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1. Regularization methods.

If the theory is renormalizable one can develop renormalizable pertur-

bation theory. According to this program one has to start from the action
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in its bare form, as

A =

∫
d4x(

1

2
(∂ϕ0)

2 +
m2

0

2
ϕ20 +

λ0
4!
ϕ40),

(1)

which is equiped with some regularization or cutoff, i.e. with some modifi-

cation of the theory at the momenta ≥ Λ which makes all the perturbative

theory integrals convergent. There are many possible implementations of

the cutoff. Let us consider some more frequently used ones.

1.1. LATTICE REGULARIZATION.

This regularization has been discussed already in relation with the def-

inition of the functional integral. In this approach continous space d-

dimensional (euclidean) space is replaced by d-dimensional, say hypercubic,

lattice with some lattice spacing ∆ which plays the role of inverse cutoff

parameter Λ−1.

x→ xn = ∆
d∑

a=1

naea,

(2)

where ea is the unit vector in the direction a and n1, ..., nd are integers.

The lattice action is obtained by replacing derivatives by finite differences.

Alat = ∆d
∑

x∈∆Zd

(
1

2

∑
a=1,...,d

(
ϕ0(x+∆ea)− ϕ0(x)

∆
)2 +

m2
0

2
ϕ0(x) + V (ϕ0(x)))

(3)

and the integration measure in the functional integral is taken as

[Dϕ0] →
∏

x∈∆Zd

dϕ0

(4)
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This regularization makes also sense nonperturbatively which is an advan-

tage of this method.

1.2. PROPER-TIME REGULARIZATION.

We have seen before that the momentum-space propagator admits Schwinger’s

proper-time representation

D̃(k) =

∫ ∞

0

dτ exp (−τ(k2 +m2))

(5)

where τ is interprated as renormalized lenght of the path of relativistic

particle in the euclidean space. One can exclude the pathes which

are too short by replacing D̃(k) → D̃Λ(k)

D̃Λ(k) =

∫ ∞

1
Λ2

dτ exp (−τ(k2 +m2)) =
exp (−k2+m2

Λ2 )

k2 +m2
. (6)

Notice that this is a particular case of the regularized propagator we con-

sidered before

1

k2 +m2
Φ(
k2

Λ2
) (7)

with Φ(x) ≈ exp (−x).

1.3. PAULI-VILLARS REGULARIZATION.

This is another version of (7) with

ΦPV (
k2

Λ2
) =

Λ2

k2 + Λ2
(8)

1.4. DIMENSIONAL REGULARIZATION.

This is the most technicaly advanced (although perhaps the least phys-

icaly transparent) regularization method. Its advantage is that it usualy
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preserves main important symmetries (gauge symmetry for ex-

ample) and simplifies calculations significantly.

The idea is this. We have already observed that lowering the space

dimensions generally improves the large-momentum convergence of Feyn-

man diagrams. Suppose that for d sufficiently low the momentum integral

associated with given diagram is convergent without any additional cutoff.

Suppose in addition that we have managed to calculate this integral as an

analytic functions of d. Then we can analytically continue the result to

the physical value d = 4, the 4-dimensional divegences manifest itselves as

a singularities (poles) in the variable d at d = 4.

Doing so we use the translation invariance of the integrals:∫
ddkF (k + p) =

∫
ddkF (k)

(9)

and the scale invariance∫
ddkF (Ck) = |C|−d

∫
ddkF (k)

(10)

1.5. EXAMPLE.

Consider the integral ∫
ddk

(2π)d
1

(k2 +m2)2
. (11)

This integral is convergent for d < 4. For any d < 4 it can be transformed

as follows ∫ ∞

0

tdt

∫
ddk

(2π)d
exp (−t(k2 +m2)) =∫ ∞

0

tdt(4πt)−
d
2 exp (−m2t). (12)
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(Recall Gaussian integral:∫ ∞

−∞
dx exp (−ax2) = (

π

a
)
1
2 .

(13)

)

By the definition of Euler’s Gamma function

Γ(z) =

∫ ∞

0

dttz−1 exp (−t)

(14)

we obtain the integral (11) for d < 4 is equal

(m2)
d
2−1

(4π)
d
2

Γ(2− d

2
). (15)

As it is known the Gamma function Γ(z) is analytic (meromorphic) func-

tion of z with poles at z = 0,−1,−2, ... (and Γ(1) = 1). In particular,

the above expression has pole at d = 4, i.e. exactly where the integral

diverges logarithmically. For d = 4− ϵ, ϵ→ 0

Γ(2− d

2
) =

2

ϵ
− γ +O(ϵ)

(16)

where γ = 0.5772... is the Euler constant.

1.6. THE INTERPLAY BETWEEN DIMENSIONAL CONTINUATION

AND CUTOFF REGULARIZATIONT.

It is interesting to explain with this example the interplay between

dimensional continuation and cutoff regularization. If we regularize the

propagators in (11), say by proper-time regularization (which amounts to

replacing
∫∞
0 dt →

∫∞
1
Λ2
dt in (12)) the integral (11) becomes regular
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function of d for all d. In the neighborhood of d = 4 one would have

instead of (12)

(m2)
d
2−1

(4π)
d
2

∫ ∞

m2

Λ2

dττ 1−
d
2 exp (−τ) =

(m2)
d
2−1

(4π)
d
2

2

4− d
(τ 2−

d
2 exp (−τ)|∞m2

Λ2

+

∫ ∞

m2

Λ2

dττ 2−
d
2 exp (−τ)) =

1

(4π)
d
2

2

4− d
((m2)

d
2−2(

∫ ∞

0

−
∫ m2

Λ2

0

)τ 2−
d
2 exp (−τ)dτ − (Λ2)

d
2−2 exp (−m

2

Λ2
)).

(17)

For ϵ = 4− d << 1 and m2 << Λ2 the cutoff integral becomes

1

(4π)
d
2

2

4− d
((m2)

d
2−2

∫ ∞

0

τ 2−
d
2 exp (−τ)dτ − (Λ2)

d
2−2 exp (−m

2

Λ2
)) =

1

(4π)
d
2

2

4− d
((m2)

d
2−2 − (Λ2)

d
2−2).

(18)

If at fxed d < 4 we send the cutoff momentum Λ to ∞ we obtain

the dimensionally continued expression with the pole at d = 4. If

at fixed Λ we take the limit d→ 4 we get a finite result with ln Λ2

replacing the pole in 4− d.

Indeed, one can find the limit of 2
4−d((m

2)
d
2−2 − (Λ2)

d
2−2) when ϵ =

4− d→ 0:

lim
ϵ→0

2

ϵ
((m2)

−ϵ
2 − (Λ2)

−ϵ
2 ) = lim

ϵ→0

2

1

d

dϵ
(((m2)

−ϵ
2 − (Λ2)

−ϵ
2 ) =

2 lim
ϵ→0

d

dϵ
(exp (− lnm2

2
ϵ)− exp (− ln Λ2

2
ϵ)) =

2 lim
ϵ→0

(− lnm2

2
exp (− lnm2

2
ϵ) +

lnΛ2

2
exp (− ln Λ2

2
ϵ)) =

ln (
Λ2

m2
).

(19)
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With this understanding one can often use dimensional continuation to

do the calculations efficiently and then interpret the results in terms of

cutoff regularization. Instead of giving the bare parameters m2
0, λ0, Z de-

pendence on the cutoff momentum Λ within the framework of dimensional

regularization one can adjust their dependence on ϵ = 4 − d, such

that the correlation functions of renormalized fields ϕ have finite

limit d→ 4.

2. Renormalization schemes.

Counterterms must cancell divergences of diagrams but this require-

ment does not fixes the counterterms completely because we can

arbitrarily change the finite parts of counterterms. For example ϕ

can be additionally renormalized by a finite value

ϕ→ Z
1
2

finϕ.

(20)

One can similarly renormalize the mass m and the coupling constant λ by

a finite values leading to another renormalized perturbation theory where

all divergences are absorbed again. The different renormlized pertur-

bation theories are called renormalization schemes.

If ϕ, m2, λ and ϕ̃, m̃2, λ̃ are parameters in two different renormalization

schemes, the corresponding proper vertices are related by

Γn(pi|m2, λ) = Zfin(m
2, λ)−

n
2Γn(pi|m̃2(m2, λ), λ̃(m2, λ)).

(21)

These two different renormalization schemes are two different per-

turbative descriptions of the same QFT. The parameters m2, λ

can be understood as a coordinates in the space of ϕ4 QFT’s.
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3. Renormalization conditions.

3.1. RENORMALIZATION IN ϕ4 (REMINDER).

Recall our renormalization program for the ϕ4 theory.

1.

Start with the action

A =

∫
d4x(

1

2
(∂ϕ0)

2 +
m2

0

2
ϕ20 +

λ0
4!
ϕ40)

(22)

containing the bare field, bare mass, and bare coupling constant.

2.

Introduce some cutoff with a cutoff momentum Λ (this can be done

many ways).

3.

We expect that one can give parameters m2
0, λ0, and the field renormal-

ization constant Z certain dependence on Λ:

m2
0 = m2

0(Λ) , λ0 = λ0(Λ) , Z = Z(Λ)

(23)

such that the correlation functions of the renormalized field

ϕ = Z− 1
2 (Λ)ϕ0

(24)

have finite Λ → ∞ limit.

We reformulated this program in terms of renormalized perturbation

theory. Namely, we write the action with counterterms

A =

∫
d4x(

1

2
(∂ϕ)2 +

m2

2
ϕ2 +

λ

4!
ϕ4 +

δZ

2
(∂ϕ)2 +

δm2

2
ϕ2 +

δλ

4!
ϕ4)

(25)
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wherem is an actual mass and λ is suitably defined finite coupling constant.

The identity with the original action implies

1 + δZ = Z , m2 + δm2 = Zm2
0 , λ+ δλ = Z2λ0.

(26)

The renormalized perturbation theory is the expansion in renor-

malized coupling constant λ with the following Faynman rules:

=
1

k2 +m2

(27)

k1 k2

= (k21δZ − δm2)(2π)4δ(k1 + k2)

(28)

= λ

(29)

= δλ

(30)

Therefore we assume the counterterm coefficients themselves depend per-

turbatively (i.e. as power series) on λ:

δZ = Z1λ+ Z2λ
2 + ...

δm2 = b1λ+ b2λ
2...

δλ = a1λ+ a2λ
2 + ... (31)
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In the cutoff regularization the coefficients Zi, bi, ai depend on Λ,

while in the dimensional regularization the coefficients Zi, bi, ai

depend on ϵ = 4− d.

3.2. PHYSISCAL MASS AND NORMALIZATION OF FIELD.

The renormalization conditions define the relation between the

parameters m2, λ and ϕ with the physical values. It is natural for

example to choose parameter m2 as a square of physical mass. Namely, we

have seen that Γ2(p2) becomes zero at some point p2 = −m2 so that the

physical mass is given by this value of p2.

It does not fix the normalization of the field ϕ. It is convenient to fix

the field normalization demanding

Γ2(p2) = p2 +m2 +O((p2 +m2)2), when p2 +m2 → 0. (32)

In other words we require the 2-point correlation function

W 2(p2) =
1

p2 +m2
+O(1)

(33)

has pole at p2 = −m2 and the residue at this point is equal 1.

3.3. COUPLING CONSTANT NORMALIZATION.

The coupling constant has to be normalized also. It can be done by

fixing the value of vertex Γ4. The standart way to do that is to choose

Γ4(p, p,−p,−p)|p2=−m2 = λ. (34)

The equations (32), (34) is one of the possibilities to choose the Renor-

malization Scheme (RS).
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One the same footing we could choose another conditions

Γ(2)(p2) = m̃2 + p2 +O(p4),

Γ(4)(0, 0, 0, 0) = λ̃, (35)

where m̃ is not a physical mass (p2 = −m2 is not a solution of the eq.

m̃2 + p2 +O(p4) = 0).

4. Renormalization of ϕ4 at 1 loop by dimensional regularization.

Now we renormalize ϕ4 theory at one loop fixing the RS by the equations

(35) and using dimensional regularization.

4.1. Γ2 RENORMALIZATION AT 1 LOOP.

We start from Γ2 renormalization.

This vertex can be written as follows

Γ2(p2) = p2 + m̃2 + Σ(p2)

(36)

The normalization conditions Γ2(0) = m̃2, dΓ2

dp2 |p2=0 = 1 takes the form

Σ(0) = 0,
dΣ(p2)

dp2
|p2=0 = 0. (37)

At one loop we have two contributions

Σ(p) =
− −

(38)

where the counterterm diagram contributes to the renormalization of field

and mass

−(Z1p
2 + b1).

(39)
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The first diagram does not depend on p2, therefore

Z1 = 0

(40)

and

b1 = −
∫

ddk

(2π)d
1

k2 + m̃2
= −(m̃2)

d
2−1

(4π)
d
2

Γ(1− d

2
). (41)

4.2. Γ4 RENORMALIZATION AT 1 LOOP.

The second condition from (35) will be fulfilled at the leading order if

we set a1 = 0 in (31). Thus δλ̃ = O(λ̃2) and

Γ4(p1, p2, p3, p4) = λ̃−

2

1 3

4

k

−

2

1 3

4

−

2

1 4

3

−

(42)

where the last, counterterm diagram is equal to

−λ̃2a2
(43)

The first second and third contributions are given by

λ̃2

2
(I(p212) + I(p213) + I(p214)), where

I(p2) =

∫
ddk

(2π)d
1

(k2 + m̃2)((p+ k)2 + m̃2)
.

(44)
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Hence, in our RS the normalization condition takes the form

(
λ̃2

2
(I(p212) + I(p213) + I(p214))− λ̃2a2)|pi=0 = 0 ⇔

a2 =
3

2
I(0).

(45)

Then

Γ4(pi) = λ̃− λ̃2

2
(Ir(p

2
12) + Ir(p

2
13) + Ir(p

2
14)) +O(λ̃3)

where

Ir(p
2) = I(p2)− I(0).

(46)

We now show that Ir(p
2) has finite limit at d = 4. Using Feynman

parametrization

1

AB
=

∫ 1

0

du
1

(uA+ (1− u)B)2
,

(47)

one can write the integrals above as

I(p2) =

∫ 1

0

du

∫
ddk

(2π)d
1

(m̃2 + k2 + 2u(kp) + up2)2
=∫ 1

0

du

∫
ddk

(2π)d
1

(m̃2 + u(1− u)p2 + (k + up)2)2
=∫ 1

0

du

∫
ddk

(2π)d
1

(m̃2 + u(1− u)p2 + k2)2
=

Γ(2− d
2)

(4π)d/2

∫ 1

0

du(m̃2 + u(1− u)p2)
d
2−2

(48)

(see (11)-(15)). In the limit d→ 4 the integral has a pole because Γ(2−d
2) =
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2
ϵ − γ + .... But the renormalized integral Ir is finite in the limit d→ 4:

Ir(p
2) = − 1

(4π)2

∫ 1

0

du log (1 + u(1− u)
p2

m̃2
) =

− 1

16π2
(

√
p2 + 4m̃2

p2
log (

√
p2 + 4m̃2 +

√
p2√

p2 + 4m̃2 −
√
p2

− 2).

(49)

It gives

a2 =
3

2
I(0) =

3

2

Γ(2− d
2)

(4π)
d
2

(m̃2)
d
2−2.

(50)

One can show that the counterterms fixing procedure we have

just carried out in the leading approximation to make the ver-

tices Γ(n) finite in the limit d → 4, can be extended to the all

perturbation series (see Zinn-Zustin’s book).

5. Chebishev’s regularization in the RS.

Now we apply Chebishev’s regularization to the same RS working at

d = 4 with the cutoff Λ. We also assume that m̃ = 0.

5.1. CHEBISHEV’S POLYNOMIALS.

The generation function for Chebishev’s polynomials is

1

1− 2xz + z2
=

∑
n

Pn(x)z
n, |z| < 1.

(51)

They constitute the orthonormal basis of functions∫ π

0

Pn(cos(ψ))Pm(cos(ψ)) sin
2(ψ)dψ =

π

2
δn,m.

(52)
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5.2. CHEBISHEV’S REGULARIZATION OF Γ(4).

We can use the properties of Chebishev’s polynomials to evaluate 4-

dimensional integral

I(p) =

∫ |k|=Λ

0

d4k

(2π)4
1

k2(p− k)2
=

1

16π2
(log

Λ2

p2
+ 1).

(53)

Indeed

1

(k − p)2
=

1

k2 − 2|k||p| cos(ψ) + p2
=

1

p2

∑
n=0

Pn(cos(ψ))(
|k|
|p|

)n, |k| < |p|

or
1

k2

∑
n=0

Pn(cos(ψ))(
|p|
|k|

)n, |k| > |p|.

(54)

Then

(2π)4I(p) =

∫ |k|=Λ

0

d|k||k|3 sin2(ψ) sin(θ)dψdθdϕ

k2(k2 − 2|k||p| cos(ψ) + p2)
=

4π[

∫ |p|

0

|k|3d|k|
k2p2

∫
dψ(

∑
n

Pn(cos(ψ))(
|k|
|p|

)n sin2(ψ)) +∫ Λ

|p|

|k|3d|k|
k4

∫
dψ(

∑
n

Pn(cos(ψ))(
|p|
|k|

)n sin2(ψ))] =

2π2(

∫ |p|

0

|k|d|k|
p2

+

∫ Λ

|p|

d|k|
|k|

) = 2π2(log
Λ

|p|
+

1

2
) =

π2(log
Λ2

p2
+ 1).

(55)
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Using this result one can write the Γ4 in terms of bare coupling constant

Γ(4)(pi) = λ0 −
λ20
2
(I(p12) + I(p13) + I(p23)) =

λ0 −
λ20
32π2

(log(
Λ2

p212
) + log(

Λ2

p213
) + log(

Λ2

p213
)) + ...

(56)

Now we consider more general renormalization conditions fixing arbi-

trary some scale µ and setting

Γ(4)(pi)|p2i=µ2 = λ(µ).

(57)

It gives the relation

λ0 −
3λ20
32π2

log(
Λ2

µ2
) = λ(µ) +O(λ3). (58)

5.3. TWO POINTS OF VIEW FOR BARE COUPLING CONSTANT.

There are two points of view on the relation (58).

1. λ0(Λ) depends on the cutoff Λ in such a way that coupling

constant λ does not depend on Λ. We followed just this point of view

when the renormalized perturbation theory was formulated in such a way

to have finite Λ → ∞ limit for the renormalized correlation functions.

2. Coupling constant λ(µ) depends on the scale µ in such a way

that λ0 does not (depend on µ).

Using this point of view one can define a function

µ
dλ(µ)

dµ
= β(λ,

Λ

µ
) = β(λ).

(59)

In the case at hand we find at the leading order:

dλ(µ)

d log(µ)
=

3

16π2
λ(µ)2. (60)
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6. Callan-Symanzik equation for massles ϕ4.

Let us fix the normalization conditions as

Γ(2)(p2)|p2=µ2 = 0,

dΓ(2)

dp2
|p2=µ2 = 1,

Γ(4)(pi)|p2i=µ2 = λ (61)

and consider the connected N -points correlation function

G(N) =< ϕ...ϕ >c= Z−N
2 < ϕ0...ϕ0 >c .

(62)

How does this function change when we shift the scale µ?

To answer this question let us rewrite this equation in the opposit form

< ϕ0...ϕ0 >c= Z
N
2 G(N).

(63)

The correlation function of bare fields depends on the bare coupling con-

stant λ0 and is determined at some cutoff Λ. It obviously does not de-

pend on the renormalization scale µ. But the correlation function

on the right hand side does depend on µ because we renormalized

the theory by taking the limit Λ → ∞, replacing the bare coupling

constant λ0 with the renormalized coupling constant λ as well as replacing

the bare fields ϕ0 by the rescaled ones ϕ.

From the other hand, under the shift µ→ µ+ δµ we have λ→ λ+ δλ,

ϕ→ (1 + δη)ϕ and

G(N) → (1 +Nδη)G(N).

(64)
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Hence, one can write

δG(N) =
∂G(N)

∂µ
δµ+

∂G(N)

∂λ
δλ = δηNG(N). (65)

It is convenient to define dimensionless parameters

β =
µ

δµ
δλ, γ = − µ

δµ
δη.

(66)

Substituting them into (65) and multiplying on µ
δµ gives Callan-Symanzik

equation

(µ
∂

∂µ
+ β(λ)

∂

∂λ
+Nγ(λ))GN(x1, ...xN ;λ) = 0, (67)

where β(λ) = µ∂λ
∂µ , γ = µ∂η

∂µ .

The Callan-Symanzik equation (67) says that there are func-

tions β(λ) and γ(λ) related to the coupling constant and field nor-

malization shifts which compensate the scale shift in the renor-

malization conditions (61).
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