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1. Why do we need in Quantum FT?

1.1 Lagrangian, action and equations of motion in Classical mechanics and FT.

The equations of motion in Classical Mechanics follow from extremal

action principle: we have an action

S =

∫
L(q(t), q̇(t))dt (1)
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where the Lagrangian L(q(t), q̇(t)) is a function of coordinate of a particle

q(t) and its velocity q̇(t).

Notice also that we do not consider Lagrangians which include highest

derivatives like q̈(t) because it would contradicts to Lagrangian causality

principle: the evolution q(t) is determined by the initial position

of particle q(0) and its initial velosity q̇(0).

The equations of motion follow if we demand that trajectory is extremal

δS = 0 (2)

In Classical FT an analog of q(t) is a field ϕ(x⃗, t). The action is deter-

mined by the Lagrangian density

S =

∫
Λ(ϕ(x⃗, t), ϕ̇(x⃗, t),∇ϕ(x⃗, t))d3xdt (3)

where, as in classical mechanics we do not include the highest deriva-

tives like ϕ̈(x⃗, t) due to the Lagrangian causality principle.

The equations of motion follow if we demand that ”‘trajectory”’ ϕ(x⃗, t)

is extremal

δS = 0 ⇔ ∂µ(
∂Λ

∂(∂µϕ)
)− ∂Λ

∂ϕ
= 0 (4)

1.2 Lorentz invariance, locality and causality.

Recall that Lorentz group is a set of linear transformations of Minkowski

space-time coordinates (x⃗, t) which leave the interval

ds2 = dt2 − (dx⃗)2

(5)

unchanged.

Then the action (3) will be Lorentz invariant if the Lagrangian density

Λ is Lorentz invariant because the mesure d3xdt is Lorentz invariant clearly.
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The action must be local. It means that Lagrangian desity is local.

This in turn means that all the quantities ϕ(x⃗, t), ϕ̇(x⃗, t), ∇ϕ(x⃗, t) are taken

in one point (x⃗, t). This reflects (Faraday’s) principle of short-range action:

the field degree of freedom ϕ(y⃗, t) does not interract immedi-

ately with ϕ(x⃗, t) if |y⃗ − x⃗| =finite.

Allowing such interractions would lead to possible terms in Lagrangian

like ∫
F (ϕ(x⃗, t), ϕ(y⃗, t))d3xd3y (6)

But Lorentz invariance of the action S would require also the terms which

are nonlocal in time as well, like∫
G(ϕ(x⃗, t), ϕ(y⃗, t′))d3xd3ydtdt′ (7)

which evidently violate causuality. The state in the future affects the

dynamics at present. Locality and causuality are deeply connected.

1.3 Symmetries of the action and Noether theorem.

The Lagrangian approach opens up a natural way to relate the symme-

tries of the action to the consrvation lows. It is given by

Noether theorem: suppose we have a continued set of transformations

ϕ(x) → ϕ̃(x) = Fs(x, ϕ(x)) (8)

parametrized by a parameter s, such that F0(x, ϕ(x)) = ϕ(x) and the action

is invariant

S[ϕ(x)] = S[ϕ̃(x)] (9)

Consider the infinitesimal transformation

ϕ(x) → ϕ(x) + ϵE(x, ϕ(x)) ⇒

Λ(ϕ̃, ∂µϕ̃) = Λ(ϕ, ∂µϕ) + ϵ[
∂Λ

∂ϕ
E +

∂Λ

∂(∂µϕ)
∂µE)] (10)
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Because of action is invariant

∂Λ

∂ϕ
E +

∂Λ

∂(∂µϕ)
∂µE = ∂µK

µ ⇔

∂µ(
∂Λ

∂(∂µϕ)
E) + (

∂Λ

∂ϕ
− ∂µ

∂Λ

∂(∂µϕ)
)E = ∂µK

µ (11)

But the second term on the r.h.s. is zero due to the equations of motion,

therefore we obtain the conservation low

∂µ(
∂Λ

∂(∂µϕ)
E)− ∂µK

µ ≡ ∂µJ
µ = 0

Jµ =
∂Λ

∂(∂µϕ)
E(x, ϕ)−Kµ(ϕ, ∂ϕ) (12)

This leads to the conserved charges for the solutions which satisfy the

equations of motion (on shell):

Qt1 ≡
∫

d3xJ0(x⃗, t1) = Qt2 ≡
∫

d3xJ0(x⃗, t2) (13)

where it is implied that classical solution is such that ϕ(x⃗, t) → 0 when

x⃗ → ∞. The equation (13) is proved by Gauss theorem.

1.4 Stress-energy tensor.

The most general symmetry taking place in FT is translational sym-

metry. If the Lagrangian density

Λ(ϕ(x), ∂ϕ(x))

(14)

has no explicit dependence on xµ the action is invariant w.r.t the shifts by

a constant vector a:

x → x̃ = x+ a,

ϕ(x) → ϕ̃(x) = ϕ(x+ a) (15)
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The infinitesimal version of the shift is

x → x̃ = x+ ϵ,

ϕ(x) → ϕ̃(x) = ϕ(x) + ϵν∂νϕ(x), (16)

so that E(ϕ, ∂ϕ) = ∂νϕ(x) is vector and

Kµ = ∂νΛ (17)

Now the expression (12) gives the stress-energy tensor conservation low

T µ
ν =

∂Λ

∂(∂µϕ)
∂νϕ− Λδµν , ∂µT

µ
ν = 0 (18)

The conservation low (18) leads to 4 conserved quantities:

E =

∫
T 00d3x, P i =

∫
T 0id3x ⇔ P µ =

∫
gµνT 0

ν d
3x,

i = 1, ..., 3, ν, µ = 0, ..., 3, gµν = diag(1,−1,−1,−1) (19)

E is an energy and P⃗ is a momentum.

1.5 KG theory.

It is a single component (scalar) field ϕ(x⃗, t) with the action

S =

∫
1

2
[(ϕ̇)2 − (∇ϕ)2 −m2ϕ2]d3xdt =∫

1

2
[∂µϕ∂

µϕ−m2ϕ2]d4x (20)

The action is Lorentz invariant because the scalar field transforms under

the Lorentz tralsformation xµ → x̃µ = Rµ
νx

ν as ϕ̃(x) = ϕ(x̃). The equation

of motion:

δS = 0 ⇔ ∂µ∂
µϕ+m2ϕ = 0 (21)

is Lorentz invariant and m2 is a mass of the field ϕ.
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The stress-energy tensor is given by

Tµν = ∂µϕ∂νϕ− 1

2
gµν(∂λϕ∂

λϕ−m2ϕ2) (22)

Hence, the energy and momentum densities are given by

E =
1

2
(ϕ̇)2 + (∇ϕ)2 +m2ϕ2),

P⃗ = ϕ̇∇ϕ (23)

2. Hamiltonian formalism.

2.1.Canonical variables and Hamiltonian in Classical Mechanics.

To pass from Lagrangian formalism to Hamiltonian formalism in classi-

cal mechanics, it is necessary to introduce canonical momenta

pi =
∂L(q, q̇)

∂q̇i
(24)

and then exclude q̇ in favor of p: q̇ = f(q, p). Then the Hamiltonian

function appears as the Legandre transform

H(p, q) =
∑
i

piq̇i − L(q, p) (25)

Then the equations of motion take the Hamiltonian form

q̇i =
∂H

∂pi
= {qi, H},

ṗi = −∂H

∂qi
= {pi, H},

{f, g} ≡ ∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
(26)

2.2.Canonical variables and Hamiltonian in Classical FT.

In the field theory we have x⃗ instead of i, hence the canonical momenta

is

π(x⃗) =
δL

δϕ̇
(27)
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where

L =

∫
Λ(ϕ, ∂ϕ)d3x

(28)

2.3. Canonical variables and Hamiltonian in KG theory.

Applying the definition above to the case of KG Lagrangian we find

π(x⃗) = ϕ̇(x⃗) (29)

Hence the Hamiltonian is

H =

∫
d3xπ(x⃗)ϕ̇(x⃗)− L =∫

d3x
1

2
(π2 + (∇ϕ)2 +m2ϕ2) (30)

3. Quantization procedure in Hamiltonian formalism.

3.1. Quantization procedure in mechanics.

Classical mechanics: phase space parametrized by the canonical co-

ordinates pi, qi, endowed with the canonical Poisson brackets

{qi, pj} = δji (31)

Quantum mechanics: Hilbert space of states, H, p̂i, q̂i-operators with

canonical brakcets

[qi, p
j] = ıδji (32)

Classical mechanics: Hamiltonian H(p, q)- function on the phase

space.

Quantum mechanics: Hamiltonian Ĥ(p̂, q̂)-operator acting on the

space of states.

7



Classical mechanics: equations of motion

q̇i = {qi, H}, ṗi = {pi, H} (33)

Quantum mechanics: Heisenberg’s equations of motion

˙̂qi = [q̂i, H], ˙̂pi = [p̂i, H] (34)

or Schrödinger’s representation: H is the space of quadraticaly inte-

grable functions Ψ(q) such that

q̂iΨ(q) = qiΨ(q), p̂iΨ(q) = ı
∂

∂qi
Ψ(q)

ı
∂

∂t
Ψ(q) = ĤΨ (35)

3.2. Quantization of KG field in Schrödinger picture.

An analog of quantummechanical wave function is a functional Ψ[ϕ(x⃗, t0)]

of the field configuration ϕ(x⃗, t0) which we can observe at some moment of

time t0. This is an element of the Hilbert space of states H of KG QFT

Ψ[ϕ(x⃗)] ∈ H. The scalar product in H is determined by the functional

integral

(Ψ1,Ψ2) =

∫
D[ϕ(x⃗)]Ψ1[ϕ(x⃗, t0)]Ψ

∗
2[ϕ(x⃗, t0)] (36)

By definition, the functional Ψ[ϕ] satisfy the equations

ϕ̂(x⃗)Ψ[ϕ(x⃗, t)] = ϕ(x⃗, t)Ψ[ϕ(x⃗, t)],

π̂(x⃗)Ψ[ϕ(x⃗, t)] = −ı
δ

δϕ(x⃗)
Ψ[ϕ(x⃗, t)], (37)

where the operators ϕ̂(x⃗), π̂(x⃗) does not depend on time and satisfy the

canonical commutation relations

[ϕ̂(x⃗), π̂(y⃗)] = ıδ3(x⃗− y⃗) (38)
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The evolution of Ψ[ϕ] in time is given by the Schrödinger equation

ı
∂

∂t
Ψ = ĤΨ, (39)

where the Haniltonian is

Ĥ =

∫
d3x

1

2
(π̂(x⃗)2 + (∇ϕ̂(x⃗))2 +m2ϕ̂(x⃗)2) (40)

3.3. KG as a set of harmonic oscillators.

The KG Hamiltonian (70) is very similar to the harmonic oscillator

Hamiltonian

Hosc =
1

2
(p2 + ω2q2). (41)

The difference is that in case of KG field we have a continuum of harmonic

oscillators parametrized by a vectors p⃗.

For the harmonic oscillator, the operators

a =
ı√
2ω

(p− ıωϕ), a† = − ı√
2ω

(p+ ıωϕ) (42)

diagonalize the Hamiltonian

Hosc =
ω

2
(a†a+ aa†), [Ĥ, a†] = ωa†, [Ĥ, a] = −ωa (43)

because

[a, a†] = 1 (44)

(which in turn follows from the canonical commutator for p and q).

The same is true for KG theory:

[Ĥ, a†p⃗] = ωp⃗a
†
p⃗, [Ĥ, ap⃗] = −ωp⃗ap⃗ (45)

The KG field momentum operator is given by

ˆ⃗
P =

∫
d3p

(2π)3
p⃗

2
(a†p⃗ap⃗ + ap⃗a

†
p⃗) (46)
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and we have

[P̂ , ap⃗] = −p⃗ap⃗, [P̂ , a∗p⃗] = p⃗a∗p⃗. (47)

For the harmonic oscillator the states (a†)n|0 > form the basis of Hosc-

eigenstates

Hosc(a
†)n|0 >= (n+

1

2
)ω(a†)n|0 > . (48)

and the space of states of harmonic oscillator is spanned by these eigen-

states.

Now we can construct physiscally acceptable solutions of quantum KG

theory. To do that one needs to find appropriate representation of the

commutators from (69), (45), (47) in the Hilbert space of states H.

We demand that the energy spectrum is bounded from below:

E ≥ E0. It means that there is a state |0 > with minimal energy E0 such

that

ap⃗|0 >= 0 for all p⃗ (49)

Then the space H is spanned by the vectors

|p⃗1, ..., p⃗N >= a∗p⃗1...a
∗
p⃗N
|0 >,

Ĥ|p⃗1, ..., p⃗N >= (ωp⃗1 + ...+ ωp⃗N + E0)|p⃗1, ..., p⃗N >

P̂ |p⃗1, ..., p⃗N >= (p⃗1 + ...+ p⃗N + P⃗0)|p⃗1, ..., p⃗N > (50)

This space is called Fock space.

The ground state energy

E0 =

∫
d3p

(2π)3
ωp⃗

1

2
[ap⃗a

∗
p⃗] =

∫
d3p

ωp⃗

2
δ(0) (51)

is divergent. But the expression for E0 can be rewritten as follows

E0 =

∫
d3p′

(2π)3
d3p

(2π)3
ωp⃗

2

∫
d3x exp (ı(p⃗− p⃗′)x⃗)δ(p⃗− p⃗′) = ϵ0V

3, (52)
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where

E0 =
∫

d3p
ωp⃗

2
=< 0|T 00|0 > (53)

is the density of vacuum energy. Due to Lorentz invariance it means

< 0|T µν|0 >= E0gµν.

(54)

Hence Lorentz invariance does not require

P⃗0 ̸= 0

(55)

if E0 ̸= 0.

3.4. Vacuum energy, normal ordering and particle interpretation.

Though the infinite vacuum energy can cause the problems, it

can be ignored as long as the difference between the energy of a

given state and vacuum energy matters. Therefore it makes sense to

redefine Ĥ by subtracting E0:

: Ĥ := Ĥ − E0 =

∫
d3p

(2π)3
ωp⃗a

∗
p⃗ap⃗ (56)

and do similar subtraction for the momentum operator (though the P0 = 0)

:
ˆ⃗
P :=

∫
d3p

(2π)3
p⃗a∗p⃗ap⃗. (57)

It allows us to interprate the operator a∗p⃗ as creating a particle

with the energy ωp⃗ and momentum p⃗ so that the vector |p⃗1, ..., p⃗N >=

a∗p⃗1...a
∗
p⃗N
|0 > is an N -particles state with the momenta p⃗1, ..., p⃗N because of

the correct relation ωp⃗i =
√

p⃗2i +m2 between the momentum and energy

of each particle.
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3.5. Vacuum energy regularization and QFT at small distances.

Though the subtraction (56), (57) is very convenient and allows to study

the spectrum of excited states it does not solve the vacuum energy prob-

lem. E0 is invisible in infinite flat space-time but it is impodtant

when we consider gravity. That is vacuum energy contributes to the

cosmological constant which as we know is astronomically small.

As one can see from (53) the divergence occurs due to small distances

(large momenta). It can be assumed that the theory does not

apply to very small scales and must be modifyed so that instead of

(53) we would have

ϵ0 =

∫
d3p

ωp⃗

2
Φ(

p⃗2

λ2
), Φ(0) = 1 (58)

where λ is some large momentum, where a new physics emerge. If we

assume that Φ(x) → 0 as x → ∞ sufficiently fast, the integral above would

converge. But Φ(x) and λ must be determined by small scales physics.

Thus, the vacuum energy divergence problem is a physical problem.

3.6. Conserved charges and KG field quantization.

Here we introduce creation-annihilation operators using the Noether

theorem.

The action of KG field is invariant under some special symmetry. In-

deed, doing the infinitesimal field transformation

ϕ(x) → ϕ̃(x) = ϕ(x) + f(x) (59)

where the function f(x) is an arbitrary solution of KG equation, we see

that the Lagrangian density changes by

Λ(ϕ̄) = Λ(ϕ) + ∂µKµf , Kµf = ϕ∂µf. (60)

Hence one can use the Noether theorem to conclude that

∂µJ
µ
f = 0, Jµ

f = f∂µϕ− ϕ∂µf. (61)
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So the corresponding conserved charges (integrals of motion) are given by

Af =

∫
d3x(ϕ̇f − ḟϕ) =

∫
d3x(πf − ḟϕ) (62)

The last formula allows to calculate the Poisson brackets

{Af , Ag} =

∫
d3x(ḟ g − fġ) (63)

Using the plane waves basis of solutions of KG equations

Ap⃗ ≡ Afp⃗, fp⃗ = exp (ı(ωp⃗t− p⃗x⃗)),

A∗
p⃗ ≡ Af∗

p⃗
, f ∗

p⃗ = exp (−ı(ωp⃗t− p⃗x⃗)),

ωp⃗ =
√

p⃗2 +m2 (64)

we find the following algebra

{Ap⃗, A
∗
p⃗′} = ı(2π)32ωp⃗δ(p⃗− p⃗′),

{Ap⃗, Ap⃗′} = {A∗
p⃗, A

∗
p⃗′} = 0 (65)

Thus, in quantum theory we must postulate

Ap⃗ → Âp⃗, A∗
p⃗ → Â†

p⃗

[Âp⃗, Â
†
p⃗′] = (2π)32ωp⃗δ(p⃗− p⃗′),

[Âp⃗, Âp⃗′] = [Â†
p⃗, Â

†
p⃗′] = 0 (66)

It is important to note that operators Âp⃗, Â
†
p⃗ are Lorentz invariants

because one can use the covariant form of their definition:

Ap⃗ =

∫
dΣµ(fp⃗∂

µϕ− ϕ∂µfp⃗), (67)

where Σ is any space-like 3-dim. surface. Therefore the quantization of

KG theory represented above is Lorentz covariant.

Let us renormalize the operators above:

Âp⃗ =
√
2ωp⃗ap⃗, Â†

p⃗ =
√
2ωp⃗a

†
p⃗. (68)
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The nonzero commutators for ap⃗, a
†
p⃗ are given by

[ap⃗, a
†
p⃗′] = (2π)3δ(p⃗− p⃗′) (69)

Then the KG Hamiltonian takes the form

Ĥ =

∫
d3p

(2π)3
ωp⃗

2
(a†p⃗ap⃗ + ap⃗a

†
p⃗). (70)

Appendix. Noether theorem.

In this appendix we consider so called first Noether theorem.

Let us consider the most general transformation of Minkowski space-

time that do not change the metric:

xµ → x′µ = Ωµ
νx

ν + aµ, (71)

where Ωµ
ν is a Lorentz tramsformation and aµ determine a shift. For the

infinitesimal transformation we can write

xµ → x′µ = δωµ
νx

ν + ϵµ, (72)

where δωνµ = −δωµν determine infinitesimal Lorentz transformation, while

ϵµ determine translation, so we have infinitesimal Poincare group transfor-

mation.

How the fields transform under this transformation?

Scalar field.

By the definition of scalar field we have

ϕ̃(x′) = ϕ(x). (73)

Vector valied field.

By the definition the vector valued field ϕν(x) transforms as

ϕ̃ν(x′) = Ων
µϕ

µ(x′).

(74)
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Covector valued field (vector poteltial).

By the definition the covector valued field ϕν(x) transforms as

ϕ̃ν(x
′) = (Ω−1)µνϕµ(x

′).

(75)

Tensor field.

ϕ̃ν1...νp
µ1...µq

(x′) = Ων1
λ1
...Ω

µp

λp
(Ω−1)σ1

µ1
...(Ω−1)σq

µq
ϕλ1...λp
σ1...σq

(x′).

(76)

For the infinitesimal transformations (72) we find

δϕ(x) = ϕ(x′)− ϕ̃(x′) = ϕ(x′)− ϕ(x) =

(ϕ(x) + ξνϕ,ν(x) + ...)− ϕ(x) = ξνϕ,ν(x),

δϕµ(x) = ϕµ(x′)− ϕ̃µ(x′) = ϕµ(x′)− Ωµ
νϕ

ν(x) =

(ϕµ(x) + ξνϕµ
,ν(x) + ...)− (δµν + δωµ

ν + ...)ϕν(x) =

ξνϕµ
,ν(x)− δωµ

νϕ
ν,

δϕµ(x) = ϕµ(x
′)− ϕ̃µ(x

′) = ϕµ(x
′)− (Ω−1)νµϕν(x) =

(ϕµ(x) + ξνϕµ,ν(x) + ...)− (δνµ − δων
µ + ...)ϕν(x) =

ξνϕµ,ν(x) + δων
µϕν(x),

δϕµ1...µp
ν1...νq

(x) = ξσϕµ1...µp
ν1...νq,σ

(x)− δωµ1
σ ϕσµ2...µp

ν1...νq
(x)− ...− δωµp

σ ϕµ1...µp−1σ
ν1...νq

(x) +

δωσ
ν1
ϕµ1...µp
σν2...νq

(x) + ...+ δωσ
νq
ϕµ1...µp
ν1...νq−1σ

(x),(77)

where

ξσ = ϵσ + xλδωλ
σ.

(78)

Thus, we see that the total variation of the tensor field has two contribu-

tions. The first contribution is coused by the shifts of Minkowski space-time
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points, and the second one comes from the variation coused by the tensor

properties of the field.

Stress-energy tensor conservation.

Let us consider a variation of the scalar field action

S =

∫
d4xΛ(ϕ, ϕ,µ)

(79)

under the infinitesimal shift transformation

xµ → x′µ = xµ + ϵµ, (80)

First of all notice that d4x is invariant under the Poincare transformations.

Similar to the variation of tensor field, the variation of Lagrangian Λ(x)

is given by two contributions. The fist one is coused by the shift of point

x → x′. The second one is coused by the variations of fields ϕ(x), ϕ,µ(x):

δΛ(x) = ϵσΛ,σ(x)−
∂Λ

∂ϕ
δϕ(x)− ∂Λ

∂ϕ,µ
δϕ,µ. (81)

According to the (77) we have

δϕ(x) = ϵνϕ,ν(x), δϕ,µ(x) = ϵνϕ,νµ(x).

(82)

Hence

δS =

∫
d4x(Λ,σ −

∂Λ

∂ϕ
ϕ,σ −

∂Λ

∂ϕ,µ
ϕ,σµ)ϵ

σ.

(83)

Using the equations of motion

∂Λ

∂ϕ
= ∂µ

∂Λ

ϕ,µ

(84)
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we find

δS =

∫
d4xϵσ∂µ(δ

µ
σΛ− ∂Λ

∂ϕ,µ
ϕ,σ)

(85)

Because the action is invariant under the translations we obtain the con-

servation low

∂µT
µ
σ = 0, T µ

σ =
∂Λ

∂ϕ,µ
ϕ,σ − δµσΛ (86)

of stress-energy tensor.

Orbital momentum tensor conservation.

Now we consider Lorentz transformation:

δxµ = δωµλxλ.

(87)

The variation of action takes the form

δS =

∫
d4x(δωσλxλΛ,σ −

∂Λ

∂ϕ
δωσλxλϕ,σ −

∂Λ

∂ϕ,µ
∂µ(δω

σλxλ)).

(88)

Using the equations of motion we obtain

δS =

∫
d4xδωσλ(xλΛ,σ − ∂µ(

∂Λ

∂ϕ,µ
ϕ,σ)xλ −

∂Λ

∂ϕ,µ
ϕ,σ∂µxλ) =

1

2

∫
d4xδωσλ∂µ(xλT

µ
σ − xσT

µ
λ ).

(89)

Because of the action is invariant under the Lorentz transformations we

obtain the conservation low

∂µM
µ
λσ = 0, Mµ

λσ = xλT
µ
σ − xσT

µ
λ (90)
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of orbital momentum.

Orbital momentum tensor conservation for vector potential field.

One can imagine a Lorentz invariant action for the vector potential field

ϕµ(x). It can for example be the action of EM field

S =

∫
d4x

1

4
FµνF

µν, Fµν = ϕµ,ν − ϕν,µ.

(91)

Under the infinitesimal Lorentz transformation we have

δϕµ(x) = δσλxλϕµ,σ + δωσ
µϕσ(x),

δϕµ,ν(x) = δσλxλϕµ,σν + δωσ
µϕσ,ν(x) + δωσ

νϕµ,σ(x).

(92)

The action variation is given by

δS =

∫
d4x[δωσλxλΛ,σ −

∂Λ

∂ϕµ
δϕµ −

∂Λ

∂ϕµ,ν
δϕµ,ν] =∫

d4xδωσλ[xλΛ,σ −
∂Λ

∂ϕµ
(xλϕµ,σ + gµλϕσ)−

∂Λ

∂ϕµ,ν
∂ν(xλϕµ,σ + gµλϕσ)].

(93)

Using the equations of motion we come to

δS =
1

2

∫
d4xδωσλ∂ν[xλT

ν
σ − xσT

ν
λ +

∂Λ

∂ϕµ,ν
(gµσϕλ − gµλϕσ)].

(94)

Because of the action is Lorentz invariant we obtain the conservation low

∂νM
ν
λσ = 0,

M ν
σλ = xλT

ν
σ − xσT

ν
λ +

∂Λ

∂ϕµ,ν
(gµσϕλ − gµλϕσ). (95)

of spin-orbital momentum.
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Conserved currents for sotopic (unternal) symmetries.

Let us consider a Lagrangian Λ(ϕa, ∂µϕa) of the scalar fields ϕa(x) which

are endowed with an isotopic (internal) idex a. Suppose the corresponding

action is invariant under the continues group G of internal symmetries

x → x′ = x, ϕa(x) → ϕ̃a(x) = Rb
aϕb(x), (96)

where R ∈ G does not depend on x.

Under the infinitesimal transformation R ≈ 1 + δt we have

δϕa(x) = ϕa(x
′)− ϕ̃a(x

′) = ϕa(x)− (δba + δtbz)ϕb(x) = −δtbaϕb(x).

(97)

Hence, the variation of the action is

δS =

∫
d4xδΛ(x) = −

∫
d4x(

∂Λ

∂ϕa
δϕa(x) +

∂Λ

∂ϕa,µ
δϕa,µ).

(98)

Using the equations of motion we obtain

δS = −
∫

d4xδtba∂µ(
∂Λ

∂ϕa,µ
ϕb,µ).

(99)

Because the action is invariant under the transformations (97) we obtain

the conservation low

∂µ(J
µ)ab(x) = 0, (Jµ)ab(x) = − ∂Λ

∂ϕa,µ
ϕb,µ. (100)
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