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1. Divergencies in ϕ4 theory (continuation).

1.1. DIVERGENCE OF Σ AND MASS RENORMALIZATION (reminder).

We saw in the last lecture that due to the diagram:

Σ̃(p) = − =
λ

2

∫
d4k

(2π)4
1

k2 +m2

(1)

the first order contribution to Γ̃2(p) is badly divergent at short distances

(k → ∞).

To make this integral finite we introduced the cutoff Λ, by re-

placing

1

k2 +m2
→ 1

k2 +m2
Φ(

k2

Λ2
)

(2)
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where the function Φ( k
2

Λ2 ) tends to zero fast enough as k2 → ∞ to make

the integral convergent. At the same time Φ ≈ 1 for the values k2 << Λ2.

Using this regularization we obtained at the first order

Γ̃2(p) = p2 +m2 +
λm2

2
F (

Λ2

m2
)

(3)

and realized then that no matter what Φ and Λ were, the parameter m

was not actual mass of the particles.

For this reason, we changed the notations, denoting by m2
0 (bare mass)

the coefficient in front of ϕ2 in the action of ϕ4 theory and assumed then

that the bare mass parameter m2
0 must be dependent on Λ in such

a way that the actual mass

m2 = m2
0 +

λm2
0

2
F (

Λ2

m2
0

) +O(λ2)

(4)

remained finite as Λ → ∞. Then, to this order we found that

Γ̃2(p) = p2 +m2 +O(λ2)

(5)

has finite limit, which was independent on Φ.

1.1.2. MASS COUNTERTERM.

This idea was reformulated then in terms ofmass counterterm. Namely,
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the initial action was rewritten as

A =

∫
d4x(

1

2
(∂ϕ)2 +

m2
0

2
ϕ2 +

λ

4!
ϕ4) =∫

d4x(
1

2
(∂ϕ)2 +

m2

2
ϕ2 +

δm2

2
ϕ2 +

λ

4!
ϕ4) = A0 + AI

A0 =

∫
d4x(

1

2
(∂ϕ)2 +

m2

2
ϕ2) , AI =

∫
d4x(

δm2

2
ϕ2 +

λ

4!
ϕ4)

(6)

where AI was treated as a perturbation. The propagator had also been

changed:

=
1

k2 +m2
, not

1

k2 +m2
0

(7)

However, we got an additional vertex (mass counterterm):

k1 k2

= −δm2(2π)4δ(k1 + k2)

(8)

so that in this modified perturbation theory we got

Σ̃(p) = + = δm2 +
λ

2

∫
d4k

(2π)4
1

k2 +m2
Φ(

k2

Λ2
) =

δm2 +
λm2

2
F (

Λ2

m2
).

(9)

The value of the counterterm was fixed by the relation

δm2 = −λm2

2
F (

Λ2

m2
) +O(λ2)

(10)
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because of we insisted that m was actual mass and it could not

depends on the cutoff Λ.

1.1.3. RENORMALIZED PERTURBATION THEORY.

Thus, we found that by the choice of δm2 in the modified perturbation

theory, the counterterm diagram

(11)

exactly cancels the cutoff dependent buble diagram

+ 0

(12)

so that the dependence on Λ and Φ disappeared. We also noticed

that this cancellation occurs inside the more complicated diagrams like:

+ 0

(13)

1.2. SUPERFICIAL DEGREE OF DIVERGENCE OF DIAGRAMS IN ϕ4 MODEL.

We introduced superficial degree of divergence of diagram as

D = 4I − 2P,

(14)
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where I is a number of integrations and P is a number of internal prop-

agators of a diagram. The integral diverges if D ≥ 0. For ϕ4 theory we

found the relations

2P = 4V − n

4I = 4V − 2n+ 4, (15)

where n is a number of external legs of a diagram. Then we found

D = 4V − 2n+ 4− 4V + n = 4− n. (16)

We saw that the surface degree of divergence depends only on

the number of external lines n only. Thus, for n > 4 (n = 6, 8, ...)

D < 0 and the diagrams are superficialy convergent.

1.3. DIVERGENCE OF Γ4, BARE COUPLING CONSTANT AND RENIRMALIZATION OFb λ.

According to (16) the diagrams for Γ4 have the superficial divergence

D = 0. It means that these diagrams are logarithmically divergent.

We considered the simplest diagram contributing to Γ4

−Γ̃4 =

+

2

1 3

4 2

1 3

4

k

+ permutations of 2, 3, 4 (17)

For the diagram

2

1 3

4

k

(18)
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we found that corresponding integral reduced to

λ22π2

2(2π)4

∫
d|k||k|3

|k|4
=

λ2

16π2

∫
d|k|
|k|

(19)

as soon as |k| >> |p1 + p2| and |k| >> m. Then we introduced the cutoff

again

1

k2 +m2
→ 1

k2 +m2
Φ(

k2

Λ2
)

(20)

and found that the diagram has finite contribution

λ2

16π2
(ln

Λ2

m2
+ f(p1 + p2))

(21)

(where f(p) has finite limit as Λ → ∞).

As a result we came to the finite expression for (17):

Γ̃4 = λ− λ2

16π2
(3 ln

Λ2

m2
+ f(p1 + p2) + f(p1 + p3) + f(p1 + p4)).

(22)

Then we realized that in this order the Λ-dependent part could be

absorbed into some redefinition of the coupling constant.

We made this absorbtion assuming that bare constant λ0 was not a

constant but depends on the cutof Λ in such a way that Γ̃4 was finite when

Λ → ∞:

λ0(Λ) = λ+
3λ2

16π2
(ln (

Λ2

m2
) + C).

(23)
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The new parameter λ was called renormalized coupling constant and

C was an arbitrary number. Then we obtained

Γ̃4 = λ0 −
λ2
0

16π2
(3 ln

Λ2

m2
+ f̃(pi)) +O(λ4

0) =

λ+
3λ2

16π2
(ln

Λ2

m2
+ C)− λ2

16π2
(3 ln

Λ2

m2
+ f̃(pi)) +O(λ4). (24)

1.4. FIELD RENORMALIZATION.

It turns out that renormalizations of mass and coupling constant are

not enough to cancell all divergences in ϕ4 theory. Indeed, let us consider

the diagram

k1

k2

(25)

contributing to −Σ̃(p) at λ2 order. This diagram has superficial degree of

divergence D = 2, i.e. with the cutoff introduced it behaves like Λ2 as

Λ → ∞. One can see this writing the contribution explicitly

(−λ)2

3!

∫
d4k1
(2π)2

d4k2
(2π)2

1

(k21 +m2)(k22 +m2)((p− k1 − k2)2 +m2)
.

(26)

For k1,2 >> p,m this is

≈
∫

d4k1
(2π)2

d4k2
(2π)2

1

k21k
2
2(k1 + k2)2

≈ Λ2

m2
.

(27)

Let us denote this contribution as Σ2(p). One can write

Σ2(p) = Σ2(0) + (Σ2(p)− Σ2(0)).

(28)
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Here

Σ2(0) =
(−λ)2

3!

∫
d4k1
(2π)2

d4k2
(2π)2

1

(k21 +m2)(k22 +m2)((k1 + k2)2 +m2)
.

(29)

This Λ2-divergent contribution does not depend on p. In this respect it is

similar to the contribution of the diagram

(30)

It can be absorbed into the renormalization of the mass param-

eter by suitable modification of the counterterm

δm2(Λ)

2
ϕ2

(31)

Now the difference

Σ2(p)− Σ2(0) =

(−λ)2

3!

∫
d4k1
(2π)2

d4k2
(2π)2

1

(k21 +m2)(k22 +m2)

(
1

((p− k1 − k2)2 +m2)
− 1

((k1 + k2)2 +m2)
)

(32)

with the last factor being

2p(k1 + k2)− p2

((p− k1 − k2)2 +m2)((k1 + k2)2 +m2)
,

(33)

diverges logarithmically, i.e. it is

≈ p2 ln
Λ2

m2
+ finite

(34)
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This can not be cancelled by a mass renormalization. At the same

time the contribution to Γ2(p)

Γ2 = p2 + ...+ λ2(ap2 ln
Λ2

m2
+ finite) =

Z(Λ)p2 + ...

(35)

can be absorbed by a field renormalization.

Recall that the term p2 in Γ2 originates from the kinetic term

1

2
(∂ϕ)2

(36)

in the original action. The above Λ-dependent factor appearing in

Γ2 suggests that the field ϕ entering the original action must be

thought of as the bare field, which will be denoted by ϕ0, and it differs

from the field ϕ appearing in the correlation functions by a Λ-dependent

factor

ϕ0(Λ) = Z
1
2 (Λ)ϕ

(37)

and it is the correlation functions of the renormalized field ϕ

< ϕ(x1)...ϕ(xn) >

(38)

that have finite limit at Λ = ∞.

1.5. RENORMALIZATION PROGRAM.

We come out with renormalization program, which can be described

as follows.
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1.

We start with the action

A =

∫
d4x(

1

2
(∂ϕ0)

2 +
m2

0

2
ϕ2
0 +

λ0

4!
ϕ4
0)

(39)

containing the bare field, bare mass, and bare coupling constant.

2.

We introduce some cutoff with a cutoff momentum Λ (this can be done

by many ways).

3.

We expect that one can give parameters m2
0, λ0, and the field renormal-

ization constant Z certain dependence on Λ:

m2
0 = m2

0(Λ) , λ0 = λ0(Λ) , Z = Z(Λ)

(40)

such that the correlation functions of the renormalized field

ϕ = Z
−1
2 (Λ)ϕ0

(41)

have finite Λ → ∞ limit.

Because the only way to study QFT so far is the perturbation expan-

sion, the above program can be further reformulated as renormalized

perturbation theory.

Namely, we write the action with counterterms

A =

∫
d4x(

1

2
(∂ϕ)2 +

m2

2
ϕ2 +

λ

4!
ϕ4 +

δZ

2
(∂ϕ)2 +

δm2

2
ϕ2 +

δλ

4!
ϕ4),

(42)
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where m is an actual mass and λ is suitably defined finite coupling

constant. The identity with the original action implies

1 + δZ = Z , m2 + δm2 = Zm2
0 , λ+ δλ = Z2λ0.

(43)

The renormalized perturbation theory is the expansion in renormalized

coupling constant λ. Therefore we assume the counterterm coefficients

themselves depend perturbatively (i.e. as power series) on λ.

The project is to give these counterterms certain dependence

on Λ such that the renormalized correlation functions are Λ-

independent order-by-order in λ.

2. Divergences and renormalization in general field theories of ϕ.

Let us consider the divergences and renormalizations in a scalar field

theory whose interaction term is more general polynomial in ϕ. It is also

helpful to study such theory in the space of d dimensions. The action is

A =

∫
ddx(

1

2
(∂ϕ0)

2 +
m2

0

2
ϕ2
0 +

N∑
n=3

λ0,n

n!
ϕn). (44)

The Feynman rules remain the same as in the case d = 4, except for the

momentum integration:

d4k

(2π)4
→ ddk

(2π)d

(45)

and the diagrams contain n-leg vertices associated with the couplings λ0,n.

2.1. SUPERFICIAL DEGREE OF DIVERGENCE OF DIAGRAMS.

Generic giagram contributing to Γ̃n, contains P -propagators and I d-

momentum integrations. The superficial degree of divergence for such a
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diagram is given by

D = dI − 2P

(46)

because now the momenta are d-dimensional. Assume that the diagram

contains Vm m-legs vertices. Analysis similar to that we have made for ϕ4

theory reveals two identities

2P + n =
∑
m

mVm,

I = P −
∑
m

Vm + 1

(47)

These equations give the following expression

D =
∑
m

(
d− 2

2
m− d)Vm − d− 2

2
n+ d. (48)

2.2. ANALYSIS OF DIVERGENT DIAGRAMS FOR DIFFERENT INTERACTION TERMS.

2.2.1. Suppose N = 3 so that we have ϕ3 theory. Then

D =
d− 6

2
V3 + n+ d(1− n

2
).

(49)

If d > 6 then for any Γn there are diagrams with big enough V3 which

diverge. It means that ϕ3 theory is not renormalizable for d > 6.

If d = 6 then

D = 6− 2n.

(50)

There is a divergence only for Γ2, Γ3. The theory is renormalizable.
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If 2 < d < 6

D =
d− 6

2
V3 + n+ d(1− n

2
) ≤ d− 6

2
+ n+ d(1− n

2
) =

(d− 2)(3− n)

2
⇔

D ≤ (d− 2)(3− n)

2
.

(51)

The divergence appears only for Γ2, Γ3 (?) and hence the theory is renor-

malizable.

2.2.2 Consider now ϕ4 theory in different dimensions.

D = (d− 4)V4 + d− d− 2

2
n.

(52)

If d > 4 for all Γ̃n there are divergences (because for given n one can find

diagram with sufficiently large V4) and hence the theory is not renormal-

izable.

If d = 4

D = 4− n

(53)

and the divergences appear only in Γ̃2 and Γ̃4 so the theory is renormal-

izable.

If d = 3 then

D = (1− V4) + 2− n

2
≤ 2− n

2
(54)

thus, only Γ̃2 is divergent and the theory is renormalizable.

Summarizing we conclude

d > 6: all theories are nonrenormalizable.
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d = 6 ϕ3 is renormalizable.

d = 4 ϕ3 and ϕ4 are renormalizable.

d = 3 ϕ3, ϕ4, ϕ5, ϕ6 are renormalizable.

d = 2 the theory is renormalizable for any polynomial of variable ϕ,

superrenormalizable theory.

2.3. COUPLING CONSTANTS DIMENSIONS AND RENORMALIZABILITY.

The formula (48) admits very simple interpretation in terms of dimen-

sional counting. Note that in our units c = ℏ = 1 so that there is only one

independent unit, which we take to be mass unit. Let us denote by [X]

the mass dimension of a quantity X, for example

[mass] = 1 , [lenght] = −1

(55)

The action is dimensionless and therefore it follows from (44)

[ϕ0] =
d− 2

2
, [m2

0] = 2 , [λ0,n] = d− d− 2

2
n. (56)

Notice that this simple dimensional analysis is applied to the bare quan-

tities. We will see later that due to renormalization constant Z(Λ) the

renormalized field ϕ can have different dimension. By this reason the di-

mensions in (56) are called canonical (or engeneering) dimensions. It is

easy to check that

[Γ̃n] = d− d− 2

2
n (57)

(as the coefficient standing in front ϕn.) Therefore (48) can be rewritten

as

D = [Γ̃n]−
∑
m

[λ0,m]Vm. (58)
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At Λ >> |pi| dominating contribution of the diagram with Vm vertices λm

is

Γ̃n ≈ (
∏
m

(λ0,m)
Vm)ΛD

(59)

and (58) simply describes the ballance of dimensions.

As it follows from (58) the mass dimensions of the coupling con-

stants λ0,m play the key role in the analysis of the perturbative

divergences.

Suppose some coupling constant λ0,m have strictly negative mass di-

mension. Then there are divergent contributions to Γ̃n with any n from

the diagrams with sufficiently large Vm. In other words such theory has

infinitely many primitive divergences which can not be obsorbed by any fi-

nite number of counterterms. QFT of this type are called (perturbatively)

nonrenormalizable. Overall consistency of nonrenormalizable theories is

very questionable. From purely pragmatic point of view, the necessity to

introduce infinitely many counterterms brings in also infinitely

many free parameters, and predictive power of such theories is

limited.

If the mass dimensions of all coupling constants in (44) are non-negative,

the equation (58) shows that there is only finite number of primitively di-

vergent proper vertices if d > 2 (d = 2 case is special and must be analysed

separetely). In tis case the divergences can be absorbed by finitely many

counterterms. Such theories are called renormalizable.

If all λ0,m have strictly positive mass dimensions there is only finite

number of divergent diagrams. The theories of this kind are refered to as

super-renormalizable. Thus, the renormalizable field theories con-

tain infinite number of divergent diagrams but finite number of
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primitive divergences. This happens when at least one of the coupling

constants is dimensinless (see (58)). Overall consistency of a renormaliz-

able theories require more subtle analyses, but at least they make sense

perturbatively.

It is important to note also that nonexistence of perturbatively renor-

malizable field theories in high dimensionalities does not imply that con-

sistent QFT are limited to low space-time dimensions, there may exist

perfectly consistent QFT which are just too far from free field

theory to admit meaningfull perturbative interpretation.
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