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1. Wick’s theorem for fermions and Yukawa model.

1.1. Normal ordering and Wick’s theorem for fermions.

We start with the calculation of < 0|T (ψ(x)ψ̄(y))|0 > for the Dirac

field. In the Hesenberg picture the field operators are

ψ(x) =

∫
d3p

(2π)3

1

2
√
E~p

∑
s

(as~pu
s(~p) exp (−ıpx) + bs†~p v

s(~p) exp (ıpx))

ψ̄(x) =

∫
d3p

(2π)3

1

2
√
E~p

∑
s

((as~p)
†ūs(~p) exp (ıpx) + (bs~p)v

s(~p) exp (−ıpx)) (1)
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where the creation-annihilation operators satisfy the following anti-commutators

relations

[as~p, a
r†
~q ]+ = [bs~p, b

r†
~q ]+ = (2π)3δ3(~p− ~q)δs,r

(2)

Let us introduce the decompositions

ψ+(x) =

∫
d3p

(2π)3

1

2
√
E~p

∑
s

as~pu
s(~p) exp (−ıpx),

ψ̄+(x) =

∫
d3p

(2π)3

1

2
√
E~p

∑
s

bs~pv
s(~p) exp (−ıpx),

ψ−(x) =

∫
d3p

(2π)3

1

2
√
E~p

∑
s

bs†~p v
s(~p) exp (ıpx),

ψ̄−(x) =

∫
d3p

(2π)3

1

2
√
E~p

∑
s

as†~p ū
s(~p) exp (ıpx)

(3)

Suppose that x0 > y0 in T (ψ(x)ψ̄(y)). Then

T (ψ(x)ψ̄(y)) = (ψ+(x) + ψ−(x))(ψ̄+(y) + ψ̄−(y)) =

ψ+(x)ψ̄+(y)− ψ̄−(y)ψ+(x) + ψ−(x)ψ̄+(y) + ψ−(x)ψ̄−(y) + [ψ+(x), ψ̄−(y)]+

(4)

where we have taken into account Fermi statistics of the Dirac field.

In each term of this expression, excluding the anti-commutator, the

annihilation operators as~p, b
s
~p are to the right of the creation operators as†~p ,

bs†~p . This way to order the fields in T (ψ(x)ψ̄(y)) is convenient because by

the vacuum definition

ψ+(x)|0 >= 0 = ψ̄+(x)|0 >, < 0|ψ−(x) = 0 =< 0|ψ̄−(x)

(5)
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so that the all terms in < 0|T (ψ(x)ψ̄(y))|0 > except the anti-commutator

vanish. The way to arrange the creation-annihilation operators in the

operator product when the annihilation operators stand to the right of the

creation operators is called the normal ordering of operators. The

normal ordering of operators as~q...b
r
~p...a

t†
~k
...bu†~l is denoted usualy as

: as~q...b
r
~p...a

t†
~k
...bu†~l :

(6)

The only difference from the bosonic case in the definition of normal or-

dering of fermions is the sign factor (due to Fermi statistics). For example

: as~qa
r†
~p b

t
~k
bu†~l := −ar†~p b

u†
~l
as~qb

t
~k

(7)

Suppose now that y0 > x0 in T (ψ(x)ψ̄(y)). Then

T (ψ(x)ψ̄(y)) = −ψ̄(y)ψ(x) =

−ψ̄+(y)ψ+(x) + ψ−(x)ψ̄+(y)− ψ̄−(y)ψ+(x)− ψ̄−(y)ψ−(x)− [ψ̄+(y), ψ−(y)]+

(8)

where the Fermi statistics has been taken into account again.

The all terms in < 0|T (ψ(x)ψ̄(y))|0 > are vanishing except the last

anti-commutator. It makes sense therefore to define the operation which

is called contraction for fermions:

ψ(x)ψ̄(y) = [ψ+(x), ψ̄−(y)]+ if x0 > y0

and

ψ(x)ψ̄(y) = −[ψ̄+(y), ψ−(x)]+ if y0 > x0

ψ(x)ψ(y) = ψ̄(x)ψ̄(y) = 0. (9)
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But the contraction so defined coincides with the definition of

Feynman’s propagator for Dirac fermions

ψ(x)ψ̄(y) = SF (x− y),

SF (x− y) =

Θ(x0 − y0) < 0|ψa(x)ψ̄b(y)|0 > −Θ(y0 − x0) < 0|ψ̄b(y)ψa(x)|0 >=∫
d4p

(2π)4

ı(pµγ
µ +m)

p2 −m2 + ıε
exp (−ıp(x− y)) (10)

Hence we can write

T (ψ(x)ψ̄(y)) =: ψ(x)ψ̄(y) : +ψ(x)ψ̄(y) (11)

It allows to prove by induction Wick’s Theorem:

T (ψ(x1)ψ̄(x2)...ψ(xN)) =: ψ(x1)ψ̄(x2)...ψ(xN) : +

sum of : ψ(x1)ψ̄(x2)...ψ(xN) : with all possible contractions inside.

(12)

1.2. Interaction picture for Yukawa model.

The Yukawa model can be considered as a simplifying version of QED

where the foton is changed by a scalar field. The Lagrangian is the sum

LY = LKG + LDir + Lint,

LKG =
1

2
[∂µφ∂

µφ−m2φ2],

LDir = ψ̄(ıγµ∂µ −m)ψ,

Lint = −gφψ̄ψ. (13)

Similarly to the φ4 model one can develop interaction picture for Yukawa

model assuming that couplin constant g is small and introducing Heisen-

berg fields operators ψI(x), φI(x) in representation picture. By the defini-
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tion, these fields obey the free field theory equations of motion:

ı
∂

∂t
φI(~x, t) = [HKG, φI(~x, t)]

ı
∂

∂t
ψI(~x, t) = [HDir, ψI(~x, t)] (14)

Then we can express the Heisenberg fields ψ(x), φ(x) and the vacuum state

|Ω > of Yukawa theory in terms of the Heisenberg fields ψI(x), φI(x) and

vacuum |0 > of free theory similarly to the case of φ4 theory. It allows to

obtain the Green’s function formula like this

< Ω|T (ψ(x1)...ψ(xn)ψ̄(y1)...ψ̄(yn)φ(z1)...φ(zm))|Ω >=

lim
T→∞(1−ıε)

< 0|T (ψI(x1)...ψI(xn)ψ̄I(y1)...ψ̄I(yn)φI(x1)...φI(xn) exp (−ı
∫ T
−T dtHI(t)))|0 >

< 0|T (exp (−ı
∫ T
−T dtHI(t)))|0 >

(15)

where

HI(t) = g

∫
d3xψ̄I(~x, t)ψI(~x, t)φI(~x, t)

(16)

1.3. Green’s functions and Feynmam diagrams.

Consider first the 2-points Green’s functions

< Ω|T (φ(x)φ(y))|Ω >= lim
T→∞(1−ıε)

< 0|T (φI(x)φI(y) exp (−ı
∫ T
−T dtHI(t)))|0 >

< 0|T (exp (−ı
∫ T
−T dtHI(t)))|0 >

,

< Ω|T (ψ(x)ψ̄(y))|Ω >= lim
T→∞(1−ıε)

< 0|T (ψI(x)ψ̄(y) exp (−ı
∫ T
−T dtHI(t)))|0 >

< 0|T (exp (−ı
∫ T
−T dtHI(t)))|0 >

(17)

One can use perturbation expansion in order to calculate these functions.

At zero perturbation order the numerators give the free propagators

DF (x− y) = x y
(18)
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SF (x− y) = x y
(19)

As usual, there are certainly highest order corrections which contain con-

nected diagrams as well as unconnected fragments of vacuum diagrams, but

these fragments are cancelled by the vacuum diagrams from denominator.

The interaction vertex appears when we consider 3-point Green’s func-

tion < Ω|T (ψ(x)ψ̄(y)φ(z))|Ω > at first order. In this case Wick’s theorem

applied to the numerator gives

−ıg
∫
d4u < 0|T (ψ(x)ψ̄(y)φ(z)ψ̄(u)ψ(u)φ(u))|0 >=

−ıg
∫
d4u(< 0| : ψ(x)ψ̄(y)φ(z)ψ̄(u)ψ(u)φ(u) : |0 > +...

+ < 0| : ψ(x)ψ̄(y)φ(z)ψ̄(u)ψ(u)φ(u) : |0 >) =

−ıg
∫
d4u < 0|(−1)ψ(x)ψ̄(u)(−1)ψ(u)ψ̄(y)φ(z)φ(u)|0 >=

−ıg
∫
d4uSF (x− u)SF (u− y)DF (z − u)

(20)

Thus we find the vertex diagram

u

= −ıg
∫
d4u (21)

The diagrams of propagators (18), (19) and the vertex diagram (21) gen-

erate all the diagrams in Yukawa theory. Therefore, one can calculate any

Green’s function of the theory using these Feynman rules.

2. Classification of diagrams (reminder).
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2.1. Unconnected and connected diagrams.

A general 4-point correlation function, for example, can be represented

by the diagrams:

=

(22)

+ + + +

(23)

The first pair of diagrams is an example of disconnected diagrams, while

the second pair is an example of connected diagrams.

2.2. Amputated diagrams.

These are the connected diagrams with amputated external lines:

(24)

2.3. One-particle irreducible diagrams and proper vetices.

The one-particle irreducible diagrams are the connected diagrams
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which cannot be made disconnected by cutting just one line.

(25)

For n > 2 the n-point proper vertex−Γ(n)(y1, ..., yn) is the sum of all one-

particle irreducible diagrams. In particular, in φ4 theory Γ(4) = −W (4)
amp.

3. Momentum representation.

To actually evaluate a diagram it is often more convenient to represent

the diagram in the momentum space.

3.1. Fourier transformed correlation functions.

∫
d4x1...d

4xnW
n(x1, ..., xn) exp (−ıp1x1)... exp (−ıpnxn) =

(2π)4δ(p1 + ...+ pn)W̃
n(p1, ...pn) (26)

where W n(x1, ..., xn) means connected n-point correlation function. δ-

function appears due to the translation invariance of the correlation func-

tion.

3.2. Feynman rules in the momentum space.

In lecture 7 the Feynman rules for the φ4 theory in momentum repre-

sentation were obtained:

1.
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Internal propagator carry momenta to be integrated over∫
d4k

(2π)4

1

k2 +m2
=

k k

(27)

2.

External propagator carry fixed momenta

W̃ n(p1, ..., pn) =

p1

p2

pn−1

pn

(28)

p
=

1

p2 +m2

(29)

3.
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The vertices conserve the momenta

k1 k3

k2

k4

= −λ(2π)4δ(k1 + ...+ k4)

(30)

In the momentum representation many operations simplify. For example

the amputation takes very simple form

W̃ n(p1, ..., pn) =
n∏
i=1

W̃ (pi)W̃
n
amp(p1, ..., pn)

(31)

where W̃ (pi) is Fourier transform of W (x− x′).
In the momentum space Γ̃2(p) is just an inverse of W̃ (p)

Γ̃2(p) =
1

W̃ (p)
= p2 +m2 + Σ̃(p)

(32)

4. Divergences and Λ-regularization.

4.1. Divergence of Σ, bare mass and idea of mass renormalization.

Let us calculate the leading order to Σ̃(p) (euclidean space formulation

of QFT will be implied in what follows)

Σ̃(p) = − =
λ

2

∫
d4k

(2π)4

1

k2 +m2

(33)

The integral is badly divergent as k →∞. What should we do about it?
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Just as we did in the Casimir effect let us introduce a cutoff, replacing

1

k2 +m2
→ 1

k2 +m2
Φ(
k2

Λ2
)

(34)

where Φ( k
2

Λ2 )→ 0 as k2 →∞ fast enough to make the integral convergent,

while Φ ≈ 1 at k2 << Λ2. Then

λ

2

∫
d4k

(2π)4

1

k2 +m2
Φ(
k2

Λ2
) =

λm2

2
F (

Λ2

m2
)

(35)

As just in the case of the KG vacuum energy, the cutoff by itself brings no

physical insight as we know nothing about both Φ and Λ, and can not fix

F .

Let us note however, that in this case the contribution has no mo-

mentum dependence, and enters the quantity Γ̃2(p) in the combi-

nation m2 + λm2

2 F ( Λ2

m2 )

Γ̃2(p) = p2 +m2 +
λm2

2
F (

Λ2

m2
)

(36)

We see that no matter what Φ and Λ is, the parameter m is not

actual mass of the particles. The interraction leads to a shift that

happens to depend on the cutoff. We will see later that actual mass

of the particle in interacting theory is determined by the equation

Γ̃2(p)|p2=−m2 = 0 (37)

It is reasonable therefore to change the notations, denoting by m2
0 the

coefficient in front of φ2 in A. Then

Γ̃2(p) = p2 +m2
0 +

λm2
0

2
F (

Λ2

m2
0

) + ... = p2 +m2

(38)
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Note that we have already observed similar phenomenon in our path in-

tegral representation of the free propagator D. We started with a discret

approximation of the path characterized by the step ∆ (cutoff) and have

taken some parameter m0 instead of m in the action

A = m0 · Lenght

(39)

We found that actual mass m was different from m0 by some terms which

depend on ∆ ≈ Λ−1. We then had to give some dependence of m0 on ∆

m0 = m0(∆)

(40)

so that in the continous limit ∆→ 0 the actual mass m had finite value.

Similar procedure applies here. Assume that parameter m2
0 in the

action (usualy called bare mass parameter) depends on Λ in such

a way that the actual mass

m2 = m2
0 +

λm2
0

2
F (

Λ2

m2
0

) + o(λ2)

(41)

remains finite as Λ→∞. Then to this order

Γ̃2(p) = p2 +m2 +O(λ2)

(42)

has finite limit, independent on Φ.

4.2. Counterterms.

One can improve this idea. Our (euclidean) action is

A =

∫
d4x(

1

2
(∂φ)2 +

m2
0

2
φ2 +

λ

4!
φ4)

(43)
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Let us now write

m2
0 = m2 + δm2

(44)

where m2 is an actual mass. Then one can write the initial action as

A =

∫
d4x(

1

2
(∂φ)2 +

m2

2
φ2 +

δm2

2
φ2 +

λ

4!
φ4) = A0 + AI

A0 =

∫
d4x(

1

2
(∂φ)2 +

m2

2
φ2) , AI =

∫
d4x(

δm2

2
φ2 +

λ

4!
φ4)

(45)

and we can treat the AI as a perturbation. In this case the propagator is

=
1

k2 +m2
, not

1

k2 +m2
0

(46)

However we have an aditional vertex

k1 k2

= −δm2(2π)4δ(k1 + k2)

(47)

The term δm2

2 φ2 in the action is the simplest appearence of so called coun-

terterms and the above extra vertex is called counterterm vertex.

In this modified perturbation theory we have

Σ̃(p) = + = δm2 +
λ

2

∫
d4k

(2π)4

1

k2 +m2
Φ(
k2

Λ2
) =

δm2 +
λm2

2
F (

Λ2

m2
)

(48)

If we insist that m is actual mass, we have to set

δm2 = −λm
2

2
F (

Λ2

m2
) +O(λ2)

(49)
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That is the bare mass as a function of cuttof Λ is given by

m2
0 = m2 − λm2

2
F (

Λ2

m2
) +O(λ2)

(50)

Notice that this seems differ from the relation between m2
0 and m2 we

obtained within the original perturbation theory

m2
0 = m2 − λ

2
m2

0F (
Λ2

m2
0

) +O(λ2)

(51)

There is no contrudiction here because the difference between these two

expressions is ≈ λ2.

4.3. Renormalized perturbation theory.

By the choice of δm2 in the modified perturbation theory, the countert-

erm diagram

(52)

exactly cancels the cutoff dependent buble diagram

+ 0

(53)

so the dependence on Λ and Φ disappears.

Note that this cancellation occures also inside more complicated dia-
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grams:

+ 0

(54)

The idea behind this modified perturbation theory can be ex-

tended to obtain so called renormalized perturbation theory in

which all divergences of original perturbation theory are extermi-

nated. This new perturbation theory with counterterms is called renor-

malized perturbation theory.
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