Lecture

Electroweak and Standard models.

Plan.

1. QED+ complex scalar, chirality and Lorentz group (recalling).
2. Electro-weak Theory (GWS).
2.1. Gauge group, bosonic sector and Higgs effect (recalling).
2.2. Fermionic sector, leptons multiplets and Lagrangian.
2.3. Quarks multiplets and Lagrangian.
3. Standard Model.
3.1. Gauge group and bosonic sector.
3.2. Quarks multiplets and Lagrangian.

Appendix.

1. QED+ complex scalar, chirality and Lorentz group (recalling).
1.1. The $Q E D+$ complex scalar Lagrangian.

$$
\begin{align*}
& L=-\frac{1}{4}\left(F_{\mu \nu}\right)^{2}+\left|D_{\mu} \Phi\right|^{2}-V(\Phi)+ \\
& \bar{\psi}_{L}\left(\imath \gamma^{\mu} D_{\mu}\right) \psi_{L}+\bar{\psi}_{R}\left(\imath \gamma^{\mu} \partial_{\mu}\right) \psi_{R}-\lambda_{f}\left(\bar{\psi}_{L} \Phi \psi_{R}+\bar{\psi}_{R} \Phi^{*} \psi_{L}\right) \\
& D_{\mu}=\partial_{\mu}+\imath e A_{\mu} \\
& V(\Phi)=-\mu^{2} \Phi^{*} \Phi+\frac{\lambda}{2}\left(\Phi^{*} \Phi\right)^{2}, \Phi=\frac{1}{\sqrt{2}}\left(\Phi^{1}+\imath \Phi^{2}\right) \tag{1}
\end{align*}
$$

Recall what are ψ_{L}, ψ_{R} and haw they transform under the Lorentz transformations.

The Clifford algebra is generated by the identity matrix and the gamma matrices $\gamma^{\mu}, \mu=0, \ldots, 3$ satisfying

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \tag{2}
\end{equation*}
$$

Let us consider some special element of algebra

$$
\begin{align*}
& \gamma^{5} \equiv \imath \gamma^{0} \ldots \gamma^{3},\left(\gamma^{5}\right)^{\dagger}=\gamma^{5} \\
& \left\{\gamma^{5}, \gamma^{\mu}\right\}=0 \\
& \left(\gamma^{5}\right)^{2}=1 \tag{3}
\end{align*}
$$

Then it follows that

$$
\begin{equation*}
P_{L} \equiv \frac{1-\gamma^{5}}{2}, \quad P_{R} \equiv \frac{1+\gamma^{5}}{2} \tag{4}
\end{equation*}
$$

are the orthogonal projection operators:

$$
\begin{equation*}
P_{L}^{2}=P_{L}, P_{R}^{2}=P_{R}, P_{L} P_{R}=0, P_{L}+P_{R}=1 \tag{5}
\end{equation*}
$$

Hence the Dirac spinors space, which is Clifford algebra representation can be decomposed into the direct sum of vector spaces:

$$
\begin{align*}
& \psi=\left(P_{L}+P_{R}\right) \psi \equiv \psi_{L}+\psi_{R} \\
& \gamma^{5} \psi_{L}=-\psi_{L}, \gamma^{5} \psi_{R}=\psi_{R} \tag{6}
\end{align*}
$$

The spinors ψ_{L}, ψ_{R} are called Weyl's spinors.
They are important because the spaces of Weyl spinors form (irreducible) representations of Lorentz algebra. Indeed, the Loerntz algebra generators commute to the projection operators:

$$
\begin{align*}
& S^{\mu \nu} \equiv \frac{\imath}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
& {\left[S^{\mu \nu}, P_{L, R}\right]=0 \Leftrightarrow} \\
& \gamma^{5} S^{\mu \nu} \psi_{L}=S^{\mu \nu} \gamma^{5} \psi_{L}=-S^{\mu \nu} \psi_{L} \\
& \gamma^{5} S^{\mu \nu} \psi_{R}=S^{\mu \nu} \gamma^{5} \psi_{R}=S^{\mu \nu} \psi_{R} \tag{7}
\end{align*}
$$

Hence, the Lagrangian (1) is Lorentz invariant.

Gauge transformations are given by

$$
\begin{align*}
& \delta A_{\mu}=-\frac{1}{e} \partial_{\mu} \alpha \\
& \Phi(x) \rightarrow \exp (\imath \alpha(x)) \Phi(x), \\
& \psi_{L} \rightarrow \exp (\imath \alpha(x)) \psi_{L}, \psi_{R} \rightarrow \psi_{R} \tag{8}
\end{align*}
$$

so the Lagrangian (1) is also gauge invariant.

Let us also check that the covariant derivative terms are consistent with Weyl fermions constraints:

$$
\begin{align*}
& \bar{\psi}_{R} \imath \gamma^{\mu} D_{\mu} \psi_{L}=\psi^{\dagger} \frac{1+\gamma^{5}}{2} \gamma^{0} \imath \gamma^{\mu} D_{\mu} \psi_{L}=\psi^{\dagger} \gamma^{0} \frac{1-\gamma^{5}}{2} \gamma^{0} \imath \gamma^{\mu} D_{\mu} \psi_{L}= \\
& \bar{\psi} \imath \gamma^{\mu} D_{\mu} \frac{1+\gamma^{5}}{2} \psi_{L}=0 \tag{9}
\end{align*}
$$

But the Lagrangian (1) is not invariant under the change $\psi_{L} \leftrightarrow$ ψ_{R}. It means that the symmetry under the spacial reflection

$$
\begin{align*}
& P:\left(x^{0}, \vec{x}\right) \rightarrow\left(x^{0},-\vec{x}\right), \\
& P: \psi(x) \rightarrow \gamma^{0} \psi(P x) \tag{10}
\end{align*}
$$

is broken for the Lagrangian (1). By this reason it is impossible to add standard massive term for fermions

$$
\begin{equation*}
m \bar{\psi} \psi=m\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right) \tag{11}
\end{equation*}
$$

so as not to destroy the $\psi_{L} \leftrightarrow \psi_{R}$ assymetric gauge interraction.
Instead, the fermions become massive by the Higgs mechanism.
This left-right (P) asymmetry is similar to that in the GSW model of electro-weak interractions. The fermions interract with the dublet of complex scalar fields in such a way to conserve the gauge invariance and
get the masses by the Higgs mechanism:

$$
\begin{align*}
& \Phi(x)=\frac{1}{\sqrt{2}}(v+h(x)+\imath \phi(x)) \\
& \lambda_{f}\left(\bar{\psi}_{L} \Phi \psi_{R}+\bar{\psi}_{R} \Phi^{*} \psi_{L}\right)= \\
& \lambda_{f}\left(\Phi \bar{\psi} \frac{1+\gamma^{5}}{2} \psi+\Phi^{*} \bar{\psi} \frac{1-\gamma^{5}}{2} \psi\right)= \\
& \frac{\lambda_{f}}{\sqrt{2}}\left((v+h(x)+\imath \phi(x)) \bar{\psi} \frac{1+\gamma^{5}}{2} \psi+(v+h(x)-\imath \phi(x)) \bar{\psi} \frac{1-\gamma^{5}}{2} \psi\right)= \\
& m_{f} \bar{\psi} \psi+\frac{\lambda_{f}}{\sqrt{2}}\left(h(x) \bar{\psi} \psi+\imath \phi(x) \bar{\psi} \gamma^{5} \psi\right) \\
& m_{f}=\frac{\lambda_{f} v}{\sqrt{2}} \tag{12}
\end{align*}
$$

2. Electro-weak Theory (GWS).

Electro-weak interractions theory describes weak and electromagnetic interraction in a unified way. At the same time it is a theory with spontaneously broken symmetry.

2.1. Gauge group, bosonic sector and Higgs effect (recalling).

It is given by YM field theory with gauge group $S U(2) \times U(1)$ interracting with a dublet of complex scalar fields $\Phi(x)=\left(\phi^{1}(x), \phi^{2}(x)\right)$ with the following rule of gauge transformations

$$
\begin{align*}
\Phi(x) & \rightarrow \exp \left(\imath \alpha^{a}(x) \frac{\sigma^{a}}{2}+\imath \frac{\beta(x)}{2}\right) \Phi(x) \\
A_{\nu}(x) & \equiv A_{\nu}^{a}(x) \frac{\sigma^{a}}{2} \rightarrow U(x) A_{\nu}(x) U^{-1}(x)+\frac{\imath}{g} U(x) \partial_{\nu} U^{-1}(x) \\
B_{\nu}(x) & \rightarrow B_{\nu}(x)+\frac{\imath}{2 g} \partial \beta(x) \tag{13}
\end{align*}
$$

where $U(x)=\exp \left(\imath \alpha^{a}(x) \frac{\sigma^{a}}{2}\right)$.

The corresponding part of the Lagrangian is given by

$$
\begin{align*}
& L(A, B, \Phi)=-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}-\frac{1}{4}\left(F_{\mu \nu}\right)^{2}+\frac{1}{2}\left|D_{\mu} \Phi\right|^{2} \\
& D_{\mu} \Phi=\left(\partial_{\mu}-\imath g A_{\mu}^{a} \frac{\sigma^{a}}{2}-\imath \frac{g}{2} B_{\mu}\right) \Phi \tag{14}
\end{align*}
$$

It is supposed that Φ acquires the vacuum expectation value

$$
\begin{equation*}
\Phi_{0}=\frac{1}{\sqrt{2}}(0, v) \tag{15}
\end{equation*}
$$

due to the self-interraction

$$
\begin{equation*}
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2} \tag{16}
\end{equation*}
$$

so that the subgroup of matrices leaves the vacuum vector fixed:

$$
\begin{align*}
& \exp \left(\imath \beta(x)\left(\frac{\sigma^{3}+1}{2}\right)\right) \Phi_{0}=\Phi_{0} \\
& \exp \left(\imath \beta(x)\left(\frac{\sigma^{3}+1}{2}\right)\right) \in U(1)_{e m} \subset U(1) \times U(1) \subset S U(2) \times U(1) \tag{17}
\end{align*}
$$

isomorphic to $U(1)$ group. Therefore we have a massless gauge boson while 3 other bosons becomes massive. Indeed

$$
\begin{align*}
& D_{\mu}\left(\Phi_{0}+\phi(x)\right)=\left(\partial_{\mu}-\imath g A_{\mu}^{a} \frac{\sigma^{a}}{2}-\imath \frac{\underline{g}}{2} B_{\mu}\right)\left(\Phi_{0}+\phi(x)\right)= \\
& D_{\mu} \phi(x)-\left(\imath g A_{\mu}^{a} \frac{\sigma^{a}}{2}+\imath \frac{\dot{g}}{2} B_{\mu}\right) \Phi_{0} \\
& \Phi_{0}^{\dagger}\left(g A_{\mu}^{a} \frac{\sigma^{a}}{2}+\frac{\dot{g}}{2} B_{\mu}\right)\left(g A^{a \mu} \frac{\sigma^{a}}{2}+\frac{\dot{g}}{2} B^{\mu}\right) \Phi_{0}= \\
& \frac{1}{2} \frac{v^{2}}{4}\left(g^{2}\left(A_{\mu}^{1}\right)^{2}+g^{2}\left(A_{\mu}^{2}\right)^{2}+\left(-g A_{\mu}^{3}+\dot{g} B_{\mu}\right)^{2}\right) \tag{18}
\end{align*}
$$

It make sense to introduce the following combinations of gauge bosons

$$
\begin{align*}
W_{\mu}^{ \pm} & =\frac{1}{\sqrt{2}}\left(A^{1} \mp \imath A^{2}\right)_{\mu}, m_{W}=\frac{g v}{2} \\
Z_{\mu} & =\frac{1}{\sqrt{g^{2}+\dot{g}^{2}}}\left(g A^{3}-\dot{g} B\right)_{\mu}, m_{Z}=\sqrt{g^{2}+\dot{g}^{2}} \frac{v}{2} \\
A_{\mu} & =\frac{1}{\sqrt{g^{2}+\dot{g}^{2}}}\left(\dot{g} A^{3}+g B\right)_{\mu}, m_{A}=0 \tag{19}
\end{align*}
$$

For the case of general representation of the gauge group $S U(2) \times U(1)$

$$
\begin{align*}
& D_{\mu}=\partial_{\mu}-\imath g A_{\mu}^{a} T^{a}-\imath \dot{g} Y B_{\mu}= \\
& \partial_{\mu}-\imath \frac{g}{\sqrt{2}}\left(W^{+} T^{+}+W^{-} T^{-}\right)_{\mu}-\frac{\imath}{\sqrt{g^{2}+\dot{g}^{2}}} Z_{\mu}\left(g^{2} T^{3}-\hat{g}^{2} Y\right) \\
& -\frac{\imath g \dot{g}}{\sqrt{g^{2}+\dot{g}^{2}}} A_{\mu}\left(T^{3}+Y\right) \tag{20}
\end{align*}
$$

where $T^{ \pm}=T^{1} \pm \imath T^{2}$.
It is natural to identify the EM gauge potential coupling to the charge of electron

$$
\begin{equation*}
e=\frac{g \dot{g}}{\sqrt{g^{2}+\dot{g}^{2}}} \tag{21}
\end{equation*}
$$

and determine the electric charge operator as

$$
\begin{equation*}
Q_{e m}=T^{3}+Y \tag{22}
\end{equation*}
$$

It is also convenient to introduce the mixing angle Θ_{W} by the relation of two basic fields

$$
\begin{align*}
& \binom{Z}{A}=\left(\begin{array}{cc}
\cos \Theta_{W} & -\sin \Theta_{W} \\
\sin \Theta_{W} & \cos \Theta_{W}
\end{array}\right)\binom{A^{3}}{B} \Leftrightarrow \\
& \cos \Theta_{W}=\frac{g}{\sqrt{g^{2}+\dot{g}^{2}}}, \sin \Theta_{W}=\frac{\dot{g}}{\sqrt{g^{2}+\dot{g}^{2}}} \tag{23}
\end{align*}
$$

Then we will have

$$
\begin{align*}
& D_{\mu}= \\
& \partial_{\mu}-\imath \frac{g}{\sqrt{2}}\left(W^{+} T^{+}+W^{-} T^{-}\right)_{\mu}-\imath \frac{g}{\cos \Theta_{W}} Z_{\mu}\left(T^{3}-\sin ^{2} \Theta_{W} Q_{e m}\right)-\imath e A_{\mu} Q_{e m}, \\
& g=\frac{e}{\sin \Theta_{W}} \tag{24}
\end{align*}
$$

and $m_{W}=m_{Z} \cos \Theta_{W}$. Experimental data: $m_{W}=80 \mathrm{Gev}, m_{Z}=91 \mathrm{Gev}$, $m_{H}=126 \mathrm{Gev}$ (2012).

2.2. Fermionic sector, leptons multiplets.

The leptons (which are fermions) interract to W-bosons only by the lefthanded components while the right-handed components do not interract to W. Thus, the left-handed components sit at $S U(2)$ dublets:

$$
\begin{equation*}
\binom{\nu_{e}(x)}{e^{-}(x)}_{L},\binom{\nu_{\mu}(x)}{\mu^{-}(x)}_{L},\binom{\nu_{\tau}(x)}{\tau^{-}(x)}_{L} \tag{25}
\end{equation*}
$$

Each component of the each dublet is a left-handed Weyl spinor w.r.t. Lorentz group:

$$
\begin{equation*}
\gamma^{5}\binom{\nu_{e}(x)}{e^{-}(x)}_{L}=-\binom{\nu_{e}(x)}{e^{-}(x)}_{L} \tag{26}
\end{equation*}
$$

The upper components describe the 3 kinds of neutrino, while the bottom components describe the electron, muon and τ-lepton.

The right-handed components of leptons sit at $S U(2)$ singlets:

$$
\begin{equation*}
e_{R}^{-}(x), \mu_{R}^{-}(x), \tau_{R}^{-}(x) \tag{27}
\end{equation*}
$$

They are right-handed Weyl spinors:

$$
\begin{equation*}
\gamma^{5} e_{R}^{-}(x)=e_{R}^{-}(x) \tag{28}
\end{equation*}
$$

Each left-handed dublet together with the corresponding right-handed singlet form a generation of leptons.

In what follows we concentrate on the first generation and introduce the notation

$$
\begin{equation*}
\binom{\nu_{e}(x)}{e^{-}(x)}_{L} \equiv\binom{E_{L}^{1}(x)}{E_{L}^{2}(x)}, E_{R}(x) \equiv e_{R}^{-}(x) \tag{29}
\end{equation*}
$$

Then the corresponding Lagrangian is given by

$$
\begin{align*}
& L_{l e p t}=\bar{E}_{L}{ }^{i}\left(\imath \gamma^{\nu} D_{\nu}\right) E_{L}^{i}+\bar{E}_{R}\left(\imath \gamma^{\nu} D_{\nu}\right) E_{R}-\lambda_{e} \bar{E}_{L}^{i} \Phi^{i} E_{R}-\lambda_{e} \bar{E}_{R}\left(\Phi^{i}\right)^{\dagger} E_{L}^{i}, \\
& D_{\nu} E_{L}^{i}=\partial_{\nu} E_{L}^{i}-\frac{\imath g}{2} A_{\nu}^{a}\left(\sigma^{a}\right)_{j}^{i} E_{L}^{j}-\frac{\imath g}{2} B_{\nu}\left(Y_{L}\right)_{j}^{i} E_{L}^{j}, \\
& D_{\nu} E_{R}=\partial_{\nu} E_{R}-\frac{\imath g}{2} B_{\nu} Y_{R} E_{R} \tag{30}
\end{align*}
$$

where $i, j=1,2$ and λ_{e} is a coupling constant leading to the masses of leptons (λ_{e} is renormalizable constant so that it is a parameter of the model). Due to the vacuum averege (15) the leptons get masses

$$
\begin{align*}
& \Delta L_{l e p t}=-\lambda_{e} \bar{E}_{L}^{i} \Phi^{i} E_{R}-\lambda_{e} \bar{E}_{R}\left(\Phi^{i}\right)^{\dagger} E_{L}^{i}=-\frac{\lambda_{e} v}{\sqrt{2}}\left(\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right) \ldots \Rightarrow \\
& m_{e}=\frac{\lambda_{e} v}{\sqrt{2}} \tag{31}
\end{align*}
$$

Notice that we get the standard mass term for fermions $-\frac{\lambda_{e} v}{\sqrt{2}} \bar{e} e$ so that $e_{L} \rightarrow e_{R}$ transition is recovered. We could add the standard mass term for leptons directly but it would destroy the gauge invariance:

$$
\begin{align*}
& E_{L}(x) \rightarrow \exp \left(\imath \alpha^{a}(x) \frac{\sigma^{a}}{2}+\imath \beta(x) Y_{L}\right) E_{L}(x), \\
& E_{R}(x) \rightarrow \exp \left(\imath \beta(x) Y_{R}\right) E_{R}(x) \tag{32}
\end{align*}
$$

Thus, the Dirac's electron is a superposition of e_{L} and e_{R} which are completely different particles from the point of view of weak forces.

To define Y_{L} and Y_{R} we use the relation (22). In the fundamental $S U(2)$-representation, which is used for the left-handed leptons

$$
T^{3}=\frac{1}{2} \sigma^{3}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \tag{33}\\
0 & -\frac{1}{2}
\end{array}\right)
$$

Hence,

$$
Y_{L}=Q_{e m}-T^{3}=\left(\begin{array}{cc}
0 & 0 \tag{34}\\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
$$

Right-handed leptons are singlets, that is $T^{3}=0$ and hence

$$
\begin{equation*}
Y_{R}=-1 \tag{35}
\end{equation*}
$$

2.3. Quarks multiplets and Lagrangian.

Quarks are included into GWS model similarly to the leptons:

$$
\begin{equation*}
Q_{1}=\binom{u(x)}{d(x)}_{L}, Q_{2}=\binom{c(x)}{s(x)}_{L}, Q_{3}=\binom{t(x)}{b(x)}_{L} \tag{36}
\end{equation*}
$$

Each component of the each dublet is a left-handed Weyl spinor w.r.t. Lorentz group.

The right-handed components of quarks sit at $S U(2)$ singlets:

$$
\begin{equation*}
u_{R}(x), d_{R}(x), c_{R}(x), s_{R}(x), t_{R}(x), b_{R}(x) \tag{37}
\end{equation*}
$$

The qudruples $\left(Q_{1}, u_{R}, d_{R}\right), \ldots,\left(Q_{3}, t_{R}, b_{R}\right)$ form a generations of quarks.
The Lagrangian is given similar to (30). For the first quarks generation the Lagrangian is

$$
\begin{align*}
& L_{q}=\bar{Q}_{L}^{i}\left(\imath \gamma^{\nu} D_{\nu}\right) Q_{L}^{i}+\overline{u_{R}}\left(\imath \gamma^{\nu} D_{\nu}\right) u_{R}+ \\
& \bar{d}_{R}\left(\imath \gamma^{\nu} D_{\nu}\right) d_{R}-\lambda_{d} \bar{Q}_{L}^{i} \Phi^{i} d_{R}-\lambda_{d} \bar{d}_{R}\left(\Phi^{i}\right)^{\dagger} Q_{L}^{i} \\
& -\lambda_{u} \epsilon^{i j} \bar{Q}_{L}^{i} \Phi^{j} u_{R}-\lambda_{u} \epsilon^{i j} \bar{u}_{R}\left(\Phi^{j}\right)^{\dagger} Q_{L}^{i}, \\
& D_{\nu} Q_{L}^{i}=\partial_{\nu} Q_{L}^{i}-\frac{\imath g}{2} A_{\nu}^{a}\left(\sigma^{a}\right)_{j}^{i} Q_{L}^{j}-\frac{\imath g}{2} B_{\nu}\left(Y_{L}\right)_{j}^{i} Q_{L}^{j}, \\
& D_{\nu} u_{R}=\partial_{\nu} u_{R}-\frac{\imath \dot{g}}{2} B_{\nu} Y_{R u} u_{R}, \\
& D_{\nu} d_{R}=\partial_{\nu} d_{R}-\frac{\imath \dot{g}}{2} B_{\nu} Y_{R d} d_{R} \tag{38}
\end{align*}
$$

By the Higgs effect the quarks get the following masses:

$$
\begin{align*}
& \Delta L_{q}=-\lambda_{d} \bar{Q}_{L}^{i} \Phi^{i} d_{R}-\lambda_{d} \bar{d}_{R}\left(\Phi^{i}\right)^{\dagger} Q_{L}^{i} \\
& -\lambda_{u} \epsilon^{i j} \bar{Q}_{L}^{i} \Phi^{j} u_{R}-\lambda_{u} \epsilon^{i j} \bar{u}_{R}\left(\Phi^{j}\right)^{\dagger} Q_{L}^{i}= \\
& -\frac{\lambda_{d} v}{\sqrt{2}}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right)-\frac{\lambda_{u} v}{\sqrt{2}}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right) \ldots \Rightarrow \\
& m_{d}=\frac{\lambda_{d} v}{\sqrt{2}}, m_{u}=\frac{\lambda_{u} v}{\sqrt{2}} \tag{39}
\end{align*}
$$

$\lambda_{u, d}$ are renormalizable constants so that they are the parameters of the model.

$$
Y_{L}=Q_{e m}-T^{3}=\left(\begin{array}{cc}
\frac{2}{3} & 0 \tag{40}\\
0 & -\frac{1}{3}
\end{array}\right)-\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{6} & 0 \\
0 & \frac{1}{6}
\end{array}\right)
$$

The values of u, d quarks electric charges follow from the fact that proton has electric charge +1 and is a bound state of two u-quarks and one d quark (in order to be colorless), while neutron has electric charge 0 and is a bound state of two d-quarks and one u-quark.

$$
\begin{equation*}
p=\epsilon_{\alpha \beta \gamma} u^{\alpha} u^{\beta} d^{\gamma}, n=\epsilon_{\alpha \beta \gamma} d^{\alpha} d^{\beta} u^{\gamma} \tag{41}
\end{equation*}
$$

(Recall also the electric charge quantization phenomenon.)
For the right-handed quarks we find

$$
\begin{equation*}
Y_{R}=Q_{e m}=\left(\frac{2}{3},-\frac{1}{3}\right) \tag{42}
\end{equation*}
$$

3. Standard Model.

3.1. Gauge group and bosonic sector.

The gauge group of the Standard model is

$$
\begin{equation*}
S U(3) \times S U(2) \times U(1) \tag{43}
\end{equation*}
$$

where $S U(3)$ is responsible for the strong interractions of quarks and hence, we have to add strong interraction coupling constant g_{s} to the constants g, \dot{g}
of the electro-weak interraction. Thus the standard model have additional $S U(3)$-gauge symmetry and $S U(3)$ gauge fields transforming by the rule

$$
\begin{align*}
& G_{\mu}^{A}(x) t^{A} \rightarrow U(x) G_{\mu}^{A}(x) t^{A} U^{-1}(x)+\frac{\imath}{g_{s}} U(x) \partial_{\mu} U^{-1}(x), \\
& U(x)=\exp \left(\imath \alpha^{A}(x) t^{A}\right) \in S U(3) \tag{44}
\end{align*}
$$

where $t^{A}, A=1, \ldots, 8$ are generators of $s u(3)$-Lie algebra

$$
\begin{equation*}
\left[t^{A}, t^{B}\right]=\imath f^{A B C} t^{C} \tag{45}
\end{equation*}
$$

So we add to the electro-weak Lagragian the $S U(3)$ gauge fields contribution

$$
\begin{align*}
& L_{G}=-\frac{1}{4} F_{\mu \nu}^{A}\left(F^{A}\right)^{\mu \nu}, \\
& F_{\mu \nu}^{A}=\partial_{\mu} G_{\nu}^{A}-\partial_{\nu} G_{\mu}^{A}+g_{s} f^{A B C} G_{\mu}^{B} G_{\nu}^{C} \tag{46}
\end{align*}
$$

The Higgs bosons are $S U(3)$-singlets so they do not interract to the $S U(3)$ gauge fields.

3.2. Quarks multiplets.

The quarks of all generations sit in the fundamental $S U(3)$-representation so that they are 3 -components complex vectors regardless of chirality. In this representation the $s u(3)$-generators are given by Gell-Mann matrices (see Appendix).

Thus, all the covariant derivatives from (38) have to be extended by $S U(3)$-gauge fields:

$$
\begin{align*}
& D_{\nu} Q_{L}^{i \alpha}=\partial_{\nu} Q_{L}^{i \alpha}-\imath g_{s} G_{\nu}^{A}\left(t^{A}\right)^{\alpha \beta} Q_{L}^{j \beta}-\frac{\imath g}{2} A_{\nu}^{a}\left(\sigma^{a}\right)_{j}^{i} Q_{L}^{j \alpha}-\frac{\imath \dot{g}}{2} B_{\nu}\left(Y_{L}\right)_{j}^{i} Q_{L}^{j \alpha}, \\
& D_{\nu} u_{R}^{\alpha}=\partial_{\nu} u_{R}^{\alpha}-\imath g_{s} G_{\nu}^{A}\left(t^{A}\right)^{\alpha \beta} u_{R}^{\beta}-\frac{\imath \dot{g}}{2} B_{\nu} Y_{R u} u_{R}^{\alpha}, \\
& D_{\nu} d_{R}^{\alpha}=\partial_{\nu} d_{R}^{\alpha}-\imath g_{s} G_{\nu}^{A}\left(t^{A}\right)^{\alpha \beta} d_{R}^{\beta}-\frac{\imath \dot{g}}{2} B_{\nu} Y_{R d} d_{R}^{\alpha} \tag{47}
\end{align*}
$$

where $\alpha=1, \ldots, 3$ labels the elements of $S U(3)$-multiplet. The quarks Lagrangian now takes the form

$$
\begin{align*}
& L_{q}={\overline{Q_{L}}}^{i \alpha}\left(\imath \gamma^{\nu} D_{\nu}\right)^{\alpha \beta} Q_{L}^{i \beta}+\overline{u R}_{R}^{\alpha}\left(\imath \gamma^{\nu} D_{\nu}\right)^{\alpha \beta} u_{R}^{\beta}+ \\
& \bar{d}_{R}^{\alpha}\left(\imath \gamma^{\nu} D_{\nu}\right)^{\alpha \beta} d_{R}^{\beta}-\lambda_{d} \bar{Q}_{L}^{i \alpha} \Phi^{i} d_{R}^{\alpha}-\lambda_{d} \bar{d}_{R}^{\alpha}\left(\Phi^{i}\right)^{\dagger} Q_{L}^{i \alpha} \\
& -\lambda_{u} \epsilon^{i j} \bar{Q}_{L}^{i \alpha} \Phi^{j} u_{R}^{\alpha}-\lambda_{u} \epsilon^{i j} \bar{u}_{R}^{\alpha}\left(\Phi^{j}\right)^{\dagger} Q_{L}^{i \alpha} \tag{48}
\end{align*}
$$

Due to Higgs effect Yukawa interraction terms gives the standard mass terms for quarks

$$
\begin{equation*}
-\frac{1}{\sqrt{2}} \lambda_{d} v\left(\bar{d}_{R} d_{L}+\bar{d}_{L} d_{R}\right)-\frac{1}{\sqrt{2}} \lambda_{u} v\left(\bar{u}_{R} u_{L}+\bar{u}_{L} u_{R}\right) \tag{49}
\end{equation*}
$$

3.3. Leptons multiplets.

The leptons of all generations sit in the $S U(3)$-singlets so they do not interract to $G_{\mu}^{A}(x)$ gauge fields.

Appendix.

Gell-Mann matrices:

$$
\begin{align*}
& t^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), t^{2}=\left(\begin{array}{ccc}
0 & -\imath & 0 \\
\imath & 0 & 0 \\
0 & 0 & 0
\end{array}\right), t^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& t^{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), t^{5}=\left(\begin{array}{ccc}
0 & 0 & -\imath \\
0 & 0 & 0 \\
\imath & 0 & 0
\end{array}\right), t^{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& t^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\imath \\
0 & \imath & 0
\end{array}\right), t^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \tag{50}
\end{align*}
$$

