

|x| 32
exp (−m|x|).

(29)

Hence, at large distances the contributions from the multiparticle

states are less essential because they are more massive, so we can

write

< ϕ(x)ϕ(0) >≈ ZD(|x|,m2)

(30)

if Z ̸= 0. Therefore

(m2 − ∂2τ − ∇⃗2) < ϕ(x)ϕ(0) >= 0 +O(exp(−2m|x|)),

(31)

(the δ-function in the right hand side is equal zero when x ̸= 0). It means

that at large distances the 2-point function satisfy KG equation with a

mass m. Due to the cluster property, the same is true for the N -point

correlation function:

(m2 − ∂2µ) < ϕ(x)ϕ(x1)...ϕ(xN−1) >≈ 0 when |x− xi| → ∞. (32)

This fact is important to understand the Hilbert space of states

in the theory with interaction. It also allows to introduce the

notion of asymptotic states.
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2.2. CONSERVED CURRENTS AND HEISENBERG ALGEBRA IN KG.

In KG theory we have introduced creation-annihilation operators

Âf = ı

∫
Σ

d3x(
∂ϕ̂

∂τ
f − ϕ̂

∂f

∂τ
),

(33)

where the integration is going over the 3-dim. surface Σ fixed by an arbi-

trary chosen value of τ . The function f satisfy KG equation

(m2 − ∂2µ)f(x⃗, τ) = 0 (34)

and ϕ̂(x⃗, τ) is a Heisenberg operator

ϕ̂(x⃗, τ) = exp (Ĥτ)ϕ(x⃗, 0) exp (−Ĥτ) , ∂ϕ
∂τ

= [Ĥ, ϕ̂]

(35)

The operators Âf satisfy Heisenberg algebra commutation relations

[Âf , Âg] =

∫
Σ

d3x(
∂f

∂τ
g − f

∂g

∂τ
), (36)

where

Âf = ı

∫
Σ

d3x(
∂ϕ̂

∂τ
f − ϕ̂

∂f

∂τ
). (37)

To prove (36) notice first that for f fulfilling KG equation, we have the

conservation low

∂µJ
µ
f = 0 , Jµ

f = ∂µϕf − ϕ∂µf.

(38)

Therefore the correlation function

< Af(τ)ϕ(x⃗0, τ0) > (39)

10



does not change when we change the integration surface Σ in (39) by its

smooth deformation Σ̃

ı

∫
Σ

d3x(
∂ϕ

∂τ
f − ϕ

∂f

∂τ
) = ı

∫
Σ̃

dΣµ(∂µϕf − ∂µfϕ)

(40)

We may in particular make a shift Σ along τ direction by a small value δτ .

Hence, we can write

∂

∂τ
< Af(τ)ϕ(x⃗0, τ0) >= 0 , τ ̸= τ0. (41)

However, the correlation function (39) changes if during the deformation

the surface Σ̃ crosses the point (x⃗0, τ0). Indeed, let us consider two surfaces

Σ1 = {(x⃗, τ = τ1 = τ0 −∆)} and Σ2 = {(x⃗, τ = τ2 = τ0 +∆)}. Then

< Af(τ2)ϕ(x⃗0, τ0) > − < Af(τ1)ϕ(x⃗0, τ0) >=

ı

∫
Σ0

dΣµ < Jµ
f (x⃗, τ)ϕ(x⃗0, τ0) >,

(42)

where the integration is going over the surface Σ0 surrounding point (x⃗0, τ0).

Using Gauss theorem we can write

< Af(τ2)ϕ(x⃗0, τ0) > − < Af(τ1)ϕ(x⃗0, τ0) >=

ı

∫
D0

d4x∂µ < Jµ
f (x)ϕ(x⃗0, τ0) > .

(43)

In KG theory

∂µ < Jµ
f (x)ϕ(x⃗0, τ0) >= −δ4(x− x0)f(x)

(44)

because

< ϕ(x)ϕ(x0) >= D(x− x0) , where (m
2 − ∂2µ)D(x− x0) = δ4(x− x0).

(45)
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Therefore for the Heisenberg operators

< 0|[Âf , ϕ̂(x⃗, τ0)]|0 >= −ıf(x⃗0, τ0), (46)

which gives the commutator (36).

2.3. ASYMPTOTIC IN-STATES IN THE THEORY WITH INTERACTION.

Let us now consider similar operators in the theory with interaction

Âf = ı

∫
Σ

d3x(
∂ϕ̂

∂τ
f − ϕ̂

∂f

∂τ
), (47)

where the function f is still obeys KG equation (34) but ϕ̂(x) is now

Heisenberg operator of the theory with interaction.

Because the field ϕ̂ does not satisfy KG eq. the current

Jµ
f = ∂µϕ̂f − ϕ̂∂µf

(48)

is not a conserved current and hence, the operator Âf is not an integral of

motion so that Âf , Âg do not satisfy in general Heisenberg algebra

commutation relations (36).

But one can take the special limit of these operators

Âin
f = lim

t→−∞
Âf(τ + ıt).

(49)

Due to claster property it appears then that Âin
f does not depend

on τ and satisfy Heisenberg algebra relations (36).

To show this let us consider the wave packets

fp⃗,ϵ(x⃗, τ) =

∫
d3q

(2π)3
exp (ωqτ − ıq⃗x⃗) exp (−(q⃗ − p⃗)2

2ϵ
)

f̄p⃗,ϵ(x⃗, τ) =

∫
d3q

(2π)3
exp (ωqτ + ıq⃗x⃗) exp (−(q⃗ − p⃗)2

2ϵ
) (50)
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For the small ϵ the packets have the form of localized packets

fp⃗,ϵ(x⃗, τ) = exp (ωpτ − ıp⃗x⃗)ψϵ(x⃗− ıv⃗τ),

f̄p⃗,ϵ(x⃗, τ) = exp (ωpτ + ıp⃗x⃗)ψϵ(x⃗+ ıv⃗τ),

(51)

where

ψϵ(y⃗) = exp (− ϵ
2
y⃗2)

(52)

and v⃗ = p⃗
2ωp⃗

, ωp =
√
p⃗2 +m2.

In the limit t→ −∞ the packet fp⃗,ϵ(x⃗, τ+ ıt) is centered at x⃗ = v⃗t. It

differs sufficiently from zero in some domain of the size 1√
ϵ
. Hence,

in this limit the wave packets fp⃗i,ϵ(x⃗, τ + ıt) with different v⃗i =
p⃗i

2ωp⃗i

are well

spaced.

Let us define

Âp⃗,ϵ = ı

∫
Σ

d3x(
∂ϕ̂(x⃗, τ)

∂τ
fp⃗,ϵ − ϕ̂(x⃗, τ)

∂fp⃗,ϵ
∂τ

)

Â†
p⃗,ϵ = ı

∫
Σ

d3x(
∂ϕ̂(x⃗, τ)

∂τ
f̄p⃗,ϵ − ϕ̂(x⃗, τ)

∂f̄p⃗,ϵ
∂τ

) (53)

and consider the correlation function

< A†
p⃗1,ϵ

(τ1 + ıt)...Ap⃗n,ϵ(τn + ıt) > (54)

in the limit t → −∞. In view of (32), the correlators < ϕ(x⃗1, τ1 +

ıt)...ϕ(x⃗n, τn+ıt) > will satisfy in this limit the euclidean KG equation with

a good precision because the (4-dimensional) euclidean distances |xi − xj|
become large. Therefore, the correlation function (54) will not be depen-

dent on τi (unless they are still τ -ordered: τ1 < ... < τn) similar to the KG
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theory. This means that the operators

lim
t→−∞

Âp⃗,ϵ(τ + ıt) ≡ Âin
p⃗,ϵ

(55)

do not depend on τ .

Moreover, one can repeat the analysis for KG theory and show that

[Âin
p⃗1,ϵ
, Â†in

p⃗2,ϵ
] =

∫
d3x(fp⃗1,ϵ∂τ f̄p⃗2,ϵ − f̄p⃗2,ϵ∂τfp⃗1,ϵ)

(56)

In the limit ϵ→ 0 we obtain the Heisenberg algebra in the standard form

[Âin
p⃗1
, Â†in

p⃗2
] = (2π)32ωp⃗1δ(p⃗1 − p⃗2)

[Âin
p⃗1
, Âin

p⃗2
] = [Â†in

p⃗1
, Â†in

p⃗2
] = 0 (57)

The operators Âin
p⃗ , Â

†in
p⃗ are called asymptotic in-operators. One can

create the space of asymptotic scatteringstates determining the vacuum

state |Ω > which is determined by the equation

Âin
p⃗ |Ω >= 0

(58)

Then the state

|p⃗1, ..., p⃗n >in≡ A†in
p⃗1
...A†in

p⃗n
|Ω > (59)

is called asymptotic scattering state, in-state.

Thus, we have

Âin
p⃗ = lim

ϵ→0
lim

t→−∞
Âp⃗,ϵ(τ + ıt)

Â†in
p⃗ = lim

ϵ→0
lim

t→−∞
Â†

p⃗,ϵ(τ + ıt) (60)
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where

Âp⃗,ϵ(τ) =
1√
Z

∫
d3x(∂τ ϕ̂fp⃗,ϵ − ϕ̂∂τfp⃗,ϵ)

Â†
p⃗,ϵ(τ) =

1√
Z

∫
d3x(∂τ ϕ̂f̄p⃗,ϵ − ϕ̂∂τ f̄p⃗,ϵ)

(61)

and fp⃗,ϵ, f̄p⃗,ϵ are the wave packets solutions of KG equation in euclidean

space. The asymptotic in-operators Âin
p⃗ , Â

†in
p⃗ satisfy canonical com-

mutation relations of creation-annihilation operators (Heisenberg

algebra) and the asymptotic in-states

|p⃗1, ..., p⃗n >in≡ A†in
p⃗1
...A†in

p⃗n
|Ω > (62)

constitute an in- basis in Hilbert space H of the theory.

2.4. ASYMPTOTIC OUT-STATES IN THE THEORY WITH INTERACTION.

One can introduce another basis of out-states in the Hilbert space H:

|q⃗1, ..., q⃗n >out≡ A†out
q⃗1

...A†out
q⃗n

|Ω >, (63)

where Â†out
q⃗ , Âout

q⃗ are given by taking another limit

Âout
p⃗ = lim

ϵ→0
lim
t→∞

Âp⃗,ϵ(τ + ıt),

Â†out
p⃗ = lim

ϵ→0
lim
t→∞

Â†
p⃗,ϵ(τ + ıt). (64)

One can check completely similar that they do not depend on τ and satisfy

canonical commutation relations of creation-annihilation opera-

tors (Heisenberg algebra) and the asymptotic out-states

|p⃗1, ..., p⃗n >out≡ A†out
p⃗1

...A†out
p⃗n

|Ω > (65)

constitute an out- basis in Hilbert space H of the theory.
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