Lecture notes on CFT
For comments: litvinov@Qitp.ac.ru

Lecture 1: Elements of classical field theory, Noether theorem, stress-energy tensor

Consider classical field theory in R” given by the action

S = L(®(x),0,9(z))d =, (1)
RD
where ®(x) is not necessarily just one field, it can be a collection of fields, not necessarily a scalar
field, it can carry representation indices etc. The function L(®(x),d,P(x)) is called the Lagrangian
density. It can be taken more or less arbitrary. There are two conditions, which we require. First, is the
locality, £(®(x),0,P(x)) should contain interactions only in the same point, that is we forbid terms in
the Lagrangian of the form ®(x)®(x + a) etc. Also, we assume that the Langrangian does not include
higher derivatives. This is what in principle can be violated, but we will not do it.
Having defined an action, one obtains equations of motion from the least action principle 6.5 = 0.
They are (for simplicity ® here is just one scalar field)

The main task in classical theory is to solve equations of motion subject to certain boundary conditions,
initial data etc/

Special role is played by the Integrals of Motion, or conservation laws. Their existence is related
to the Noether theorem, a relation between symmetries and conservation laws, which we briefly review
now. Suppose our theory has a family of continuous transformations

d(x) — (f(ar;) = F(zx, ®(x)),

such that the action does not change S[®(x)] = S[®(z)]. For example, consider F(x, ®(x)) = ®(x +a).
This is a continuous transformation corresponding to the translation * — « + a. It is continuous
because the vector a varies. It can be taken arbitrary small, in this case the transformation F will be
in the vicinity of the identity transformation. Since our action is an integral over entire space and the
Lagrangian L£(®(x), 0,®(x)) does not depend explicitly on coordinates, which we assume, the action is
invariant.

Another example: F(x, ®(x)) = ®(Axz), where A € SO(D), corresponds to rotations (Lorentz
transformation). The action is invariant if the derivatives enter the action in Lorentz invariant way.
The most general invariant Lagrangian of one bosonic field with at most two derivatives is

L=U(®)(0,0)?+V(®), (3)

where U and V are arbitrary functions.
Another important example of the symmetry involves only transformation of the fields. For example,

consider complex scalar field
X =& + 19,



with the Lagrangian
1 *
L= §8HX8HX + V(I XP).

This action is manifestly invariant under arbitrary U(1) rotation
X — e X,

again a continuous symmetry.
Given a symmetry, one derives Noether theorem. Suppose that our theory admits a family of
transformations indexed by a continuous parameter e

O(x) — @(w) = F(z,®(x)) = d(x) + ef(w, q)(w)) + O(€%),

such that the action does not change S[®(x)] = S[®(x)]. Consider the following infinitesimal transfor-
mation

O(x) = d(x) + e(w)f(a:, (ID(:I:)) + O(€?)

where, what is important, €(x) depends on a position . Then the corresponding variation of the action
S takes the form (here we assume that the action contains at most first derivatives)

08 = / x) + Oue(x) K, (x ))dDw,

with some J(x) and K, (x). By assumption, §S = 0 for constant e. This is possible if (we assume no
boundary issues here)
J(x) = 0uJu(),

and hence
55:/(1@@)— (@) ) () dP = /a — Ju(@))elz)da.

What we just made is an arbitrary variation of the action. It should vanish on-shell (2). But the
function €(x) is arbitrary. This implies that j,(x) = K,(x) — J,(x) satisfies the continuity equation

0,ju(®) = 9, (K, () — Ju(2)) "2 0. (4)

The current j, is usually referred as Noether current.
The continuity equation (4) then implies the conservation law. Namely, by Stokes theorem we have

]{ Julx)do, :/ auju(w)dD:I: =0,
oM M

for any closed “surface” OM. In particular, if we take M to be very large cylinder between two time
slices x; = t; and z; = ty, we get!

Qi = Qr,, where Q= /jl(w)dD_lw

t

In Euclidean FT the choice of the time slice is not canonically defined.



Among other Noether currents, the one, called the stress-energy tensor, will be primarily important
for us. It is conserved due to invariance of the action under translations. Consider variation of the action
(1) under arbitrary coordinate transformations @ — x + €(x). In other words, we compute the response
of the action (1) with respect to the substitution ®(x) — ®(x + €(x)) = ®(x) + €,(x)0,P(x) +

© have oL oL oL
_ D
@S_ADF(%@@+a®®ﬁa¢)+@@ma@aﬂd (5)

First term in (5) equals to €,0,(6,, L) as a reflection of the fact that the action does not depend on x
explicitly and hence for constant ¢, the variation should vanish. After integrating by parts we get

_ oL D, def D D
0eS = /RD Oper (8(8 (I))@ b — 5,“,5) d”x / oue, T, d"x = /RD €01, d" . (6)

On shell the variation (6) should vanish. Since the function €,(x) is arbitrary it implies the continuity
condition for 7},
0,1, =0,

and hence conservation of energy and momentum

E“/ﬂfl PM/Rfl i1

Derivation given above leads to the definition of the stress-energy tensor as a response to the in-
finitesimal coordinate change

&Sz/éﬁﬂ@fm (7)
RD

In Lorentz invariant F'T involving only scalar fields the canonical stress-energy tensor always comes out
to be symmetric 7,, = T,,. In general this is not the case, but in rotationally invariant theories 7},
can always be made symmetric. It can be seen as follows. Consider €, = w, ), Where w,, = —w,,,
then from (7) we have

1

565 = 5 /D [8Mw” (szuu - quuA) — Wy (T;w - Tuu)} dDw' (8)
R

For constant w,, this variation should vanish for rotationally invariant theories, which implies

T/J,l/ - Tu,u = 8AfA,uuu f)\;w = _f)\uu-
Now we define modified tensor

def

T,uu = T/J,l/ a)\B)\;w where B)\,ul/ = (f)\;w - f,u)\u - fl/)\u) . (9)

N —

We note that the tensor B),, is antisymmetric in first two indexes By,, = —B,,, which implies
8u8AB A = 0.

At the same time, we have
B)\;w - B)\uu = f)\,uua



and hence the modified stress-energy tensor (9) is symmetric

T = Typ

This tensor is known as Belifante tensor. Now, integrating by parts (8) one finds conservation of the
angular momentum current

M (:L’,,TM — )T + f,\u,,) =0, (x,,T~u>\ — :c,\TW) = 0.

We saw that 7T}, is not canonically defined. It is related to the intrinsic ambiguity in the definition
(7). Indeed, in our example one can change the transformation rules ®(x) — ®(x) +¢,(x)0,P(x) +. ..
to the more general ones

P(x) = P(x) + €,()0,P(x) + Ope, ()X, [D(x)] + . ..

where ¥, [®(x)] are some functions of ®(x) and ... may contain higher derivatives of e(x). The
stress-energy tensor changes as
oL oL oL
Tw==7=0,9—-6,L — === )Zu+... 10
v = g~ + (55~ () ) 5+ (10)

We note that the additional term in (10) is proportional to equations of motion and hence both tensors
coincide on-shell.

One can take an alternative point of view that the change of fields ®(x) — ®(x + €(x)) can be
supplemented by the change of coordinates y = x + €(x) or x = y — €(y) + . . ., such that the fields do
not change, but we have to replace (infinitesimally)

0

0
—— = (O + Ou€r)

D 8—yl" dDw = (]. — 0,,6,,)dDy.

Of course this variation leads to the same conclusion (6) with points redefinition  — y. We note that
transformation * — « + € induces variation of the metric

G = G + 09, 09 = —(0u€, + O€,).

So, we come to an idea to define the stress-energy tensor as a response to the infinitesimal variation of
the background metric. Namely, we assume that the action (1) admits a covariant extension

S[®] = S[®,g], such that &S = / Vi Twdg"d . (11)

From this definition it is clear that 7,, = T,,. Note, that in flat space the definition (11) is still
ambiguous, as one can add terms to the action which vanish at g,, — ¢,,. For example, one can add
the so called dilaton term

/W(@)R\/EdDa;, (12)

where R is the scalar curvature and W (®) is arbitrary. This term disappears in the flat space, however
it affects the form of 7},,. The most general term, which can be added to the action, and which gives
non-vanishing contribution to 7}, in the limit g,, — d,,,, but vanishes in this limit, is

/ RMPY (@) /g dP (13)



where RF?Y? is the Riemann tensor for the background metric and Y},,,,(®) is some local tensor field
which is antisymmetric in (uo) and in (vp), but symmetric with respect to exchange of these pairs.
This term gives the following contribution to the stress-energy tensor

T = Ty + 050,Y00p-

This intrinsic ambiguity can not be resolved unless we require smth else. The theory in which the terms
like (13) and similar are absent are minimal covariant extension.

From now we assume that the theory has a symmetric stress-energy tensor defined by (7). Important
class of theories obey the property of scale invariance. Let us probe if the Poincaré invariant action
(3) is scale invariant as well. Namely, let F(x, ®(x)) = A™2®(\ - &), where A is the so called scaling
dimension, and assume, for simplicity, that U = 1. Then we immediately see that the first term in the
action (3) is invariant if

D -2
A=—.
2
Then it is clear that V' has to be a power ®", where
2D
n=-——.
D -2

We see, that n is rarely an integer. The only exceptions are: n = 6 for D = 3, n = 4 for D = 4 and
n =3 for D = 6.

The case D = 2 is exceptional because scalar field is dimensionless in this case, but we can not built
scale invariant theory with power like potential. As a compensation, we have Liouville theory

L— %(0@)2 et (14)

which is scale invariant with F(x, ®(x)) = ®(\ - x) + 2log A.
Another scale invariant theory in two dimensions is known as non-linear sigma model

L = Gu(®)0,90,P".

Here & = (®',..., ®") is the N—component bosonic field and G (®) is some function (since ® is
dimensionless). Usually, one interprets ® as coordinates on some “target” Riemanian manifold M and
Gup(®) as a metric on it.

The last, but not the least example is the Yang-Mills theory (here fundamental fields A,, take values
in Lie group SU(N))

S = /ﬁle%I%:@&—@@+MWM.

To insure scale invariance both terms in F},, should have the same scale dimension. From this condition
we find A = 1. Then the action transforms

S — A\ Ps,

and hence this theory is scale invariant only in 4 dimensions.



Going back to the definition (7) we see that if the theory is scale invariant then we should have
/@dDw =0 where © défTW,

which requires © = 0,0, so that
D,=0,—2,1,
is a conserved current called the scale current.

Interestingly, the scale invariance might imply the extended symmetry. For example, one can notice
that if 6, in turn is a gradient 6, = 0, L then one can redefine 7},

. 1
Tow = Tow =T + 57 (8,0, — 6,,0%) L (15)

to make it traceless?. This redefinition of T, corresponds to the dilaton term (12) in the curved space.
Let us consider A®* theory in four dimensions

S = / (%@@)2 + Acb‘*) d'z.

While computing the stress-energy tensor, we are free to choose the transformation rule for the field ®.
The only condition is that it is reduced to shifts ®(x) — ®(x + €) for constant €. As we saw above ®
has dimension 1, i.e. we should take the replacement

O(x) — (1 + %) Oz + ).
Then the formula (10) implies that

T = 0,90, — 5, (%(6@)2 + )\<I>4) + 3(4@3 — 0*®)D6,,,,

where the last term corresponds to 3, term in (10). We see that this stress-energy tensor satisfies
conditions specified above, that is © = —%82<I)2, and hence the improved stress-energy tensor (15) is
traceless.

The vanishing of © signals for larger symmetry called the conformal symmetry, whose infinitesimal
form is

Oper + 0u€y ~ Oy (16)

It will be studied in the next lecture.

Probs:
1. Consider Liouville theory (14)

e Compute stress-energy tensor and show that it can be made traceless

e Consider embedding of (14) into background metric. Adjust dilaton term (12) in such a way
that © = 0.

%In fact, for D > 2 it is enough to have © = 9,0, L,,,, then the improved tensor

1

1
T+ 75— (@taALM + 0y O\Lxy — 82LW - 5“1,(%\8,)1)@) + m

55 (6,00% — 0,0,) Lax

is traceless (see [1] and next lecture for more details)



Lecture 2: Conformal group

The transformation (16) is the infinitesimal form of the conformal transformation, that is an invert-
ible map & — «’ which leaves the metric d,, invariant up to a scale

o0x'? 0x'°
P7 Dk Oxv

= A(x)d,. (17)

We note that A(x) = 1 corresponds to the Poincaré group consisting of rotations and translations. These
transformations preserve the distances, while the general conformal transformations only preserve the
angles.

In infinitesimal form (16) we have the condition

ey + 0pe, = f(x)n.
Contracting this equation with 6" we find that f(x) = (8 - €) and hence

2

Ouey + Ove, = D

(8- ). (18)

Applying 0¥ we get
(1 - %) 0,(8 - €) + Pc, = 0.
Furthermore we take 0, and symmetrize p <> v to find
(1 — %) 0,0,(0 - €) + %82 (Ouer + 0ve,) = 0.
Finally, using (18), we find3
(D —=2)0,0, +6,,0%) (0-€) =0=> (D —1)0*(0-€) =0. (19)
Another useful identity is obtained from (18) by taking 0,(18),,, + 0,(18) ,, — 9,(18) ,,
20,0,6 = = (B + 00— 0,00,) (8- €) (20)
We see from (19) that the cases D = 2 and D > 2 are different. Let us consider the case D > 2 first.

Equation (19) implies that the function (0 - €) is linear and then equation (20) implies that 0,0,¢, is a
constant. Henceforth €,(x) are quadratic functions

€u(x) = a, + b’ + cnr’ e, (21)

3From (19) we see that for conformal invariance it is enough to have © = 9,0, L, for D > 2 and © = §?L for D = 2.
It follows from the fact that for conformal transformations the variation (7) takes the form

§eS = (0-€)0dPz,
RD

and hence in the virtue of (19) it can be integrated to zero if either © = 9,0, L, or © = §?L holds.

7



subject to the condition (18). The constant term a,, is not constrained at all. It represents the infinites-
imal translations. The linear term b,, obeys

2
by + by = z;éuy(éA”bAU)

General solution is
by = @y +wy  where wy, = —wy,.

The antisymmetric part represents infinitesimal rotations, while the pure trace part corresponds to the
scale transformation /* = (1 + a)x*.
So, we are left over with the quadratic term c,,5. Inserting (21) into (20), one finds

1
Cuvp = OupCu — OppCu — 04y Where  (, = _Bcgw

which corresponds to the infinitesimal transformation
o =t =2z )t 4 P

called the Special Conformal Transformation.
Finite conformal transformation can be obtained by exponentiation. They and the corresponding
generators acting on functions are summarized in the following table

Transformation Generators
Translation ot =zt + at P, = —i0,,
Rotation ' = QkaY L, =i(x,0, — x,0,),
Dilatation 't =\t D= —i(x-9),
H 2/p
SCT ' AT K, = —i(z*0, — 2z,(x - 9))

T 142(¢ @)+ Ca? 8

One can check that SCT is indeed a conformal transformation with the scale factor A = (1+2(¢ - x) +
¢*x?)?. More intuitive way of thinking about the SCT comes from the formula

1n w

T T

pe Rl S
xr

2
It means that we can define the special conformal transformations by combining an inversion with a
translation and then another inversion
H xH o4 (P ah + M
x“—>—2—>—2+C“—>Qf <2: C 5 .
x x (H+¢)? 1+2(¢-x)+ a2

(22)

One can easily check that the inversion obeys (17), so does the SCT.
We note that the SCT is not globally well defined in R?. In particular the point

is mapped to infinity. Therefore in order to define SCT globally, one usually considers conformal
compactification of R? which is S?, or the D-sphere.



It is interesting to identify the conformal algebra for D > 2, that is the Lie algebra of (P,, £,., D, K,,).
First, we compute the number of generators. Keeping in mind that £, is antisymmetric, we have

D(D—1)+1+D: (D+2)(D+1)
2 2 ’

Interestingly, it is equal to the size of rotation algebra in D + 2 dimension. This is actually the case up
to a signature issues. The generators D, K, and P,, £, admit the following commutation relations

D +

[D,P,] =1iP,, D, L,.] =0, D, K ] —iKC,,

KKl =0, K P = 200Dt Lu)s KoLl = 0K — 00Ky, )

plus those of the Poincaré algebra
[P,uu Pu] = 07 [P)\, »C,ul/] = i<5)\u7)1/ - 5)\117)#)7 [E;w; ‘Cpcr] = i(&/pﬁuo + 5,uo£up - 5,up£uo - 5uo£,up)- (24)

These commutation relations can be brought to the convenient form by defining

1 1
Jw =Ly, Ipr2py1 =D, Ipt1,= 5(73” +Kyu),  Tps2p = 5(73# - K,),
where Jynv = —Jnn- Then the new generators satisfy the relations of SO(D + 1,1) Lie algebra

(Tmns Trs) =t (MneTms + s INg — MurINs — INsSTMR)

where 7,/ is the diagonal matrix with Minkowski signature (1,1,...,1,—1). It can be seen by explicit
calculations and we leave it as an exercise, but it is better to derive it from the following arguments.

Consider the vector 1 2 9
b l—a* 1+
X = (2. ...

(.:C P 9 :C ) 2 Y 2

It is not arbitrary, but subject to two additional constraints. First it is a “light-like” vector X? =
x? + (1529)2 — (425)2 = 0. Second constraint is the condition XP*+' + XP+2 = 1, which defines the
section of the light-cone. This section is parameterized by @, which are our original coordinates in

RP. One can easily check that the induced metric on R” coincides with the flat metric. The group
SO(D +1,1) acts on RP*L1 by linear transformations

) c RD—I—I,I

XM AMXN (25)

We want somehow to project this action to our section: X? = 0, XP+! + XP+2 = 1. Since the first
constraint is preserved by the action, it is not problematic. The second constraint transforms

1=XP 4+ XPr 5 \(X),
where A(X) is some linear function. So, we just replace (25) by the transformation
XM o NTHXO) A XY (26)

which certainly preserves both constraints. It remains to show that the transformation X — \(X)XM
is a conformal transformation of the light-cone (and hence of the section as well). Indeed

(d()\X) ~d(>\X)> — (()\dX + (VA dX)X) - (AdX + (V- dX)X)) = )2 (dX : dX),

9



where we used X? = 0, (X-dX) = 0. That is, that linear transformations A € SO(D+1,1) corresponds
via (26) to the conformal transformations of RP which we summarized in (23)-(24). For example

100 ....... 0 0
010 ....... 0 0
............. 0 0 0
....... 010 0 0 (27)
.......... 0 1 0 0
D D
.......... 0 0 :i o2
.......... 0 0 5 5
corresponds to dilations @ — A\x etc.
It is interesting to construct conformal invariants, that is functions of F'(xq,...,xy) which are
invariant with respect to all conformal transformations. Poincare invariance implies that F'(xq,...,zy)

may depend only on relative distances |a; —a;|, then the scale invariance implies that it can only depend
on the ratios

|z — @)

|z — @]

Finally, to insure the invariance under the SCT it is enough due to (22) to ensure the invariance with
respect to inversions. Using

(x; — ;) oty (2 — )

Y

xlx?
Tl
we see that we can built an invariant only through 4 points

e — xo|wy — @4 e — x|y — @4

B |901—333||w2—w4|7 B |902—983||331—w4|.

It means that the conformaly invariant function of four points is actually a function of two invariants
F(u,v). In general, there are N(N — 3)/2 invariants for NV points. Indeed, the number of |x; — x;|’s is
N(N —1)/2. Then write a monomial

[z — ™.

1<j

Conformal invariance demands that each individual degree in @ is 0. That is

k-1 N
Zm]’k“— Z my; = 0.
j=1

j=k+1

So we have N equations for N(N — 1)/2 unknowns: N(N —1)/2 - N = N(N — 3)/2.

We note that these monomials are not algebraically independent for N > D + 2. Indeed, after all
we have N points in D-dimensional space constrained by the conformal group. Hence the number of
algebraically independent cross-rations has to be

(D+2)(D+1)

ND — .
2

10



In particular, one has only 2(N — 3) independent cross-ratios for D = 2 and N — 3 for D = 1. For
example for D =1 and for 1 > x5 > 23 > 24

(w1 = @2) (w3 — 14) Y (1 — x9) (23 — T4) o U
‘o (z1 — 23) (29 — 24) (g — x3) (21 — T4) — 1—u

The counting above does not work for N < D + 2, since there is a residual subgroup of the conformal
group which leaves the N points invariant. So that we have, N(N — 3)/2 invariants for N < D + 2 and
ND — PRPH) o N > D 42,

Now, we consider the conformal group in two dimensions. We already saw that D = 2 is special (see
egs (18), (19), (20)). Namely, the condition (18) reads

O = 82627 O1€g = —82617 (28)

which are nothing else as the Cauchy-Riemann equations in complex analysis: the complex function
whose real and imaginary parts satisfy (28) is holomorphic. Namely, we introduce the notations

1 = 1
2=z +i2?, z=a'—iz? 825(01—2'82), 025(81+i82), € =€ +1i€e3, €=¢€ — i€

Then (28) is equivalent to the statement
0 = 0e = 0. (29)
What we just obtained is merely the simple fact that in two dimensions any holomorphic function f(z)

give rise to the conformal transformation

2

ds? = (da')? + (da?)? = dzdz 2=, '% dwdib,

or in infinitesimal form f(z) = z 4 ¢(2). We note that doing holomorphic maps we regard the variables
z and Z as complex conjugated, so that the metric remains real.

We see that in D = 2 the conformal group is infinite dimensional and consists of all holomorphic
maps with the group multiplication being the composition of maps. This is to be compared to the
finite-dimensional conformal group in D > 2 dimensions, which is isomorphic to SO(D + 1,1). It is
precisely this infiniteness, which makes the D = 2 case so special. Imposing this infinite symmetry, we
got infinitely many constraints on correlation functions and in some cases can compute them exactly.
There is, however, some subtlety which is related to the global definition of holomorphic maps. In fact,
the Cauchy-Riemann conditions (28)-(29) are defined only locally. They just kinematically guarantee
that the function €(z) depends only on one variable z, but do not demand the corresponding map to be
defined everywhere and be invertible. By definition, the conformal group consists of all invertible and
globally defined maps (keeping in mind that SCT requires to add “infinity” point to the manifold). We
will therefore distinguish between global and local conformal transformations in two dimensions. Let
us construct holomorphic invertible globally defined mappings f(z). Clearly, f(z) could not have any
essential singularities of branch points. Hence the only admissible singularities are the poles and then
f(z) is a rational function




The polynomial P(z) could not have distinct zeroes because in this case the inverse image of 0 is not
well defined. The multiple zeroes are also not allowed, because the inverse function will be multiple
valued. So, the only possibility is the linear functions. The same arguments apply to the denominator
of f(z) when looking at the behavior near co. We conclude that

_az+b

= with ad — bec = 1.
cz+d

f(2)

The last condition has been applied in order to fix the freedom (a,b,c,d) — (Aa, Ab, Ac, Ad) which does
not change f(z). For each global map f(z) one associates a matrix

a b
M = (C d) € SL(2,C),

where SL(2,C) is the group of complex 2 X 2 matrices with unit determinant. One can easily verify,
that the composition of maps f>(f1(z)) corresponds to the matrix multiplication MM,

a1z+b
h(fi(2) = as (ﬁ) + by B (aras + bacy)z + (aghy + bady)
o ¢ <M> +ds (a1c2 4 c1da)z + (e2by + dady)”

c1z+d1

Furthermore, we note that even after imposing the condition ad — bec = 1 there is still a redundant
symmetry (a,b,c,d) — (—a,—b, —c, —d) and we have to eliminate it. We conclude that the group of
global conformal transformations in two dimensions coincides with the Mébius group SL(2,C)/Zy. The
Mobius group is a continuous 6-parametric group, which is known to coincide with the Lorentz group
in four dimensions group SO(3,1) (more precisely its identity component) according to spinor map.
Namely, we note that there is a natural map from R'? to the space of 2 x 2 Hermitian matrices

[tttz -y
(t’x’y’z)_)H_<:):+z'y t—z)

such that the quadratic form becomes the determinant t* — 22 — y? — 22 = detH. Now we can let
M € SL(2,C) act on Hermitian matrices by conjugation (the spin homomorphism)

H — M*THM.

The kernel of the spin homomorphism consists of two matrices M = =+I and hence we come to the
conclusion that the Mébius group SL(2,C)/Z, is isomorphic to the identity component of SO(1,3) =
SO(3, 1), which is consistent with our previous findings.

Probs:

1. Find Noether current corresponding to the special conformal transformation (22).

2. Show, that (27) corresponds to dilations. Identify other elements of the conformal group as
elements of SO(D +1,1).

12



Lecture 3: Stress-energy tensor in QFT, conformal Ward identities

We consider Euclidean, SO(D) invariant field theory with symmetric stress-energy tensor 7, =T,
defined by (7). Quantization of the theory amounts to consider functional integrals of the form

(x) & % / Xe S [Da), (30)

where X is a composite field. Usually, we take it in the form
X =0Oi(x1)...On(zy),
where O, (x,)’s are some local fields
O(x) = F(®(x),0,P(x),...)

In principle, function F(...) can be arbitrary. The only property in which we insist, is that the fields
finitely separated in the space are not allowed. The collection of all local fields is usually thought of as
a vector space. One can imagine it as

A = span{®" (z), ®" (x)0,®(x), ®" (2)9,0,®(x), " (£)9,P(x)0,®(x),. ..} (31)

As we learn in Quantum Field Theory course the composite fields like ®V(x) require renormalization.
So, the fields in (31) can be regarded as symbols for the true quantum fields. We will usually denote
them as O;(x), j =1,..., 00, meaning that they form a basis in infinitedimensional vector space A.

At the moment we do not specify O;()’s in (30) and try to work in general. The symbolic integration
in the right hand side in (30) is known to lack mathematically rigorous definition. Nevertheless, we
assume that the functional integral (30) exists and shares some properties of ordinary integral. In
particular, since in (30) we integrate over all functions ®(x) we assume that the measure of integration
is invariant with respect to translations

D(®(z) + e(x)) = D(®(=)),
where €(x) is an arbitrary function. The value of the functional integral (30) should not change. It
leads to the following identity
N
Z<O1(CL‘1) . 00k(xg) ... On(zy)) = /D e(x)(EOM(z)O) (1) ... On(zn)) dPx, (32)
- R

1

where

soe) = 2 -0, (555 )

is the composite field which vanishes on-shell in classical field theory. Now, we note that the function
¢(x) is arbitrary. In particular, it can be taken to have no support at the point @;. Then the left hand
side of (32) should vanish by assumption of locality. Thus we have

(EOM(x)O:(x1)...On(zy)) =0 for x # xy. (33)

13



A field with this property, that is any correlation function involving this field vanishes unless its position
x coincides with one of the other insertion points, is called the redundant field. Equation of the form
(33) is usually referred as vanishing of correlation function up to contact terms.

There are, in principle, infinitely many redundant fields in QFT. Formally, their existence is related
to the more general transformations of integration variable in (30)

O(x) = P(x) + e(x) FP(x)]. (34)

Generally, we do not known if the measure transforms covariantly under this change. If we would
known a Jacobian of this transformation we would find a new redundant field similar to EOM(x). An
important class of transformations (34) comes from the symmetries of the theory. Natural assumption
would be that if the action has some symmetry, then the measure should share the same symmetry as

well. For example, we expect that
D(®(x +€)) = D(®(x)), (35)

as a manifestation of the fact that the change  — « + € just relabels the coordinates in the functional
integral. It is easy to justify the invariance (35) for a constant €. But what if € = €(x) is a function, as
in 2D CF'T? In general, this is the source of anomaly. We will discuss it later in our course.

Exactly, for the transformation ®(x) = ®(x + €(x)) = ¢(x) + €,(x)0,P(x) + ... we do not expect
measure issues. Therefore we have an identity

Z(Ol(ml) e 5€Ok(mk) Ce ON(mN)) = 8ueu(w)<TuV(m)Ol(m1) e ON(mN))dDm. (36)

D
k=1 R

In quantum field theory we take (36) as a definition of the stress-energy tensor.
From very general grounds one can assume that variation of local field can depend on e(x) and
finitely many its derivatives

5.0(x) = ,(2)9,0(x) + 0,6, 0™ () + ..., (37)

where O* () etc are some local fields. The fact that there are only derivatives of €(x) in (37) reflects
general assumption of locality. The fact that there are finitely many terms in (37) is an assumption
that the spectra of dimensions of local fields is bounded from below.

Now, let B, be the small ball surrounding the point @y, such that B, NB; = &. Then we split the

integral in the r.h.s. in (36) as
N
Jom Xl v L
RD i1 ¥ Bk RD

where RP UB, U---UBy = RP. The last integral can be transformed by parts

e () (T ()01 (1) ... On(zN))d T = — /RD €, (2)(0, T, ()01 (1) ... On(zn))d 2 + bt

(38)
Where by b.t. we denoted the boundary terms. They are the sum of integrals over the boundaries of
all balls B;. Now, let us take €(x) of very special form (with no support at & = xy)

RD

e(x)| =0 forall k=1,...,N.

By

14



Then the first term in the right hand side of (38) is the only one who contributes and hence we have
<0MTM,,($)01($1) . ON(QJ‘N» =0 if xe RD. (39)

We note that we can take the balls B, arbitrary small and hence (39) is valid for all & # @y, i.e. the
correlation function (39) vanishes everywhere except for some delta functions supported at the insertion
points @ ... xy. That is 9,7}, is a redundant field.

Having in mind (39), we conclude that

N
D (O1(@1) ... 6On(x) . .. On(zN)) Z a e,(®)(T,,(2) O () ... On(xy))dPx + b.t.
k=1

Now, we specify everything to the case of D = 2 and scale T}, — TW for future convenience. Using

the Green theorem
/@A“d%c:j{ e Atda”
D oD

we find
> (Oi(@1) ... 6.0n(xy) . .. On(zN)) Z a 6 () (T, (2) Oy (1) . .. Oy (2 N)) P —
> 72@ e, (@) (T ()01 (@1) . .. On(@n)da”, (40)

where the contour integral goes in the counterclockwise direction. Since, € is arbitrary we can take it
non-zero only in the vicinity of the point @;. In this case only one term of the sum contributes in (40).
We can rewrite (40), formally erasing an average sign, as

10@) = o [ 6@y - 5§ 6@zl @O, (4)

T Jp, 2m

where D, is a small disk surrounding the point « and C, is its boundary.

Now, suppose that our theory is conformally invariant, that is 7}, is traceless. In this case the
first term in (41) does not contribute for conformal transformations. Moreover, taking into account
peculiarities of 2D geometry

€1 (33) + iEg(al‘) = E(Z), Tll(m) — ng(a:) — 2@T12(m) = 7;(2’),
€1 (33) — ’iég(w) = E(Z), Tll(m) — ng(a:) + 22T12(33) = T(Z),
we find that

<T(Z)Ol(21,21)...ON((Zl,Zl)» and <T(2)Ol(21,21)...ON((Zl,zl)» (42)

are holomorphic and antiholomorphic functions respectively. Moreover variation of the field O(z, z)
under the conformal change of coordinates € = (¢,€): z — z + €(z), 2 — zZ + €(Z2) is

5.0(2,2) = ]4 () T(Q)O(z )¢ + 74 e(0) T(O)O(z, 2)dC.

2 271 Je.
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where both contours C, and C; go in the counterclockwise direction. It is important, that correlation
functions (42) not only holomorphic (antiholomorphic), but also single valued. It allows us to define
the holomorphic variation of local fields (assuming that €(¢) is single-valued as well)

5.0(2,2) = —— 7{ () T(C)O(=, 2)dC.

21

Consider infinitesimal transformation of a very special form
a@)=al—2)"" a<l, n>-L

Variation of O(z,z) under this special conformal transformation we denote by L,O(z z): 00 =
alL,O(z, Z). For generic € the variation 6.0 can be expressed in terms of (L;O) as

" "
5.0 = e(L_10) + ¢ (LyO) + %(Llo) + Z—‘(LQO) . (43)

At least two of these new fields L,O(z, Z) we can identify
L_10(z,2) =00(z, 2), LyO(z,2) = ApO(z, 2),

where Ap is called the conformal dimension of the field @. Other fields L, O(z, Z) are some new fields
which a priori are unrelated to the original one O(z, z). In general, we expect that (43) contains only
finitely many derivative terms, that is there should exists such N > 0, that

LNO(Z, 2) =0.
It is clear that conformal dimensions of the fields (L;O) are given by
Ao(k) = AO - k

We assume that the spectra of conformal dimensions {A;} is bounded from below. Actually, we might
require even more and forbid negative conformal dimensions at all. It guaranties for example that the

two-point functions
1

|z — Z/‘4A@’

(0(z,2)0(7, 2)) ~

will fall at infinity. In any case, this restriction implies that for any local operator O there should exists
an integer v, such that O“+Y) = 0. That is, for any local field O with conformal dimension Ay there
are only finitely many fields with dimensions Ap — k. One can say it other way around. Namely, all
conformal dimensions can be represented in the form

Ao=A,+k  k=0,1,2,...,

where A,, are some master dimensions. Now, let ®,(z) be the local field corresponding to such master
dimension. Then it should have the most simple variation (43)

0P, (2) = €(2)0P(2) + Apé' (2)Pn(2).

Fields with such a property are called primary fields. They obviously satisfy L,® = 0 for all n > 0.
Under generic, not infinitesimal, holomorphic transformation primary fields behave as generalized tensor

fields .
O(z) — (%") O (w).

16



From now on the notation ®(z) will stick for primary field.
Consider the Ward identity

D (O1(21) ... 6.0k(21) . .. On(2n)) 27”2 7{ (Q)O:(21) ... On(2n))dC, (44)

k=1

We assume that the correlation function

(T'(¢C)O1(21) ... On(2n))-

is a single-valued function of { falling sufficiently fast at infinity with only possible singularities, the
poles at the insertion point z;. Then, comparing (44) and (43), we find

(T(Q)O1(21) - .- On(2n)) ZZ ‘2, k+1 Ol(zl)---Oj—l(zj—l)og('k_l)(Zj)oj—i-l(zj—i-l)ON(zN))'
j=1 k= o i)
(45)
The singular part of this relation is inherited from (44) and (43) unambiguously. The regular part is
absent in order to insure proper behavior at infinity. As we will see, the absence of the regular part in
(45) is necessary, but not a sufficient condition. The formula (45) is known under the name of conformal
Ward identity. It has a particularly neat form for primary fields

<T(g)<1>1(z1)...<1>N(zN)>:Z((C e, O )(@1(z1)...q>N(zN)>. (46)

= —2)? (2

One can rewrite (46) in the form of operator product expansion (OPE)

Ad(z)  0D(2)
T()®(2) = + +... 47
(9(2) = Fogy + 2 (47)
where by ... we denote terms regular at ( — z. Similarly, from (45) we find that
L,O(2) N Li0(z)  ApO(z) 00(z) N
C—2) ((—2)° ((—2)? (—z
Now, as we saw before, the conformal dimension of the field O differs from the conformal dimension
of some primary field ® by an integer positive amount. It suggests that, may be, O can be obtained
from ®. To do so, we consider regular part of (47)

Ad(z)  09(2)
C—2)? (¢—=
where L_;®(z) are, by definition, some new local fields (note that L_;®(z) = 0P(z)). Their existence
can be justified by functional integral arguments and from (46). For example

L 2®(2) = T(2)®(2),

T(Q)0(z) = (48)

T()®(2) = + L y®(2) + (( — 2)L3®(2) + (( — 2)’L_y®(2) +...,  (49)

where the symbol &~ means complicated things related to the regularization of product of operators in
QFT etc. We will make it simpler and just postulate, that (49) defines the new fields L_;®(z), which
will be called descendant fields (but not only them). It can be expressed as follows
1 _
Lo@(z) = 5 § (C= )T B()C (50)
c.

21
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Using (46), one finds that

(L1 @(2)@1(z1) ... i (2n)) = : fé(£—Z)1_k(T(£)<I>(Z)<I>1(Z1)--@N(ZN)>=

T om
= L (®(2) Py (21) ... Dy (2x)), (51)

A

where the differential operator L£(z, zx) is given by

N
A (k—1)A; 0;
»C—k — [ J J
; (2 —2)F (25— 2)F!
The last line in (51) is obtained by Cauchy formula and we leave it as an exercise.
It is interesting to derive conformal properties of the descendant field L_;®(z). In order to do that,
we have to derive ones for T'(z) itself. Consider the product

c A(w) N 2T (w) _I_T’(w)

2z—w)*  (z—w)?® (z—w)? z—-w

T(2)T(w) =

+.. (52)

Few comments are in order. First, the conformal dimension of T'(z) is 2. Since it is a conserved current
it does not acquire quantum corrections. This can be easily seen by comparing scaling properties of
both sides of (48). Second, the most singular term in (52) is proportional to the field of dimension 0.
We assume that there is only one such field, namely the identity operator, and hence ¢ in (52) is just
a number. More singular terms are forbidden because of our assumption A > 0. The field A = LT
should have dimension 1. Since the product T'(2)7(w) is symmetric we have also

TET(W) = g + s + o + st (59)

Comparing (53) with (52) we find that A = 0. Therefore, under our assumptions,

T(:)T(w) = 5 ‘ ot (jT_(Z; + ZTﬁsz Yo (54)

which is equivalent to the infinitesimal conformal transformation

0.1 (2) = e(2)T(2) + 2€'(2)T(2) + %e"’(z). (55)
This infinitesimal transformation can be“exponentiated” to
dw\? c
T(z) = <E) T(w) + E{w,z}, (56)
where {w, z} is the Schwarzian derivative
w" 3 /' 2
{w,z}:v—i(v) w::ZJ’_EE///—i_...

18



In order to validate (56) we have to check the group property. It follows from the following property of
the Schwarzian derivative

.= (%) w0+ 169 57

Moreover, one can check that {f, 2z} vanishes on functions f(z) = Z:IZ’ which correspond to global
conformal transformations. The fields with transformation laws like (55), i.e. which behave as primary
fields under Mobius transformations, are called quasi-primary or conformal.

Probs:

1. Prove Schwarzian identity (57). Solve the equation

{f(2),2} =0.
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Lecture 4: Conformal families, Virasoro algebra

In the last lecture we have defined descendant fields (50) and showed that correlation functions with
one such field and arbitrary number of primary fields can be expressed through the correlation function
with primary fields only by some differential operator (51). In order to compute more general correlation
functions with multiple insertions of descendant fields

<L_k1(D(Zl)L_k2(D2(22)(D3(Z3) Ce (I)N(ZN»,

we have to use Ward identities with multiple 7" insertions

(T(OT()P1(21) ... Pu(2a)) =

N Ay Ok 2 & <
) [Z<<<—zk>2+C—Zk) et T

J=1

(T(m)®1(21) - .. Pnlzn)), (58)

which follow from the OPE of T" with itself (54). In principle, using the multipoint analog of (58), we
can compute arbitrary correlation function of the form

<L_k1(I)l(Zl)L_k2q)2(22)L_k3(I)3(23) . L—kN(I)N(ZN>> = D(Cbl(zl) e (I)N(ZN)).

It is given by some “hard to find”, but explicit, differential operator D, applied to the correlation
function involving primary fields only.
It is useful to find conformal transformation properties of the field L_;®(z). In a very general form
it is
(L 4®() | (LL®(E) | (LoLa®() | (Ll ()
(C—2)* (€—2)° (¢ —2) (—=

The fields appearing in the singular part of (59) are, as we will see shortly, not new fields. The fields
from the regular part are new and will be denoted by L_;L_;®=>"%) (). From Ward identity we have

T(C(L-®(z) =---+ +... (59)

L L ®(z) = —Qjm. ]{ (n—2)"'T(n) @M (2)dn =
1 1-1 1 1-k
o ] (n—2)"T(n) (2—m j{Z(C —2) T(C)‘N@@) dn.

This procedure can be repeated, producing an infinite tower of descendant fields
L—k1 e L_knfb(z). (60)
The descendant fields (60) are not all linearly independent. To see this consider the commutator

Ly, L] O(2) = Ly LyO(2) — LyLnO(2) =

1 I+m 1 14+n
=5 Cz(n —2) """ (n) (2—m ]él(c —2) T(g)o(z)dg) di—
_ % Cl(C — ) (C) (% féz (n — Z)1+mT(n)(’)(z)dn) dc.
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Co
C C1 Ci

Gy

Two integrals above look the same. The only difference is the order of contours C; and Cy. In the first
integral the contour C; goes first around z and then the contour Cs encircles both the point z and the
contour C;. In the second integral the role of C; and C; is exchanged. Transforming both contours as
shown on the picture we find

(Lo, La]O(2) = —— ]é(c _ gyt (i f (- z>1+mT<n>T<c>0<z>dn) ac =

271 2

a6 (m f0 9 (T e ) o)
1

= % ", (C - Z)1+n (%(m3 _ m)(g — z)_2+m + 2(m + 1)(C — z)mT(C) + (C _ Z)l-i—mT/(C)) dn- (61)

In the second line we used conformal Ward identity for the field T itself. Evaluating the first integral
and integrating by part the third one in (61), one arrives to the commutation relations

[Lins L) = (m = 1) Ly + 7 (m° = )0, (62)

known as Virasoro algebra. Since the relations (62) are valid when applied to any field O, we simply
erased O in (62).
From (62) we see that

LoL_x®(2) = (A 4+ k)L_x®(2), L,L x®P(z)=(n+k)L, x®(z) for n=1,...k—1,

LiL_®(z) = <2k + 1—02(k;3 - k;)) (2).
We come to an important conclusion. The conformal transformation properties of descendant field
L_®(2) involve only descendant fields build out of the same primary field ®. The same is true for
generic field (60). This fact leads us to the notion of the conformal family [®], i.e. the set (infinite) of
all descendants fields (60). It is clear that because of the relations (62) there are linear relations among
(60). The conformal family [®] consists of ordered ones

[®] =Span (L_j, Ly ... Ly, ®(2)| k1 > ko > ks > ...)

Since generic descendant can be obtained from the primary field by successive applications of (50),
correlation functions involving descendants can be expressed from correlation function of primary fields
only by means of some differential operators. Correlation functions of primaries are further constrained
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by the so called projective Ward identities. They follow from the fact that any correlation function
involving 7'(z) should fall at infinity as

(T'(z)...)~— at z— oo. (63)

Writing (63), we assumed that no field has been placed at z = co. Then z = oo should be regular point,
as all other points. If we introduce local coordinate z = i, we have

(T(z)...):<ili—z)) (T(w)...)=w"T(w)...)~— at z— occ.

In the second equality we used transformation law for 7'(z) derived before (56). We note that the
anomalous term ¢ does not contribute for inversion z = 1/w. Now, let us apply (63) to the Ward
identity (46). Terms of order 1/¢, 1/¢* and 1/¢? in the right hand side in (46) should vanish

WE

8k<q)1(21) N (I)N(ZN)) == O,

e
I

1

WE

(Ag + 20%) (B1(21) ... By (2y)) = 0, (64)

B
Il

1

WE

B
Il

1

Let us study the consequences of these equations (here we do not write Z dependence of correlation
functions for simplicity). The one-point function vanishes unless A = 0

(®(2)) ~ dap-

In that case it is a constant. Remember, that due to our assumption, there a unique primary field with
A = 0, the identity operator. Now, let us study the two-point function (®;(z;)P2(z2)). First equation
in (64) forces it to depend on the difference of variables only

(®1(21)P2(22)) = F(21 — 22),
second equation implies
A(A1, Ay)
(Zl — Z2)A1+A2’

while the third one gives A(Ay, Ag) = N?(A1)da,.4,- We note that the factor N?(A;) can always be
set equal to one by changing normalizations of the fields. Thus, we have

F(Zl —2’2) =

5A1,A2

(Zl _ 22)2A1 :

(P1(21)Pa(22)) =

We call this canonical normalization of the two-point correlation function. The three-point function is
given by
(®1(21) Do (22) P3(23)) = C(Ar, Ao, Ag) [ [ (2 — 2) 729,

1<j
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where Ay = Ay + Ay — Ag etc and C(Aq, Ay, Az) is some constant. In fact, remembering the anti-
holomorphic part of the correlation function, this constant is a first “dynamical” quantity we wish to
compute. It contains actual information about the theory, explicit Lagrangian for example. We will
return to the problem of computation of C'(Ay, Ay, Az) later in this course. Going further, we consider
four-point function (@1 (z1)Po(22)Ps(23)Pa(24)). One can show that generic solution has the form

(D1(21) Pa(22) P3(23) Pa(2)) = H(zz —2)"F(2), 2= (21 = 22)(z = 24) and Z%’j = —2A

i< (21 — z1) (23 — 22)

In general

(®1(21)... Bn(an)) = [[(zi = 2) W F(2), where Y v =—24A;
1<j J
and F'(z) is some function of N — 3 cross ratios.
We will use the projective invariance to set the positions of three points to 0, 1 and oco. For 4—point
correlation function of spinless primary fields (that is A, = A;) one has

(D1 (21, 21) Do (22, 22) D3 (23, Z3) Pa(24, 1)) = H |2; — Zj|2%jF (2,7),
i<j

where

o (21—22 23—24
Z = f)/z‘] i-

(21 - Z4 Z3 - 22

The choice of 7;;’s is not unique, which is related to the obv1ous freedom

[Tl ==z = ] 1z — =

1<j 1<j

AL = 22,

which certainly does not spoil the condition ) ;%ij = —2A;. We fix this freedom by demanding that
the prefactor does not change the behavior of correlation function at z; — 2z, and z; — 23
H |Zi _ Zj‘%fij — |Z1 _ 24‘_2A1|22 _ 23‘2(A4—A1—A2—A3)‘z2 _ Z4|2(A1+A3_A2_A4)‘z3 _ z4|2(A1+A2—A3—A4).
i<j
In this case the function F'(z, Z) can be expressed through the limit
F(s,2) = Jim (3B (2, 2)02(0)B5(1)@4(C, ).

Combining alltogether we obtain

(@1(21, 21)Pa(22, 22) P3(23, 23) Pa(24, 24)) =

Z3|2(A4—A1—A2—A3) |22 _ Z4|2(A1+A3—A2—A4 Z4|2(A1+A2—A3—A4) %

= |21 — 2|z — |2s —

x Jim C*4(@ (2, 2)B2(0)@4(1)4(¢, () where Z:E::ESEZ:Z% (65)

There is an instructive way to derive projective Ward identities as follows. We remind the variation
formula for correlation function of generic fields, not necessarily primary ones,

5 <01(Zl) ON ZN 27T’L Zé Ol(Zl) ON(ZN»CZC
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Here € = €(z) is a infinitesimal holomorphic function. We saw that the only integral globally defined

holomorphic functions are
_az+b

/(z) = cz+d
Any further conformal transformations must have singularities and can not be one-to-one. So, let us
assume that f(z) has a singularity at z = z,. While deriving (41) we implicitly assumed that this
singular point is one of the positions z of the field insertions in (41). We saw, that singular conformal
transformations produce descendant fields. Note, that we can also assume that zy # 2z, and treat this
point as a place where the trivial operator [ is inserted. Thus, after a singular conformal transformation
one can produce a non-trivial descendant field from “nothing”, like T'(z) = L_5I(z) for example. It
means, that the formula (41) should be understood in this generalized sense: where is some number of
identity fields in the set of fields O. After this remark, we note that the right hand side of (41) can be
written as

(66)

L (O@Q0u)... Ox(en))c.

2 Coo

which vanishes for all functions ¢(z) = a + B8z + vz This function corresponds to the infinitesimal
form of global conformal transformation (66) with a =14 /2, b=a,c= —yand d =1— /2. We
note that infinitesimal conformal transformations €(z) = a + 3z + v2z? correspond to SL(2) subalgebra

of Virasoro algebra
[Lo, Li1] = FLy, [L1, L] =2Ly.

Consider quasiprimary fields

Lod(2) = Ag(z), Lig(z) = 0. (67)

The multipoint correlation function involving only such fields should also satisfy the projective Ward
identities (64). We note that the condition (67) is less restrictive than the condition for primary field,
where we require L, ®(z) = 0 for all n > 0. In particular T'(z) is a quasiprimary field since L,7(z) = 0,
but not a primary one LyT(z) = ¢/2 # 0. The projective Ward identities (64) correspond to the
following finite identity between correlation functions

(02 onon)) = [T+ (o ( : ”) 0x (“ZN - b)>.

Pl cz1+d czy +d

Probs:
1. Find explicitly differential operator D, defined by
<L_lL_k(I)(Z)(I>1(Zl) e (I)N(ZN» = Dl7k<q)(2)(1>1(21) e (I)N(ZN»

2. Consider the field T?%(w) which appears as a regular term in (54)

c 2T (w)  T'(w) ) Y
e wp w0 ).

T(2)T(w) =

Find conformal transformation law for this field 6,72 = . ... Show, that one can find a combination
A = T?+ \T” which is quasi-primary field. Write an integral transformation law for A (similar to

(56)).
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Lecture 5: Representations of Virasoro algebra, null-vectors

In this lecture we consider general properties of representations of Virasoro algebra. It will be con-
venient to work in Hamiltonian formalism. For that we have to choose one of the Cartesian coordinates,
say y to be Euclidean time, while the other z to be the space coordinate. There are many other choices
related to the previous one by rotations. We will use cylindric coordinate frame with new coordinates
7 and o related to the complex coordinate z by exponential map

z=e¢" u=oc+ir = ds*=€" (dr’ +do?). (68)

We take 7 € [—00, 00| as a time coordinate and o € [0, 27] a space one. We see that the map (68) is a
conformal one, but not globally defined. It has to singular points z = 0 and z = oco.

We used path integral (30) as the very definition of correlation functions. Instead one can use
Hamiltonial formalism. The dictionary between the two approaches reads as

(O1(01,71)...On(oN,7n)) = (0| T [O1(01,71) ...On(0oN, TN)] |0),
where 7 stands for the chronological ordering. The Hamiltonian H has the form

H 1/27TT do = Lo+ Lo — — (69)
= 5 rrd0 = — 197
21 J, D

where the constant shift comes from the Schwarzian in transformation law for 7'(z).
The vacuum state |0) is an eigenstate of Hamiltonian (69) which obeys

L,)0)=0 for n>-—1.

It follows from the fact that the conformal transformations corresponding to L, with n > —1 are regular
at z = 0. Similarly, we have
(0| L, =0 for n<1.

It is quite natural to define Hermitian conjugation
(Ln)+ = L—na

which is consistent with the requirement that 7'(z) real in Minkowsky space-time (assuming that both
A and c are reals). The primary field with dimension A generates bra-ket states according to the rule

A) Z Bal0)  (A]Z (0]D(00) = lim (0]B(2)2>.

Z2—00

From the definition of primary fields these states satisfy the conditions
L,|A) =0, (A|L_, =0 for n>0.

We define the Verma module Va

LAY Ly Loy |A): LAY =0 for n>0, LoA)=A|A), A >\

v
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is decomposed into the direct sum of finite dimensional subspaces (here [A| = A\ + Ao +...)
Van =span{L_x|A) : |X| = N},
which are eigenspaces of the operator Lg:
LoL A) = (A + [ADL_AA)

On first few levels one has

|A) for N =0,

L_4|A) for N =1,

L_y|A) and L?|A) for N =2,

L_3|A), L_oL_4|A) and L*,|A) for N =3,

L_4|A), L_sL 4|A), L?4|A), L oL? |A) and L*||A) for N =4.

In general there are p(IV) states in Va n, where p(NV) is the number of partitions of N. It is convenient
to define the character (holomorphic block of the partition function)

xa(g) = Tr (¢~ )

VA.

Then we have
—2

As N N q
Xal@)=¢7 ) p(N)¢" = w57
2 50— 7)
So far, we assumed that the values of the conformal dimension A and of the central charge c are
generic. In this case the Verma module V, is irreducible. However, interesting things happen for
quantized values of A. Remember, that we have postulated that ®5_y = I is an identity operator and

hence
ol =L_1I=0,

as it should be for coordinate independent field. But does that consistent with the conformal symmetry?
Evidently, we have to check that
L,L_1|A)=0 for n>0. (70)

Well, in our case A = 0, but we leave it arbitrary in order to see how does that happen. Actually, the
condition (70) is satisfied for all n > 1 identically. We only have to demand it for n =1

We see that A = 0 is necessary condition for the vector L_;|A) to vanish. But not sufficient or course.
We can claim that for A = 0 one can remove the state L_;|A), as well as all its descendants

L_yL_|A),

from our Hilbert space without violating the conformal symmetry. We call such a state a null-vector.
The fact that the null-vector vanishes leads us to the trivial conclusion that any correlation function
involving the identity operator should satisfy
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Now we try to generalize this. On level 2 we have two states L?,|A) and L_,|A). Probably, we can
find their linear combination which vanishes, or, at least, can be safely removed from Va. We have to
require

Ly (L%, + AL_5) |[A)y =0 for n>0. (71)
We note that here we have to impose two conditions (71) with n =1 and n = 2. For n = 1 we have
22A +1
(AA+2+3N)L4|A) =0 = )\:—%.
For n = 2 we have
22A+1) c 1
6A—?<4A+§>—0 — A—E<5—ci—\/(c—1)(c—25)>. (72)

Going further, we consider a descendant on third level
1x) = (>\1L?11 + AL L 5+ )\3[/—3) |A).

If it is a null-vector it has to obey Li|x) = La|x) = Ls|x) = 0, but since L3 = [Lo, L;] it is enough to
impose only first two conditions. Simple algebra gives

Lilx) = (6(A + 1)A; 4+ 3X9) L2 |A) 4 (2(A + 2) Ay 4+ 4)3) L_s|A),
Lalx) = (6(3A + DA+ (4A + % +9)As + 5>\3) L_4|A).

We have three linear equations for three unknowns (A1, A2, A3). So, the determinant should vanish
12 (3(A+1)° + (¢ —13)(A+ 1)+ 12) =0,

which has two solutions

Az%(?—ci\/(c—l)(c—%)). (73)

We see that the expressions for null-vectors (72) and (73) look very similar. One can simplify them
by introducing Liouville like parametrization of the central charge and of conformal dimension

1
Then the singular vectors appear at the values
b b1
oa=—= o=——
2’ 2
on level 2 and
a = —b, a=-—b"!

on level 3. Corresponding null-vectors have the form

(L2, +0°L_) |A) and  (L?, +4b°L_yL_5 + 20%(26° — 1)L_3) |A),
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and similar expressions for b — b~!. One can compute null-vectors on higher levels in a similar manner.
General result states that at level N, for any two positive integers m and n such that N = mn, there
exist a null vector |x;, ) with (this result is known as Kac-Feigin-Fuks theorem)

(m—-1b (n—1)0"

A= Am,n - A(am,n)u Omn = — 9 - 9 . (74)

For generic values of the central charge ¢, |Xm.n) is the only one singular vector in the Verma module
VAmn With A=Ay, +mn = A, _,. We can define the factor space

VAm,n /VAm,—n

without violating the conformal symmetry. The character of the corresponding factor space is

A —-= mmn
q m,n 57 1 _ q

Nl) = Lo L)
Hk:l(l —q")

It is convenient to think about representation theory of Virasoro algebra with the help of Shapovalov
form, that is Hermitian form defined by

(AJA)Y =1, (L) =L_,.

We introduce Gram matrix

Gap & (AILLL_5|A) (75)

Clearly, it is block diagonal matrix G = {Gy, G1, G2 ... } with block sizes p(IN) X p(NN). The degeneracies
of this matrix are closely related to the reducibility of the corresponding Verma module. For example,
one has

Gy = 24,

and hence the determinant det GG; vanishes for degenerate dimension A = A;;. In general, it is clear
that any descendant of a singular vector is orthogonal to everything else in Verma module

(Apun|LyL_x|Xmn) =0 forall A and p.

That is we have p(IN — mn) singular vectors on level N of the form L_x|xm.) with [A|] = N, which
implies that the determinant of the Shapovalov form on level N vanishes as

det Gy ~ [J(A = Ap )™= (76)

m,n

Let us assume that we have a field ®(z) with A = Ay,
(L) +6°Los)|Agy),

and consider the following correlation function

U221, .. 2n) D D(2) Py (21) ... Pylzn)).

This function satisfies partial differential equation

N
A 19)
2, 12 k "
O+ Z((z—zk)2+z—zk)

k=1

U(zlz1,...,28) =0.
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In the case of N = 3 this partial differential equation actually becomes an ordinary differential equation.
Indeed, in this case the projective Ward identities allow one to express derivatives J; through 0. As a
result we have a hypergeometric equation for correlation function

& (< Ay 1 d Ara+ Ay
@—i_b <Z<(2—zk)2_z—zk%)_Z(z—zi)(z—zj)

k=1 1<j

U(z|21, 22, 23) = 0. (77)

2 -
It is convenient to change W(z|z1, 2, 23) = [[1_, (2 — 21) "2 W(z|21, 20, 23) in such a way that the term
with first derivative vanishes. Then (77) reduces to

3
k=1

1\
_ 12 _ ) - =
5k_b(Ak 2) T

and three “accessory” parameters ¢, are subject to three linear equations following from condition of
vanishing of singularity at infinity

L)) Felr, 20, ) = 0 T =3 (% %) (78)
(7= +70)) (ert o

The parameters 0 are given by

1
T(z):? at 2z — oo,

and hence are uniquely determined. Let us look for the solution to this equation in the form
U(z)21,20,23) = (2 —20) (L +ar(z—2) +...) at z— 2.

In the leading order we obtain two solutions for A

b? b?
)\:bal—g and )\zl—bal—l—g.

These two exponents correspond to the following behavior of correlation function
U (2|21, 20, 23) = (2 — 29)2@FD=2@)-8C2) (14 ) at 2o 2

We will interpret this as a fact that the degenerate field ®_, “fusses” with general field as

b
2

] + [®a+9]' (79)

Probs:

1. Compute singular vectors on level 4.

2. Let |x) be the null-vector at level N. How many equations provide the constraints L|y) =
Ls|x) = 07 Count the number of equations on level 5 and explain that the excess equations are
algebraically dependent from non-excess ones.
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Lecture 6: Free bosonic CFT I: path integral approach

Let us start with the theory of free massless bosonic field

Slel = 5= [ (Guel)'dPa. (50)

First of all, we notice that this is our “patient”: the theory is conformally invariant (at least classically).
This follows from the identity

/@gp(m)@mp(m)de = —2/8<p(z, 2)0p(z,2)dzdz, 2z =z +ize, Z=11 —iTy.
In this complex form it is obvious, that the action is invariant under conformal transformations

2=f(Q), zZ2=Ff(0)
The stress-energy tensor

awi OL
T = B0,

is indeed traceless T}, = 0 and hence the components

1 1 2
Opp — 0 L= ppe (@g&&,g@ - §5uv (8“ ) ) )

™

. 1 — T . 1 -
T = 9 (TM — T22 — 2ZT12) = —5(84,0)2, T = —5 (Tn — T22 + 2’LT12) = —5(8(,0)2,

obey B B
OI' =0T = 0.

on-shell.
Now let us study the theory (80) quantum mechanically. It is easy, since the theory is Gaussian.
There are however some subtleties. Consider the partition function

Z = /[Dw]e‘s-

This integral diverges since the action does not contain the zero mode ¢ of the field p: Z ~ [ dp,. We
define the measure [Dy|" simply as an integral over all non-zero modes of the field ¢.

Moreover, anticipating that we will have to deal with infrared divergencies, we will consider our
theory in a finite volume. That is we impose the periodic conditions ¢(xy, zs + 27 R) = (21, x2). Let
us compute the two-point function in this theory

Gle ) 2 (¢@)olw)) = 5 [Delel@)ply)e ™.

As usual in Gaussian theory, one has to invert the quadratic form

~AG(x) = 410%(z) where &6%(x) = 6(z1) i d(xe 4+ 2mnR),

n=—oo
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Clearly

G(x) = Z K(|z = 2imnR|) where — AK(|z]) =476 (z).

n=—oo

Integrating last equation over the disk of radius r, we obtain
—rK'(r)=2 = K(r) = —2logr + const = —log |z|> + const,

which implies

1
G(xz) = —log (4 sinh ﬁ sinh ﬁ) log ﬁ +0 < ) at R — oo. (81)

We treat R as an infrared cut-off: it is assumed to be infinite, but we keep it large in the intermediate
calculations and then send R — oo in the final answer.
Multipoint correlation functions are computed by the Wick rules:

(o(@1)p(m2)p(w3)p(2a)) =
= (p(z )80(1'2))( (@3)p(®4)) + (P(21)p(23)) (P(®2)p(®)) + (P (1) P (24)) (P () p(23)) =

G(x1 — x2)G(x3 — x4) + G(x) — 23)G (22 — 4) + G(T1 — 1) G(T2 — T3)  etc

We note that the field ¢ does not look like a conformal field, its correlation functions behave logarith-

mically rather than power-like. Conformal fields in the theory (80) are represented by the exponential
fields .
eer® o R, (82)

We are interested in multipoint correlation functions
<6ia1<p(ac1) N .6ian<p(acn)>
One can compute these correlation functions by expanding exponents in series, then using the Wick
theorem and then resuming again. But it is better and much easier to use the following general fact,
that for any ® functional linear in fundamental field ¢: ® = [ J(x)p(x)d*x we have
(e?) = e2(®"). (83)
In our case

¢ = ZZ arp(xy) = /J(a:)ap(a:)dzac where J(x) = zz a0 (x — ).

Then we have

1e% @x 1e% @x ]' -
<€ wp(@1)  giang( n)> = exp (—5 Zai((p Zalaj J))) :
k=1

1<j

At this point we have a UV problem, since



A standard way to deal with it is to introduce the UV cut-off. It s not universal. There many ways to do
it, or as one says, there are many regularization schemes. In renormalizable QFT physically observable
quantities must be independent on regularization scheme used for their computation. We define the
scheme as follows
(p(x)p(x)) = —log 73
where 79 < 1. Then, according to (83), the correlation function has the form
Za

k
(elne@) - planp(@n)) Zak H |25 — 25|70 (84)
1<J
Observables should be independent on the UV cut-off. We define the new field
o2 _o?
e N (85)

We note that the operator V,, depends explicitly on a scale and hence has an anomalous conformal

dimension A(a) = A(a) = 0‘72 Even for renormalized operators we see that the correlation function

(84) vanishes in the limit R — oo unless the neutrality condition

i ap =0 (36)

is satisfied.
It is instructive to derive the anomalous dimension of the operator V,, in different, but equivalent
way. We expand

ap - a'k k
e = E E@ ) (87)
k=0

and express it in terms of Wick ordered quantities and then resum back. The field ¢* is not Wick
ordered. Namely, consider the correlation function

(@) (@) ... p(xn)).

If one knows how to compute these correlation functions for any n, one knows (in principle) how
to compute everything, like correlation functions of exponential operators (82) for example. While
computing (87) one meets two types of contractions: either ¢(x)’s are contracted among themselves, or
with some of the p(z;)’s. For example,

() o(@1) ... p(@n)) = (p(®)*){p(x1) .. p(T0))+

+ ) {p(@)p(a) (p(@)p(x;)) (@) ... phar) ... plas) .. p(an)),
i#j

(p(@) () ... o(mn)) = 3(p(x)) (@(x)*) (1) . . . o))+

+6(p(@)?) ) (p(@)p(@) (p(@)p(@;) (p(@1) .. pla) .. pla] . (@) +

i#]

+ ) (p@)e(@)(e@)e(a;) (e@)e(@)) (p)o(@)) x
i#jFERFE
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According to the formulae above one can define what is called Wick ordered fields (with our choice of
UV regularization scheme)

r2
R2

The field : O : is ordered, meaning that in correlation function it is contracted only with other fields,
not with the one entering the symbol of O. In general, it is clear that

o(x)? = p(x)’: +Go, (x)* = p(x)*: +6G, : p(x)? : +3G5 where Gy = —log

(k/2]
KOGl

k _ 0 . k-2l
7 (w)_zl!(k:—%)! TR

Substituting this in (87), we have

B2 kg

- a ' Gy L — < 0" G} L om </ N
kz:l kLI —2l'2l'gp (w)._zZ:Z% 'n! Ql'@(w)'_ez -¢ e
=0 [=0 =0 n

Applying this to the field e**(®) we obtain

o2

2
glap() (T—O) 2 s elow(@) o) Va(x) = :

Re?

72 celor(@) (88)

Now, let us check the conformal Ward identities and find that V,(x) is actually a primary field.

First we note that while ¢() itself is not a conformal field, its derivative is. The two-point functions

have the form
1 1

(Op(2)p(w, w)) = - (Op(2)0p(w)) = L

(2 —w)’

In multipoint correlation functions we can use

Dp(2)dp(w) = —(z_ilw)ﬁ () 0p(w) =
1

=+ (0p(w))? : + : P(w)od(w) : (2 —w) + % :Pp(w)op(w) : (2 —w)* + ...,

(2 —w)?

where we expanded the right hand side at z — w.
Now, let us compute the OPE of T'({):

with V,(2) (we hide the dependence on Zz)

TValz) ia:0p(QVal2): S
(C—z)2+ C— 2 +'T(Ova(>'_(§—z)2+C—z +... (89)

We see that V,(z) is a primary field with the conformal dimension A(«a) = O‘; As we learned, this
should imply the conformal Ward identity

CV(z)  OVa(2)

T(¢)Val2) =

(T(Q)Vay(21) - Vi, (z0)) = Z ((CA_(OZ;)P + : ?ka

k=1

) (Vi (1) - Vi (za), (90)
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where we assumed that the neutrality condition (86) is fulfilled. Similarly one can show that

1 1 0p(Q0p(2) 1 . 1 2T(z)  0T(z)
2(¢ —2)* (€—2) T TOTR): 2W—of (=2 =z

and hence the stress-energy tensor T'(z) = —1 : (9¢(z))? : defines the Virasoro algebra with the central
charge

T(OT(2) =

(91)

c=1.

As we learned before, two identities (89) and (91) are enough to express any correlation function of
descendant fields through the correlation function of the primary fields only. In the free theory the last
one is pretty trivial

[Lic; 2 — 2?9 if 3op_ ar =0,
0 otherwise.

(Vai(21,21) - Vi, (20, 20)) = {

We note however, that the Ward identities or the OPE’s are universal. They do not depend on an actual
theory, being just the constraints imposed by the conformal symmetry.

We mention here the following important point. What we constructed in this lecture is the map
from the Verma module to the free fields, usually referred as bosonization. Namely, we have a Verma
module

VA = {®a, L_1®p, L* | ®p, L_o®Pp, L? (P, L1 L_y®Pa, L_3Pp,...}

and a Fock module (here all fields are assumed to be Wick ordered)
Fo = {Va, (00)Va, (09)*Va, (0%0)Va, (09)*Va, (09)(0*0) Va, (07 @)V, - .- }
The map 7 : Vo = F,, goes as follows (A = a?)
Ppr 5 Vo, Li®a = ia(0p)Vay,
L2 ®p 5 (iad®p — a?(00)*) Ve, L_a®a 5 (iad*p — %(&P)z)va,

For generic values of A = %2 this map provides an isomorphism between the two modules. However,
for special values of « it has a kernel. For example, for o = 0 all fields of the form

oLy, Ln L_1®n

are mapped to zero. We interpret this as a fact that the field 1, is a degenerate field with A = A, ;:
it has a null-vector at the first level. In the language of bosonization it implies that this field together
with all its descendants vanishes identically. Next example of the kernel occurs at the level 2. There
are two fields

1
L? ®p ~ (ia@zgp — a2(0ap)2)Va and L_y®a ~ (z’a@ng — 5(0@)2)\/&.
They are linearly dependent provided that either v = 0 or o? = % First possibility corresponds to the

one we already know, the descendant of the null-vector for the degenerate field ®, ;. Second possibility
corresponds to the degenerate field ®;; or @, for the special value of the central charge that we have

34



¢ = 1. We note that it follows from (72) that Ay = Ay for ¢ = 1. This condition can be relaxed if
one consider the bosonization map for imprived stress-energy tensor (see exercise 2).
Last, consider the product V,(z, Z)Vs(w,w). Let us bring it to the Wick ordered form. Using

k

zww ZBZk'GlZ_) iBp(w,w
oz, 2 oo = 3 IHEL0) o, g

we find that

o) k 1 1
iap(z,2 i w, W) ZO& Zﬁ k'G Z —
: glen(22) . giBel . E E o —l()!l! ):ap(z,z
=0 I=

|z w]PP

208 : glee(2:2) gife(w,m) . (92)

Using the relation (88) we can rewrite this in the form of OPE

va<z,z>vg<w,w>=|z—w|2aﬁva+g<w,w>(1+<z—w> L_lvaw(w,ww...) at = w. (93)

o
a+f
We note that the degree 2a3 in (93) has a natural interpretation 20,3 = 2(A(a + ) — A(a) — A(B)),
which follows from dimensional analysis of both sides of the OPE.

Probs:

1. Show by explicit free-field calculations that (90) is satisfied.

2. Consider the bosonization map 7 from Verma module realized by the improved stress-energy
tensor
Q

1 1
T(z) = —5(&0)2 + ﬁﬁzgp where Q=0+ b

Find the values of a at which this map has a kernel at levels 1, 2 and 3.
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Lecture 7: Free bosonic CFT II: Hamiltonian approach

It is instructive to rederive the results obtained in the previous lecture starting from the U(1) current
algebra. Namely, we have a current

J(2) = i0p(2), (94)
which satisfies an OPE )
We define the mode of the current J(z) applied to the local field O by
0,0(z) % 2i ]{ (€ — 2" J(E)O(2)dz. (96)
T Je,

Repeating the same calculations which lead us to the Virasoro algebra (62) we obtain commutation
relation for the modes (96)
[, @] = MOy, _p, (97)

known as Heisenberg algebra. Among other fields there are U(1)-primary ones, which have the simplest
OPE with J(&)

J(EWVa(z) = évi(z; Y.oat £z
which implies the following Ward identity
N
<J(€)Va1 (Zl) s VOlN(ZN)> = Z 5 szk <Val (Zl) s VOCN(ZN)>‘ (98)
k=1

Now we define the stress-energy tensor via Sugawara formula

w 1 [ JOI)
T = 5 fé 20— 2) (99)

where the components of T'(z) satisfy (91). Then in terms of modes Sugawara formula (99) takes the
form

1 e
Lo=5Y it  Lo= % +3 assa. (100)
ke k=1
Then one can easily see that the field J(z) is primary field with A =1
J(z) ()
T(&)J(z) = +
(£)J(2) o7 TE—
It implies that
1
J(&) ~ & at & — oo.

Substituting this asymptotic into the U(1) Ward identity (98), one obtains a U(1) global Ward identity

<Z ak> (Vi (21) ... Vi (2)) = 0.
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Now we notice that the Sugawara construction (99) of T'(¢) leads to additional differential equations
on correlation functions. We have

OV = L1V, = a_iagVy = 2% b (€ — 2) LT (€)Via(2)de.

Applying this to correlation function, we get

This implies

(Vi (21) -V (2n)) ~ [ [ (21 = 25)9.

1<j

In Hamiltonian approach an exponential fields V,, corresponds to the highest weight state |«)
aplay =0 for n >0, apla) = ala),

which generates a representation of the Heisenberg algebra (97) known as Fock module
Fp= span(aA|P) oo A G_xy - - |P))

Then according to Sugawara formula (100) one can define an action of the Virasoro algebra with ¢ =1
on Fp.
To be more precise, in radial quantization picture our bosonic field ¢(z, zZ) admits the following mode

expansion - -
©(z,2) = —ig — iplog (%) — ZZ (a—;z_k + %Z‘k) ,
k0
where the modes satisfy the commutation relations
[Aa Cﬂ = 1a [a'm> an] = [ama dn] = m(sm,—na [am> an] = 0.
The absolute vacuum state |0) is defined as follows
pl0) =0, a,|0) =a,[0) =0 for n>0.

One can also define excited vacuum |«)

) © i ¢ 252 1 |0) = €29)0) = pla) = ala).

|
z—0

where the normal ordered exponent called the verter operator has the form

Jow(=2) . o (%) exp (_az<a Bk = k)) exp (O‘Z< b~k akz—k)>7

i.e. we placed all the creation operators to the left of annihilation ones. We also define the Hermitian
conjugation by a = a_, and a = a_,, and hence the conjugated vacuum satisfies

(Ola, = (0la, =0 for n<O.
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Let us compute the two-point Green function (we assume that |z| > |w|)

(ol D)plw, ) = (0l (z, 2 (w, w)[0) = —(013210) — (Oldplog (5 ) +pilog () 10)+
+;%<Oiw—k (%) +aace (2) Jo) = ~oito s (32) + = ((5) "+ (5)') =

~(01210) o5 (25) ~10g (1 - ) (1= 2) = ~(0lg*10) — 1o E 2L

Comparing to (81) we find that the average (0/G%|0) can be identified to the IR cut-off R as

(01¢%|0) = 0. (101)

Now consider the product of two vertex operators
L low(2:2) . giBp(w,w) . eo‘q(]z;) exp (—az (%zk Tk )) exp <Ozz (ak k4 C;: __k>> X
L (W _ a_ a __
() o (93 (St te) o (93 (s o))

We note that this expression is not normal ordered. To make it normal ordered, one has to flip red
terms with red and blue ones with blue. Using the Baker-Campbell-Hausdorff formula we know that if
the commutator of two values [A, B] is a ¢ number, then one has

eAeB — lABI B A

In our case we have

45— i (52) s (1= £) (1= 2)) —oe ()

and hence we obtain already familiar expression (92)

|z — w|?*8
R2aﬁ

Using (102) one can show that (here |z1| > |22 > -+ > |z,|)

. 6iagp(z,2) . 62’630(111,11}) — : 6iag&(z,2)6iﬁgp(w,ﬂ}) - (102)

<0‘ . ptonp(z1,21) L piom(Zn,dn) H |Zl |2alaJ
. e . . e . R206106]

1<j 1<j

_ Zj |2aiaj

g |ZZ
O|€Z k4|0> — HW

(103)
where in the last equality we have used (101). We note that the average in (103) is non-zero in the IR
limit R — oo only if the neutrality condition ), ay = 0 holds. In fact it is convenient to set R = 1
from the very beginning holding in mind the neutrality condition.

We note that formally one can consider holomorphic bosonic field

k0 k

o(2) & —ig — iplog(z) —
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which is intrinsically non-local. This non-locality manifests itself as

(Ol(2)p(w)|0) = —log(z — w)
and

celov(z) L giBew) (z —w)* glev(@)gibe(w) . — . plap(z) . giBe(w) . gimalB . gifp(w) .. giag(z) . (104)

So, in general holomorphic vertex operators commute on a phase.
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Lecture 8: Free fermionic CFT, boson-fermion correspondence

We consider Euclidean theory of massless Dirac fermions

1 1 o _
S = = / Uty JUd?z = g / (V00 + ¢ 0) =, (105)

01 0 — -

Classical equations of motion following from the action (105) are

where

o) =o* =0, oY =oY* = 0.
The non-trivial two-point functions are

W W) = WEW W) = ——, (@) = (B (@) = ——

Z—Ww zZ—w

Since the theory (105) is Gaussian its correlation functions are computed via Wick rules. For example
(here the minus sign between the two terms is due to the Grasmanian nature of the field )

(0% (21 )b ()" ()t (w3)) = —— 1 1

21 — W1 22 — W2 21 — Wz 29 — Wy

In general, the correlation function is given by Cauchy determinant

(o) o)) = et (). (106

We will treat the theory (105) as a representation of fermionic algebra. We have two holomorphic
current 1(z) and 1*(z) (and two antiholomorphic), which satisfy the OPE

B W) = —— . pep(w) =reg, ¥ (2)y*(w) = reg (107)

Z—w

One can defined their modes as
O o f (- 0@ w0 ™ o (€— 2o

T 2 ©2mi

z

Then one can computes their commutation relations. The only non-trivial one is

1

[0 630(2) = (0 + 020,)O(z) = ﬁ 7{ f (6 — 27 H 0y — =) 1 ()0 (=)dedy =

- h f e (L5 ) Ocan=s.-.00)

{%, 'lvbs} = {¢:> ?ﬂ;} = 07 {’lvbw ?ﬂ;} - 57“,—5 (108)

We have
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We note that if one requires the locality of an operator O with respect to currents ¢(z) and ¢*(2) , the
indexes in (108) must be half integer r,s € Z + 3. We call such fields Neveu-Schwarz fields (NS). One
can also argue that it is natural to assume the existence of the fields wich are semi-local with respect
to the currents ¥ (z) and ¥*(z). In this case the modes of ¢, and 1 take integer values.

We define the fermionic Wick ordering as

() (w) 1= (2 () — —

z—w

Then one can define the U(1) current algebra inside the fermionic algebra

J(2) =97 (2)Y(2) - (109)

Using (107) one finds

J(2)J (w) :ﬁju,,, (110)

which coincides with (95). Regular term in (110) can be associated with the stress-energy tensor.
Explicitly, one has

1 * *
T =2 (00— ow) -
which defines the Virasoro algebra with the central charge ¢ = 1, as it should be. One can also check
the following OPE’s

V() () VN (2) | Wr(2)

TE)(2) = + Fo TEW() = + o
)y (2) E—2F E-. (E)y™(2) =7 T E-.
which means that the fields ¢(z) and ¢*(z) are both primary fields with conformal dimensions A, =
Aﬁ¢*::%.
We have two realizations of the same U(1) current algebra (94) and (109), which implies
i0p =" (2)¥(2) : (111)

Formula (111) is known as bosonization. It terms of the modes, it reads
Ap = Z : w:w—r—i-n :
T€Z+%
The bosonization formula (111) can be inverted
YD) = 90D, (@) (z) = e

Actually, it will be more convenient to work in terms of holomorphic bosonic field ¢(z) and holomorphic
vertex operators : €'*? : with commutation relations (104). We note that (104) implies that for a3 € 27
these fields commute, while for a8 € Z they anti-commute i.e. behave as fermions. We identify

P =: ) P =: e W) (112)

which has correct OPE (107). In terms of correlation functions, the relation (112) is equivalent to
Cauchy determinant identity

det< ! )_(_1)an‘<j(zi—zj>(wi—wj)'

2, — Wy [T5, (26 — wi) (113)
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We note that the bosonization map identifies more vertex operators : e**) : with k € Z with
fermionic operators. In particular,

. . . 1 . 1
DB = ) 1, e = Gyt s 3E) = 3" P =, eI = 3" P oY 1 ete

Consider highest weight representation § of the fermion algebra (108). It is defined by the highest
weight state |0) (an image of an identity operator)

p0) = ¢7[0) =0 for r>0.

Then the module § is spanned by the vectors of the form
def

¢—Twis|0> = (w—rl,l?b—rz e ) (¢islwi32 e ) |O>’ (114)

where r = {ry > ry > ...} and s = {s; > 5o > ...} are two strictly decreasing sequences.
It is convenient to think about representation § in terms of particles/holes and Dirac sees. Namely,
we introduce absolute vacua state |&) by

Yr|@) =0 forall 7.

Then the vacua state |0) corresponds to the semi-infinite product state
10) = Y1tpatps ... |@).

It can be interpreted as follows. We have an infinite line R, where R is all filled by particles at positions

%, % etc and R~ is empty (or filled by holes). Then ¢ _,. creates a particle at position —r and ¢* , deletes

a particle at position s (creates a hole at position s). The corresponding sequence of particles and holes
is usually referred as Maya diagram. We also define dual absolute vacua state (&| by

(B, =0 forall r = (0] = (@]... Piiai.
2 2 2

Then the state conjugated to (114) can be represented as

« def

(Othsthr: = (O] (- .. Wsyths, ) (- - 0505

There is a nice bijection between Maya diagrams and charged partitions, which can be explained by
the following picture

N\

N\

N

N\ /

ottt ) \< >/

(0]
(0]
0]
0]
v ?

"
=X
=X

!

3 9
2 2

-
N
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where the “charge” of Maya diagram is a distance between the origin and the bottom corner of the
Young diagram. Any Maya diagram has its charge given by an eigenvalue of the operator

= Qg = Z : ¢:w—r = [éa wr] - —%, [éa w:] = —’QD:,

T’EZ""%

o

and an energy given by an eigenvalue of the operator

Lo= Y ri = [Lo,t] = =rtby, Lo, ] = =1y,

TEZ-I-%

It is interesting to compute the character of the fermionic module § (the partition function)

Z(q,t) = tr (g™t (115)

.
According to boson/fermion correspondence, there are two ways to compute this character.
1. Bosonic way: at any value of ¢ we have the bosonic Fock module F,, which implies the character

formula . . .
Z(g )= 3 23 g7 = (Hl_lqk) 3 g (116)

c=—00 A k=1 c=—00

is the Jacobi theta function.

2. Fermionic way. At position (k + %) for £ > 0 we have two options: a hole with weight 1 and a

particle with weight t‘lq’”%. Similarly, at position —(k + %) for k > 0 we could have a hole with

the weight tq"“’% and a particle with the weight 1. Since all the positions are independent we have
for partition function

Z(q,t) = ﬁ (1 n tqk+%) (1 ! k+%) . (117)

k=1

Comparing (116) and (117) we arrive to the Jacobi triple product identity

I1 (1 —|—tqk+%) (1 +t—1qk+%) (1-¢"*) =Y g7t (118)

= Cc=—00

Probs:

1. Consider generalized stress-energy tensor
T(z) =X : O™ 4+ Xg : O™ .

Find the conformal dimensions of ¢ and ¢* under this 7'(z). Compute the central charge.
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Lecture 9: § — v system, free-field representation of sl; current algebra

We consider Euclidean theory of massless § — v system
1 _ _
S = g / (BOy + BOv) d°=, (119)
where now, compared to (105), fundamental fields (3,7, 3,7) are considered as bosonic variables in the

path integral formalism. We have two holomorphic current 3(z) and 7(z), which satisfy the OPE

W)Bw) = ——+ ..., B)Bw) =reg,  Y(2)y(w) = reg (120)

Z—Ww

One can defined their modes as (where § and  have conformal weights 1 and 0 respectively)

5,0() % L ]4 (6 - B0 40() % L 74 (€ — 27 (O)O(:)de.

27 Je, 2m
Then one can compute the commutation relations

[67“7 55] — [7r> ’}/s] = 07 [ﬁra 78] = 67”,—8

Correlation functions of § — v fields are computed by the Wick rules

Bl )v(wn) .. Bla)y(wn)) = —— 1+ 1 —i—Perms:perm(Zi_le) (121)

21— Wy zg — Wy Zy — Wy

We note that compared to fermionic case (106) there are no signs in (121) and this correlation function
can not be written as a determinant but rather as permanent.

One can try to find a representation for the algebra (120) similar to the one in fermionic case (112).
A naive attempt 3 ~ ¢, v ~ ¢ would fail since the 3 — v fields are bosonic and in particular

This field can be bosonized by two holomorphic bosonic fields u and v as

(u(z)u(w)) = (v(z)v(w)) = —log(z — w)
as (we note that here normal ordering is not needed)

—u—1iv

T=E€

Then the 3 field should be a level one descendant of e**®. This follows from charge conservation and
dimensional arguments. We have

B =: (MOu + \pOv)e ™ ..
Computing the OPE one has

N i

Z—w

2)‘1(>\1 + Z)‘2) u(2)+u(w)+iv(z)+iv(w)
—— e +reg,  B2)v(w)

B(z)B(w) = + reg

(z —w)
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i.e. we have \; = 0, Ay = ¢, which leads to Friedan, Matrinec and Shenker bosonization of v system [2]
B =1i:0ve T, y=eTv, (122)

Using the bosonization formula (122) one can compute correlation functions. The result should be
the same as the one coming from fy—system Wick rules

(B(z1)y(wr) ... B(zn)v(wn)) =
= (et || eulen)gmulw) | gmulwn)y g g (eiv() | giv(m)gmiv(w) | pmivtwn)y -

_ [1(z — wj) [1(z — zj)(wi — wj)
— T — 2000 — ) 0y ... 0, T —w,) . (123)

The equality of both representations (121) and (123) can be viewed as a bosonic version of the Cauchy
determinant identity (113). It is basically equivalent to Borchardt’s identity

1 1 1
det < ) perm ( ) = det <7> .
2 — Wj Zi — Wy (2 — w;)?

Among other things §v system plays a role in free-field representation of current algebras. Let us
consider an example of s[(2) current algebra

h(=)h(w) = % vre, h(z)e(w) = 2D freg () () = LD 1 1oy
k h(w) (124)
e(z)e(w) =reg, f(2)f(w)=reg, e(z)f(w)= + + reg,

(z—w)? z—w

where k is the parameter called the level. In terms of modes

K e en™ o ferees, gt o fense

the OPE expansions (124) read as

[emv en] = [fma fn] =0, [hmv en] = 2€m1n, [hmv fn] = _2fm+m
[6m> fn] = hm-‘,—n + mkém,—n> [hma hn] - 2km5m,—n

The relations (124) can be written in the more general form [3] valid for any semi-simple Lie algebra g

J(2) I (w) = (Zkf(z)z N CON (125)

Z—w

where K is the Killing form and f% are the structure constants of g. In components one has

[J2, I = feb e+ mEK™0,, .

m?¥n

Before describing the usage of the Svy-systems, let us present short review of representation theory
of the current algebras (125). First, is the Sugawara construction of the stress-energy tensor. Similarly
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to the U(1) case one has®
1

AT

where ¢ is the dual Coxeter number, in particular g = n for sl(n). For g = sl(2) we have g = 2 and
equation (126) reduces to

Ko () (126)

1

AT

(%hh(z) +ef(z) +f 6(2)) -

Let us check that (126) indeed satisfies the properties of the stress-energy tensor. Consider the product

T (w) Ko (J ) (2 f—Jc VK (€)1 (2)dE =
k,Kca fcaJd(f) " chb beJd(Z) B
i f K s>2 e )‘]b(z)” © <<w—z>2 e )+”‘]d€_
kJ¢(2) kJ¢
27”7{5_2 { (0P + (w_(i;Q + £ T4(€) u(2) (wl—g — wl_z) + } ¢ =
= 2kJ°(2) + I faae] (2 )+regular

C(Emwp? o (p-w)?

where in the second line we have used the OPE (125) and retained only the terms which will contribute to
the singular behavior, in the third line we have raised the indexes f%¢ = K% f¢® and used antisymmetry
fabe = — fab wwhile in the fourth line we have used OPE (125) again. Now, using

fcadfdae = 29529

one finds that

T(z)J(w) = () + regular = I (w) + 07 (w) +-= 0 (Jc(w)) +..., (127)

(z —w)? (z—w)? (2 —w)? ow

that is all J¢(z)’s are primary fields with conformal dimensions A = 1.
Now consider the product

T Kl ")) = 5 f Ko |3 (%)WQ(M%]%:

Koy J(6) () 01 [ KOS W)
“omi P e 2w - Ow—2)" *azm}'{ € Dw-_o="
_2KuK | Ku(J"J)(:) | 0 (Kab(J“Jb)(z)

(w—2)* (w— 2)? 0z

)+..., (128)

(w = 2)

4Here we use the following regularization prescription

(AB)(w) % =

211

§ A,
C

zZ—w

We note that in general (AB)(z) # (BA)(z).
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where in the first line we have used (127), integrated by parts in the second line, and used OPE (125)
in the third line. Now it is immediate to see that (128) implies that 7'(z) satisfies commutation of the
Virasoro algebra with the central charge

. _ kdimg
8 k+4yg

(in particular ¢=—— for 5[(2)) .

In terms of modes the Sugawara formula (126) has the form

K o0
b a b a b
L ,Hg Z o L Jb for mA0,  Lo= 72(“9) <2n_1J_an+JOJO>. (129)

Now we come to the representations of the sl(2) current algebra. We note that it contains ordinary
5[(2) subalgebra spanned by the zero modes

[ho, e0] = 2e, [ho, fo] = —2fo, [eo, fo] = ho.

Thus it looks natural to study representations of the sl(2) current algebra generated from the vacuum
vector |7)
holj) = 714), eolj) =0, fo creates new states. (130)

We do not necessarily require that our representation of (hg,eq, fo) is finite dimensional, so j is not
supposed to take half-integer values. In terms of fields, one can say that the primary field belongs to
some representation of g and one has the OPE

t°®(2)
£E—z

where t* are the Lie algebra matrices in that particular representation. Having (130) we define the
Verma module V; as

JUE)B(2) = T

Y, = Span(h_Ae_“f_,,U)),
!
A:)\lz)\gz"'>0, MZM12M22"'>0, v=uv,>1vy>...>0.
We note that it follows from (129) that

(J+2)

Lol|j) = Aly ith A=>"—=

We can define the character of V; as (which is very similar to the fermionic character (115))

def
Xj(Q> t) < Tr (qLOthO)
Vj

It is clear that ‘ . ‘
hoh_xe_pf-uli) = (7 +2(l(pw) — () hoxe—p f-uld),
Loh-xe—pf-ulj) = (A + Al + [p| + [V]) hoxe—p fuld),
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where [(A) denotes the length of the partition A. Then the following expression for the character
immediately follows
Atj
(g,t) = 4 .
VYT L A=) 0 - P =2 )

where the factors (1 —¢’), (1 —t*¢?) and (1 —¢2¢’~') are responsible for h_y, e_,, and f_, respectively.
Wakimoto suggested to bosonize s[(2) current algebra (124) by 8+ system and another chiral boson
p as [4]

Probs:
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Lecture 10: Operator algebra, conformal properties of OPE, conformal blocks

We introduce the notion of operator algebra. Suppose we have a theory and a complete set of fields
{0} = {04, 0,,...}. Inspired by the intuition learned from free field CF'T, we formulate the hypothesis
of the operator algebra. Namely, we assume that the product of fields can be expanded in neighboring
points

ZC’“ (x —y)Ok(y) at x= —y, (131)

with CZ";(:B — vy) known as structure constants of operator algebra, which are the functions depending
only on difference of points (due to translation invariance). As we already saw many times, the relation
(131) should be understood as a series of relations on correlation functions

(O;(x) ZC’ka:— (Op(y)X) where X =0, (z1)...0;, (x,).

By performing OPE, any N-point correlation can be reduced to the sum of two-point ones, which
are universal in CFT and considered as known quantities. The set of structure constants satisfy the
condition of associativity

Z Czlfzg( )Cz4zg(w2 - .’Bg) = ZCZZfz (ml - w3>CzZ;zg( 2 553), (132)

o T

also known as bootstrap equations in CF'T. It can be thought as an infinite system of quadratic equations.
In general, this is the task which is hardly believed to be accomplished. However, as we will see in 2D
CFT the conformal symmetry puts strong constraints of the coefficients ij(ac —vy). So strong, that in
some cases (132) can be solved.

Let us consider 2D CFT. As we learned it is enough to study the correlation functions of primary
fields. Consider the OPE of two primary fields

(2, 2)Pa(w, 0) = Y Cf (2 — w) 1722t (5 gy A= dimaatRghA (y p), (133)
kA

here A and A are the partitions
A:{Alz)\gZ}, 5\:{5\125\22}, |A|:)\1+>\2+, ‘X‘:Xl‘i‘XQ—'—

and
def

@2’5‘(11}, U_J) = (L—)\1L—>\2 s ) (E—jqf/—;@ T ) (I)k(w’ U_}>

is a descendant of the primary field ®;(w, w). The coordinate dependence of the OPE (133) is completely
fixed by scaling properties. The coordinate independent coefficients C’ff"}‘ is what is remained to

be determined. In fact there are infinitely many constraints on them following from 2D conformal
invariance.

Let us “act” on (133) by
1

n+1
5 C(C w)"TT(¢)dC n >0,
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where the contour C encircles both z and w in counterclockwise direction: C = C, + C,. On the left
hand side of (133) it acts only on ®;

1 nal . 1 . nal Alq)l(Z) 8z®1(z) o
5 Cz(g —w)" T ()P (2)d¢ = = féz(g w)"t <(C — i + ) ¢ =L, (134)
where

L, = ((z — W)™, + (n+ 1)A (2 — w)")q)l(z).
While on the right hand side simply by

OPNw, @) = Loy N w, @) = Y AR w,w). (135)
[l =IA]—n

Applying (134) and (135) (and similar antiholomorphic equations) to the OPE (133) one finds

O  (Ap+nAr = Mg+ u)) = Y CIMAL,
[A[=[pl+n
) (136)
O (A +nlr— Mg+ |pl) = > CIMA
IA[=l@l+n

These relations are enough to find them uniquely (for generic values of the parameters). We note that
because of commutation relations

[Lmv Ln] = (m - n)Lm—l—nu [Emv En] = ;(m - n)£m+na

it is enough to impose (136) for n =1 and n = 2 and the rest will follow.
We note that the partitions X and A enter (136) completely independent. It is clear that the solution
can be represented in the form

CFM = Ok B\Bs  where by definition 3, = 1.

Herte C%, is the structure constant which gives the contribution of the primary field ®; in the OPE of
®,; with ®,. The constants [ encode the relative contribution of the descendant fields. The structure
constant C%, factors out of (136) and we have

Bu(Ap+ndy =D+ pl)= > BN, Bo=1,
[Al=[pl+n
(137)
L,y = ) AL
l|=|A|—n

As we already mentioned, it is enough to consider (137) for n = 1 and n = 2 only. It is convenient to
imagine, that we are computing the following function

B (w) = By (w) + (2 — ) By L1 ®(w) + (2 — w)? (B L2, @p(w) + Broy Lo®y(w)) +
+ (z = w)* (B, L2 @r(w) + Bro iy Loa Lo @k (w) + By L3 ®r(w)) 4+ ... (138)

All the coefficients 5 in (138) are computed recursively by (137). Consider first examples
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Level 1:

A+ A — Ay

(Ap + A1 = Ay) =208y = By = oA
p

(139)

provided that Ay # 0, which we assume.

Level 2: We have two states
(Buay L2 @y + Bray Lo ®y)

From level @ with n = 2 we obtain

(Ak +2A, — A2) = ﬁ{l’l}A{gl’l} + 5{2}/\{@2} where A{gl’l} = 64y, A{;} =4A, + g

From level 1 with n = 1 we obtain

1,1 2 1,1 2
Buy(Ae + A1 — Ay + 1) = Bu ALy + By Al where Al =224, +1), Al =3,

Altogether we have a system of equations
(Ap+ A1 — A) (A + A1 — Ay + 1)
2A,
c
(Ak +2A1 — Ag) = 6Ak5{171} + <4Ak + 5) 5{2}.

=2(2A5 + 1)Bpy + 3By

This system is non-degenerate, provided that the determinant

2(2Ar + 1) 3 B ) - c
det ( 6A, (4Ak + %)) =2 <8Ak + (¢ —5)Ax + 2)

does not vanish. We note, that the determinant actually vanishes at the values

~ 5—ct+/(c—1)(c—25)
B 16 ’

Ay

which are exactly the values of conformal dimensions of the degenerate fields ®(; 9y and ®(5 ;). Similar
phenomenon holds at level 1: the coefficient ¢y has a pole at A =0, i.e. at A = Ay (see (139)).

In general, at level N we have p(NN) constants O with |A| = N subject to p(N — 1) + p(N — 2)
relations, provided that the coefficients 5, with || = N — 1 and || = N — 2 are known. In fact

p(N) <p(N = 1) +p(N —2), (140)

so we have an overdetermined system of equations and it looks puzzled that we have a solution. The
resolution of this puzzle is hidden in the fact that the equations followed from (137) forn =1 and n = 2
are not all algebraically independent. First example of an algebraic relation is

[L1, [L1, [L1, Lo]]] + 6[Lo, [L1, Lo]] = 0,
and hence we have to correct (140) by subtracting an auxiliary term

p(N) < p(N — 1) + p(N — 2) — p(N —5). (141)
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In fact, there are more algebraic relations. If we take them all into account, we will correct the inequal-
ities (140), (141) to equality known as pentagonal number identity

p(N)=p(N —1)4+p(N —2) —p(N—=5) —p(N =7)+p(N —12) + p(N —15) + .. .. (142)

It follows from the identity

[e.e]

> k(3k—1)
Hl—q (Vg =1—g—++q — % ="+ (143)

k=—00

Indeed from (143) one has

1= Hkll_q IIl—q (E:p ) — =+ +q - —¢"+ ),

k=1

which implies (142). We note that the pentagonal number identity is a special case of Jacobi triple
identity (118) with
g, t— g
The calculation above can be formalized with the help of a dual “basis”. Consider a generic descen-

dant
X =L_yL_y,... P

Suppose we found a generator x € Viry

def

XA = Z a\L, where L, =1L, L

l|=[A]

s - -

such that
a0 = @y, XA@DQ, =0 forall XN#X |XN|=]).

For example

Give the dual basis constructed, it is easy to show that

1
5)\ = (z _ w)Ak—Al—AQHAl

I . _ Ap—A1—Az def
E a\L, - (2 —w) where L, =...L,L,,.

lal=[A]

We note that there is another in a sense more transparent way to compute the same expansion.
Namely, we can rearrange the states by derivatives of quasiprimary fields

By (w) = Dp(w) + (2 — w)p L1 Bp + (2 — w)? <p2L2_1 e (L_2 + mﬁl)) Byt .. (144)

By definition, L, kills quasiprimary fields. It is clear, that acting by L; only one stays within given
quasiprimary family. For example, for coefficients p; in

Op(w) + (2 — w)pr1 L1 ®p + (2 — w)*po L2 Pr(w) + (2 — w)’ps L2, Pp(w) + . . .,
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we have a recursive system

2A8kp1 = (A + A1 — Ay),
3(2Ak + 2)p3 = (Ak + Al — Ag + 2)p2,

which can be explicitly solved

1 NOAL A A+ 1
PN N, N+ —1

=1
We can proceed further and collect the derivatives of the next quasiprimary field in (144)

(z —w)? <1/0 <L_2 + mﬁl) O+ (2 —w)nL_y <L_2 + mﬁl) ®y, + .. ) .

Clearly, we have
M T A2 A At
N_N!jzl 200, +2)+j—1

The coefficient 1y can not be determined from commutation relations with L; only, since the quasipri-

mary state L_o + mlﬁ_l belongs to its kernel. One has to use Ly as well. In fact, we know
that

Vo = Biay
which was found before.
We note here a strange singularities of the coefficients p; of the form

1
20, + 1

P2

This fake singularity is cancelled by the term mﬂil in

3
Loot—"" 12 )&,
( 2+2(2Ak+1) —1) b

It can be shown that the only singularities of 5)’s are located at the values A = A, ,,.
Applying the OPE (133) to the 4-point correlation function, we obtain

(P1(21, 21) Pa(22, 22) P3(23, 23) Pa(24, 24)) = Z Chylar — 2| (Br=B1=82)
!

x Z BrBi(z1 — 2) (51 — 22)‘5‘|(<(L_A1L_A2 I L, )Pz, 52))@3(23, %) ®alza, 24)) =

2

_ Z CfQCk34 Z(Zl . 22)Ak—A1—A2+|)\\BA (ﬁ_)\ . (22 _ 23)’723 (22 _ Z4)724(Z3 _ z4)“/34) —
k A
2
— Z Cf20k34 Z a/; <‘CM . (Zl _ 22)Ak—A1—A2) (ﬁ_)\ . (2’2 _ 23)723(22 _ 24)724 (23 _ 24)734)
k A A= pl
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where Yo3 = A4 — Ak — Ag, Vo4 = Ag — Ak — A4 and Y34 = Ak — Ag — A4 and

s def A 4 . —1)A, o,
LAY E Loy, c_nzz<(” )8 _ 7 )

Py (zj —2)" (7 —2)"!

In the third line we used the explicit form of the three-point function. We see that the 4-point function
has split into a sum of modulus squared of holomorphic functions

2

Y

fAk (Ah A27 A37 A4|Zl7 29, %3, Z4)

(P1(21, 21) Do (22, 22) P3(23, Z3) Pa(24, Z4)) = Z CfyCsa
A

where

fAk (Ah A27 A37 A4"217 22, 23, Z4) d:ef Z aﬁ (Ep, : (Zl - Z2>Ak_A1_A2> X

A A= pl

x (ﬁ_A (zg — zg) MR () YA AN z4)m) (145)

is known as a conformal block. It sums explicitly the contribution of entire conformal family. And this
sum is universal in a sense that it does not depend on dynamics of the theory.

In fact, it is rather inconvenient to work with the definition (145). The problem is with the action of
the operator £_,, which produces many terms inconvenient for “logarithmization”. The computation can
be facilitated by remembering the projective invariance of correlation functions. Namely, the following
formula (65)

(@1(21, 21)Pa(22, 22) P3(23, 23) Pu(24, 24)) =

23‘2(A4—A1—A2—A3)‘Z A1+A3—A2—A4)|Z3 _ 24‘2(A1+A2—A3—A4)

= ‘Z1_24|_2A1|Z2— 2—Z4|2( X

X Tim (P4(By (2, 2)B(0)B3(1)@4(¢, §))  where o = 21— 2 =)

¢(—o0 (21 - 24)(23 - 22)'

It means that it is enough to find z; — oo limit of the conformal block

(A2, 0) (Ls,1)

Ay Ag
JAVRVAV

Fa(

2) =

(Ala Z)

AN

which we define as follows

%(ij ii’z) — Z at;(g“.zA—Al—Az) (ﬁ_)\_IA4—A_A3>

where
L= LnLy, L,=2"T04+(n+1)Az",

Lox= (Lon)(=Los), Lop=a2"""10, + (—n+ 1)Agz™"
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All this can be formalized as follows. We introduce the matrix element
def

(NILu@p(2) LAl A) = lim [C[P5 (@R (0)@a, (2, )P (¢ ),
L.x=L_\L_.,..., L,=...L,L,.
This matrix element is computed with the help of Virasoro commutation relations and
[Ln, ®(2)] = (2", + Ap(n+ 1)2") @p(z) = L, - Pp(2). (146)

Note that '
[Lon, [Lny ®r(2)]] = L - Lo - Pr(2), Op(2) ~ 25 AT,
Using these commutation relations, one can compute any matrix element
(AL B LalA) o (AL Bu(2)Loa|A)

= lim

(A7[®r|A) =1 (ARy(2)]A)
which is some polynomial in A, A" and A;. We note that the matrix af is nothing else, but the inverse
Gram matrix AL L AIA
al = (F_l)/; where T} = (ALl AA) |<Z‘A;| )
In these terms the conformal block is given by
Ay As A-Ar—AgtAl (1) (Da|PsLox[A) (AL, P1[As)
ed ( ‘z) = N ¥ . 147
a2l 2 R VT NIV RN N )
Explicitly, we have
Ay Ag A-Ay—Ay (A+ A3 = AD(A+ A = Ay)
= 1 . 14
3A<A1 AJZ) : * oA o (148)
In Hamiltonian language the expansion (147) can be viewed as an “insertion of a complete set of states”
17 =7 37 SN (D (LAY (AL,
[A|= gl

and the z dependence in this formula is due to the fact that operators are taken at different time slices.
Using the conformal block decomposition, one can rewrite the associativity condition (132) as

; C1yCraa ‘SAk (i? iz }Z) = 2|74 ; C14Claa }%Al (ij iz E) }2 (149)

Probs:
1. Consider the case A; = A(«), Ay = A(S) and Ay = A(a+ ), where
Al@)=a(@—a), c=1+6Q%

and show by explicit calculations on first two levels that the OPE coefficients 8y’s coincide with
those following form the free-field formula

R4aﬁ
e2aw(2,2) .. 2Bp(wd) . - p200(2,7) 2B (w,0) .
: P .
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Lecture 11: BPZ differential equation and three-point function

In this lecture we will study the associativity condition (149) for the special case with one of the
fields being degenerate. We will consider the case of ®5; field. Consider 4-point correlation function

U(z,2) C (D4 (2,2)00, (21, 51) Py (22, 22) Py (23, 23))-

which satisfies BPZ differential equation (77) and similar anti-holomorphic equation. Using the projec-
tive invariance, one can set z; = 0, 2o = 00 and z3 = 1

A A
A2 g2 B Ay 3
[z(l 2)0* +b ((2z 1)0 + ~t1-,

+ Ay — Ag)] U(z,2) = 0. (150)

It can be brought to the conventional hypergeometric form by the following change of variables

U(z,2) = 22 (1 — 2)P f(2).

We obtain
[2(1=2)0° + (C— (A+ B +1)2)0 — AB] f(z) =0, (151)
where
A:%+b(a1+a3—Q)+b<a2—%), B:%+b(a1+a3—Q)—b<a2—%)>

This equation has two solutions with diagonal monodromy around z = 0 expressed through hypergeo-
metric function
AB
F ( o z) ,

where the second one is obtained from the first one by substitution oy — @ — ;. For the original
equation (150) we have

2-C

Z) and Zl_CF <1+A—C 1+B-C

S o Q: A
Fo(2) = 21 (1 — 2)beF ( CB

Z) ’ fj_(z) — Zb(Q—al)(l . Z)bagF <1+A_2C_IC—:FB_C

We note that these solutions correspond to s—chanel conformal blocks

s

fi(Z) :3’Ai<A21 Ag

so that they have simple monodromic properties at z = 0.
There is another basis of solutions to (151) with diagonal monodromy around z = oo

1 -B A1+B—c |1
;)’ < F<1+B—A; :

—A A 1+A-C
< F( 1+A-B
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which correspond to t—channel conformal blocks.

t 2A 1 has 1 b A 1+A-C 1
F_(Z) =z 21 (;) (1 — ;) F ( 1+A—B ;) s
1 b(Q—a2) 1 bas 1
—2A921 A 1+B-C
Filz) =275 <;) (1 - ;) F < 1+TB—A ;) :

Of course these two bases of solutions are linearly dependent. To see this we consider Mellin-Barnes
representation for hypergeometric function

(AT (B) B 1 DA+ s)I'(B+ s)I'(—s) 5
rec) <AC ) o rCorsy A

where |z| < 1 and the contour C encircles the poles of I'(—s) in counterclockwise direction. For |z| > 1
the contour C rather picks the poles of I'(A + s) and I'(B + s) and hence we have

DB (4p].) - LADB )y ap (1506]1) 4

F(C A) 1+A-B
I'(B)T(A- B B B
(F&i—B))( 2 (AHBﬂf

)

Similar transformation law we have for another solution. In terms of s— and t— channel conformal
blocks the relation can be written as

IN(A-B)I2-ao0) NB-ATr2-C) _,
I'(1-BI(1+A-C) r1—-ATr1+B-0)" "
o _ DA-BINO) o, T(B-ANC) .,

‘_FMW@—B)i I(B)I(C—A)" T

Fi = Fi+

(152)

We have only two conformal blocks appearing in the s—channel decomposition

P b -2 b
(@4 (2, 2) B0, (0) Py (00) @y (1) = €772 O + 200 ) I FL () + €% 2 C o + 50,08 ) |72 (2)
2,1 zval
(153)
At the same the t—channel decomposition should also hold

(D4 (2,2)@a, (0)Pay (00)Bay (1)) = €5 2 C (o, a0+ 5 0 ) |FL(2) P+ 72 O (02— 5 s ) | FL ()2
27 2
(154)
The validity of both decompositions (153) and (154) guaranties the the correlation function is single-
valued on the thrice punctured sphere. We note however, that applying (152) to (153) we will have
unwanted terms like

FL()FL(2),

which will destroy this property. The condition that unwanted terms cancel leads us to

a2
C%MCG”_%“%>_%M%BM@—AM@—B) V(o) = o
7 E (o + §ouan) (SRR V. fi-a)

2

(155)
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It is convenient to rewrite the relation (155) in the form

C (o +bas,a3) 7(2bas)y(2bon — 1)y (blas + az — 1) — b°)
Clan, as, o) v(b(ar + a2 — as))y(blon + a3 — a2))v(b(ar + a2 + as — Q))

: (156)
where ~ means up to a factor depending only on «;. Similar relation should hold with b being replaced
with b1

Clag+b7 an,a3) (20 o )y (267 ey + 5_2)7(5_1(% + oy —ay) — 5_2)
C(ay, ag, az) 7(5_1(041 +ag — as))V(b_l(Oél +ag — 042))7(5_1(041 +ayt+ a3 — Q)) .

(157)

In order to solve (156) and (157) it is desirable to have a function Y(x), which is self dual with
respect to b <> b~! and satisfies

T(z +b) = b2y (ba)T(x), T (:c + %) — by (f) T(2). (158)

We note that this condition is consistent with the requirement

T (x+0b) T (z) T(z+ 1) T (z)

T(x+b+%)T(x+b) T(:B—I—b+%)’f(z—l-%)

It is clear, that if the function which obeys (158) exists, it should be unique up to a constant provided
that v # p/q. One can easily check that YT(Q — z) satisfies exactly the same properties (158), which
suggests

There is an integral representation

o= [4](5--2ton)

which is valid in the domain 0 < x < (. The function T (z) does not have poles, only zeroes

z:—mb—%, x:Q+mb+%, m,n > 0.

Having the Y (z) function defined, one can write the solution to (156) and (157) as

N ()N (o) N (a3)
T(o— Q) [Thzy Y — 204)

where the factors A (ay) correspond to unknown normalization factors for primary fields.

C(aq, a9,a3) = where o = a; + as + as,
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Lecture 12: Minimal models 1

Minimal models were introduced by Belavin, Polyakov and Zamolodchikov in their seminal paper [5].
We have seen many times a simplification happening for correlation functions involving degenerate
fields. For example the fusion (79)

Po1®Pa = [Poin] +[Pyp],  P1pPa =[P, b ]+ [P, 4]

a+—5— a—"5—
In particular it implies that
(1)2,1(I)m,n = [(I)m—l—l,n] + [(I)m—l,n]a (I)l,2q)m,n = [(I)m,n—l—l] + [(I)m,n—l]-

Both these fusion rules can be interpreted as sl(2) fusion rules. Namely, the product of 2-dimensional
and m-dimensional (or n-dimensional) representations of s[(2) is the sum of m + 1-dimensional and
m — 1-dimensional representations (n + 1-dimensional and n — 1-dimensional). Then using associativity
of the OPE, one finds that

(I)m,nq)a = Z |:(I)a+%b+%i|’ (159)

r,8

where the sum goes over the set
r={m-1m-3,...,3—m,1—m} and s={n—-1,n-3,...,3—n,1—n}. (160)

But what if correlation function consists of degenerate fields only? Consider the OPE (323) were
the sum goes over the set (322) and suppose that & = v, ,». Then there are two ways to rewrite (323)

(I)m,nq)m’,n’ = Z [(I)r,s] s (I)m,nq)m’,n’ = Z [(I)T’,s’] 5

r,s r!.s!
where the sums go over the sets

rem —m+1,....m+m—1), se(mn —n+1,....n +n—1),

161
rem-m'+1,...,m +m—1), semn—n"+1,....,0n +n-1). (161)

The compatibility condition for validity of both expansions requires the sum go over the intersection of
two sets (161). That is

Dy Por i = Z[(I)r,s], re(jm' —m|+1,....m"+m—1), se (]n'—n|+1,...,0n" +n—1), (162)

T8

Since negative numbers do not appear in the r.h.s. of (162), we conclude that the sum goes over
the degenerate fields only. In other words the OPE is closed on degenerate fields. So, we might try to
construct a CFT which will consists of degenerate fields ®,,, only, where (m,n) belong to some set.
Actually, this time we will be more cautious about unitarity issues. In particular, we will require

b+ (mb4nb')?
4 4

Apn = > 0. (163)

We see that (163) does not hold for b € R, for b = ¢? it is in general complex, while the only hope is for
b =1 with 8 € R. In this case one can still find (m,n), such that |mS +nf~'| < 1 and so A,,,, < 0.

59



So, the only hope to construct an unitary CFT with degenerate fields only, would be the case where set
of possible (m,n) is restricted.
This is where doubly-degenerate fields come into a play. Namely, suppose that

p2— _P (164)

where p and ¢ are coprime positive integers ¢ > p. In this case all the fields

(I)m+kq,n+kp and (I)q—m—l—kq,p—n—l—kp (165)

have the same conformal dimensions. In new parametrization (164) one has

6(p—2)
Pq

c=1- (166)

Consider the notion of the Kac table, that is the set 0 < m < ¢, 0 < n < p. Take basic degenerate
field ®,,,, with 0 < m < ¢, 0 <n < p and its nearest partner ®,, ,» = ®,_,, ,—n (also with 0 < m’ < g,
0 < n’ < p) and consider the OPE

(I)m,nq)a = E |:q)a_ (7”51)11_("*12)1171 +ib+jb711| = z :|:(I)a_ (m’;l)b_(n’—;)b*l +i’b+j’b711|’ (167)

.. A
1,7 V)

where : = 0,1,...,m—1,7=0,1,...,n — 1 etc. In the r.h.s. of (167) we should either have

-1 -1 —1 /_1 /_1 —1
a—(m2 b _n ;b +%+JV1:Q—On2 b _n 2% b+ b

or
Db (- 1)
(%jm2) _n ; Y+ b =Q—a+

First possibility leads to the condition

(m' —1)b (' — 1)b!

b — b
5 T3 ¢

pm+i —i)=q(n+j" —j),
which never holds, while the second one gives
Q= Q' with m”" =i+ +1, n":j—l—j'+1.

We note that 0 < m” < ¢, 0 < n” < p. That is the necessary condition for the field ®, to have a
non-trivial OPE with degenerate field ®,,,, from Kac table 0 < m < ¢, 0 < n < p, is to be a degenerate
field from the Kac table also. Then the associativity implies that the OPE is closed on degenerate fields
from the Kac table only.

The fact noticed above opens the possibility to have a CFT for quantized values of the parameter
(164), which has only finitely many degenerate fields from the Kac table with

(mp—nﬂy—@—QV.

Amn:
’ 4pq

(168)
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Such CFT’s are known as minimal models M,, ;. One can show that there are always negative numbers
in (168) except the case ¢ = p + 1 where all the values

(mp —n(p+ 1))2 -1
dp(p +1)

are obligatory non-negative. The models M, ,.; are known as unitary series of minimal models.
There might be a problem since according to (165) for any field from the Kac table we have infinitely
many singular vectors.
The character of the irreducible Verma module V,, ,, has the form

Apn = (169)

Xm.n(2) = x(x) Z (:zAm“’“l’" — :EA*’"“’“I’") where x(x) = H 7(1 —1x’f) (170)

keZ k=1

Probs:
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Lecture 13: Minimal Models II: Ising model, tricritical Ising model, N =1 SUSY CFT

In this lecture we will study minimal model Ms4 in details. It corresponds to the following Kac
table

2 ° . . /’/ ’ °
1 L
2 16 .-
1 ° ,’// ° o
0 i >
1 2 3 (171)
According to (166) the central charge of this theory is ¢ = % The conformal dimensions are given by
A (3m —4n)* — 1
o 48 '

The fields inside the Kac table are identified by the reflection
(I)m,n ~ (I)4—m,3—n-

Thus we have three different primary families

I=0,, =5, with A=A=0,
< 1

e=®03; =015 with A=A= 3

0==0y; =Py, with A=A= 1_16’

the identity operator I, the "energy” operator € and the ”spin” operator o.

These fields describe critical Ising model. In order to see this, we note that the field € has very
special OPE

€e = @172(1)3,1 = [@372] = [I], €0 = (1)1,2(1)2,1 = [@272] = [O’] (172)
It implies that for any correlation function of € one has

2
(€(2,2)01(21,21) - .. On(2n, Zn)) = |F(2|21, - -y 20)| G(21, 21, - -+, Zns Zn),

where O, stand for either €, I or o. It suggests that the field e admits the holomorhic factorization
e =P.
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The holomorphic current (z) has dimension 1 and admits the OPE

PlPp(w) = —— + ..

Z—w

We note that this type of OPE is only compatible with the fermionic statistic for {. Similar statement
applies to . We also demand that { anticommutes with .
The pair (P,1) can be treated as Maiorana (real) fermion, the real part of the complex fermion

studied before ] ) . i
B(z) = 7 (V(z) +97(2),  W(z) = 7 (¥(2) +9*(2))

The dynamics of (), 1) is described by the massless Ising action
1 o _
S=o / (B0 + W) d2z.

Correspondingly correlation functions of \(z) are computed by Wick theorem

1 1 1

21) ... Zon)) = + ...

W) (o) = e

The holomorphic stress-energy tensor in this theory has the form
1
T(z) = —5¢ Yoy - .

and it defines the CF'T with the central charge ¢ = % The representation of Maiorana fermion is given
by the fermionic Fock module

Fr = Span (Y_4|@) =P _s b5, ... |D)|s1 > 82> ...) (173)

where s € Z + %, which corresponds to NS sector. The generators P, form an algebra

{ll)ﬁlbs} = 57",—3- (174)
The character of (173) is given by
we(e) = [J(1+2572)
k=1

From the point of view of Minimal Model the Fock module Fg corresponds to direct sum of irreducible
Verma modules

Fr=Vi1® V31
In particular, it implies the character identity (see (170))
X1.1(%) + x3.1(2) = xr () (175)

which can be thought as an additional confirmation of the coincidence of two theories. Indeed, from
(170) one has

|
X171(1’) + X371([L’) = H (1 — xl) Z (xAlJrSk,l — pA-rtsk + pRatsk1 _ xA—SJrSk,l) ]

=1 kEZ
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We note that

3(4k)? — 4k 3(4k — 1)2 — (4k — 1)
Al+8k),l - #, A—1+8k271 = 4 ,
3(4k +1)2 — (4k + 1) 3(4k — 2)2 — (4k — 2)
A3-i-8k,l = s A—3+8k,1 = ,
4 4
that is
> 1 3(4k)2 — 4k 3(4k+3)2 — (4k+3) 3(4k+1)2 — (4k+1) 3(4k+2)2 — (4k+2)
x1,1(7) + x3.1(2) :H (1 — 2 Z r~ 1 —=x 1 T 1 _ 7 '

=1 keZ

(176)
We note that in (176) the sum goes over 4k + s where s = 0, 1,2, 3, that is over all integers. Then one
can apply the pentagonal identity (143) with ¢ = — 2 which gives

X11(2) + s () = H (1 _1xl) H (1 - (—x%)k) = H (1 + xk—%)

Similarly, one obtains the dual identity

() = xaale) = [T (1 - 2*3).

k=1
Now we come to the o(z, Z) field. According to the OPE rules (172), one has

(2, 2)o(w,w) = ! <a(w, w) + ... ), (177)

2z —w|

where we have chosen the normalization of the field €(z, Z) to have a convenient factor of /2 in the right
hand side of (177). But can we conclude from (177) that

D(2)o(w, T) ~ %(a(w,w) Fo) (178)

(z —w)z
In fact no. The reason for that is the following. The OPE of the the form (178) correspond to Ramond

field which is semi-local with {(z). It means that the indexes of 1\, are integer. Then it follows from
(174) that the zero modes Py and P, form an algebra

_ 1 _

11’(2) = 11’(2) = 9 {Wo, Po} = 0. (179)
This algebra does not have a one-dimensional representation. In other words the fields Yoo(z, z) and
Poo(z,z) can not be proportional to the field o(z,z). The best we can do is the two-dimensional
representation of the algebra (179)

im _

4

Pyo(z,2) = %u(z,zx Wou(z,2) =

ISk

[

o(z,z),

S

(180)

Poo(z, 2) = 6\/5 w(z, z), Pou(z, z) = o(z,2).

in
1

Sl
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Equation (180) can be taken as a definition of the spin field in Ising CFT. It means that the spin field

is rather a doublet and the OPE (177) is also supplemented by the dual OPE

?

e(z, 2)p(w, w) = (u(w, w) + .. .),

20z — w|

From representation point of view one has a Ramond representation of the fermionic algebra
FE=Span(b,|4), s={s> s> >0} |-) =wo+)).

Clearly the character of this module is given by 2x¥(x) where

(1+4").

13

XR(z) = 2t

k=1

Again, it can be checked that
X2.1(2) = X& (2),
which confirms the coincidence. Indeed, one has

R (3(2k — 1)* + 2k — 1),

1
Aoyspr = — + (3(2k)2 + 2k)> A gighy = 16

16
which implies via (143) the desired identity (181).

(181)

The conformal symmetry can be extended in many ways. In this lecture we consider supersymmetric
extension. As a motivation we consider unitary minimal model M, 5 which has been identified with the

scaling limit of tricritical Ising model in [6]. It corresponds to the following Kac table

3- ° . . ///o
3 3 1
2 5 10 - 0

2F ° ° e ° °
7 3 7 3 7

16 80 80 16

1 o/// ° ° °
1 3 3

,/U 10 5 2

1 2 3 4

(182)

The central charge of this theory is ¢ = 1—70. The conformal dimensions are given according to (169) by

(4m —5n)* —1

Am,n =

80
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The fields inside the Kac table are identified by the reflection
(I)m,n ~ (I)5—m,4—n-

We note that the field ®,; = ®; 3 ia special: the operator product expansion of ®,; contains only
contribution of [/] = [® ], as follows from the identity

[@13][Pa1] = [Pa3] +M=%+ [Dy3] = [Py3] = [®1,1].

(4
It implies that we can construct local fields G and G of dimension (2, 0) and (0, 3) respectively, subject
to the constraints

G = 0G =0,
such that @, 3 = GG. Similarly we have
Dyq][Poq] = [P
[Po1)[®21] = [®5.4] Neveu-Schwarz sector,
[41][P31] = [P21]
Dyq][P32] = [P
[P [®52] = (s Ramond sector.
[y1][Pap] = [Py2]

The fields G(z) and T'(2) = L_»I(z) can be regarded as generators of extended chiral symmetry®

TET(W) = g+ o T o o T T,
T(2)G(w) = Q(iG_( w))2 + ffwlz b (183)
G(z)G(w) = 3(z 2—Cw)3 ?zT—(lZU) T (z —éw)?’ 22’sz3

The algebra (183) is known as Neveu-Schwarz-Ramond algebra (NSR algebra) and appeared first in
superstring theory®. We note that the last OPE only make sense if G(z) is a grassmann variable. An
OPE of G(z) with generic field must have the form

60w =Y O

where G.O(w) is just the notation for the new field. Then the ”generators” G, together with L,,’s form
an algebra

3
2

Loy L] = (m — 1) L + g(m?’ — )0, 1,
m
[Lmv Gr] = (5 - T) Gmsrs (184)

C 1
{Gr, GS} = 2L7«+s + E (7"2 — —) (57«7_3.

SLast equation follows from general formula
Da(2)PA(w) ~ (2 —w) 22 (1 + —
5We note that due to historical reasons it is customary to use the parameter ¢ = 2c.
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The space of fields decomposes onto the space of NS fields Oyg local with respect to S(z), and the
space of the Ramond fields Or such that the correlation function

(G(2)Or(w,w)...)

changes sign when 2z goes around w. In particular the fields ®;; and ®3; in minimal model M, are
NS fields and @35 and &4 are Ramond ones. We see that the indexes 7, s are half-integer in NS sector
and integer in R sector. One defines NS primary field by

AD(w) N @' (w) n G(2)®(w) = G-y +...

(z—w)? z—w z—w

T(z)®(w) =

where ¥ = G_%q)(w) is a new field. We note also that

280 (w) | P'(w)
(2 —w)? * z—w

G(2)¥(w)

Correspondingly the primary field in Ramond sector form a doublet

() ()2 DE)

One can use OPE to constraint correlation functions. Consider two-point Ward identities in NS
sector

(Wy(21)P2(22)) n (P1(21)Wa(22))
§— 2 £ — 2y ’
(U1(21)¥a(22)) 20, 1
§— 2 * (f - 22)2<(I)1(Zl)(1>2(22)> * §— 2

Using the fact that G(&) ~ 5% at & — oo one finds the constraint

(U1(21)Pa(22)) =0, (Wi(21)Wa(22)) = —(P1(21)Ph(22))

(G(E)P1(21)Pa(22)) =

(G(§)P1(21)W(22)) = (®1(21)P5(22))-

One can generalize this for n—point correlation functions. Consider master Ward identity

n

(G(E)P1(21) - - Pul2n)) = Z<®l(zl) U (zn) - Pa(zn)),

k=1

and similar ones with ®; — W,. In particular, there 2 independent 3—point correlation out of 8

(1(21)Pa(20)P3(23)) and  (Py(21)Pa(22)Ws(23))

Representation theory of NSR algebra (184) is very similar to the one of Virasoro algebra. It is
convenient to introduce the following parametrization of the central charge and conformal dimensions
of NS and R primary fields

a(@Q — a) 1

c=1+2Q7 Ans(a) = 5 Axs(a) = Agr(a) + 16’
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The Verma module V4 is a linear span of vectors
L_\G_,|A),

for ordered set A = Ay >> Ay > ... and strictly ordered set r =1y > 1ry > ...
definition a state |x) in VA which is killed by positive part of NSR algebra

L.|x) =G,|x) =0 for n,r>0.

A supersymmetric version of Kac theorem states that for

mb  nb~!
am n -
’ 2 2

lmn

there is a singular vector at leve which appears in

in NS sector for m—n € 27,
in R sector for m—n €27+ 1.

Consider first examples:

o Level % The state
G_1|A)
2

is a singular vector provided that A =0 = Ayg(0).

e Level 1. There are two null-vectors in Ramond sector

2b? b
(L_l — 71 T 2b2 G_lGO) |A> fOI' o = —5,

2b2 1
(L_l — WG_lG()) |A> fOl" o = _2—b,

o Level % Two null-vectors in NS sector

( 1G_ 1+b2 3)\ ) for a=-b,

2

( LGy +b72G ) for a=—bL.

Probs:

1. Prove (175), (181).
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Lecture 14: Minimal models III: Potts model, W —algebras, parafermionic CFT

We consider next unitary minimal model Mj g which is known to be related to Zs Potts model [7].
It has the Kac table

4 ) ) 02 ° ///o
E = l //

3 8 3 8 // O
3 3 ° ° ° /// . °
7 21 171 2
5 40 15 - 40 5
2 " L] [ ] // ° o °
2 1.7 1 21 7
5 40 15 40 5
1 ° ,’/ ° ° ° °

i 1 2 13

.7 8 3 8

1 2 3 4 5 (185)
The central charge of this theory is ¢ = % and Kac dimensions are
2
A = (5m —6n)* —1
m,n .
120

Similarly to the previous lecture the field ®5; = ®; 4 can be decomposed as
D51(2,2) = W(2)W(2)

The current W (z) of spin 3 extends the Virasoro algebra’

TET(w) = 5o <§T_(Z;2 - wazi oo
(W (w) = VW) Wiw)

(z—w)?  z—-w

First OPE is just for Virasoro algebra, second states that 1/ (z) is a primary field of dimension 3, while
the third one

c MT(w)  XT'(w)  AT"(w) + MA(w) AT (w) + AN (w)
W)W (w) 3(z —w)b i (z —w)* - (z —w)3 - (z —w)? * z—w -
(186)

"We have ¢ = %, but we can keep c arbitrary in discussions below
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is an OPE expansion of the field with A = 3 into identity operator. Here A(z) is quasi-primary field
which appears in OPE

T(:)T(w) = 5 - it (jii(z))z + wau)} + (A(w) + %T”(w)) Yo
A(w) = (L_2 - 1—30L2_1) T(w) = (L_2 - %Lz_l) L_oI(w). (187)

Let us compute the coefficients \; in (186). We can do it exactly as before when we studied conformal
properties of OPE. Namely, we act on both sides of (186) by

3 (- T
which can be interpreted as

L,=(z—w)""0, +3(n+1)(z —w)" or L,.
Taking n = 1 one obtains (we use that L;A = 0)

20T (w) +3)\2T’(w) +4)\3T”(w) + 4\ A(w) e 40T (w) N 10A3T" (w) N 18AT" (w) + 8A6A(w) N

3 ey

(z—w)? (z—w)? z—w (z—w)?  (z—w) z—w
which implies
A 3A 3N 22\ M
= M= T M TR T M T
While taking n = 2 we find
C i 5)\1T(’LU) L= )\1L2T(’LU) 4 )\3L2T”(w) + )\4L2A(w) i

(z—w)t (2 —w)? (z —w)* (z —w)?

which fixes
A =2 and M\ = 52
b T 5e+ 22
Altogether we obtain [8]
W ()W (w) = c__4 2T (w) n T'(w) n ol (w) + 5C?f22A(w)+%T’”(w) + 5Cf22A’(w)+
S 3z—w)s (z—w)t (z—w)3 (z —w)? z—w

In terms of the modes we obtain

(Lms L] = (1m0 — 1) Ly + %(m?’ — )8 —n,

(L, Wl = 2m — n) Wi,

¢ 2 2 16 (188)
= — —1 —4)0, —n)A
(Wi, W] T 5!m(m )(m )0, —n + o1 22 (m —n)Apint+
2 2 2
(m—n) <(m+n+ zém+n+3) _(m+ é(n+ )) Lo,
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We note that A, is not new and expressed in terms of generator L, as follows from the definition (187)

3 1 [ T)T(x)
A —T = — ¢ ——2d¢.
R TR S m fé = ®
After simple calculation one obtains
A= Ly +%xmLm, where oy = (1401 —1), zuss = Q24+D1—10).  (189)
k
Now consider W primary field
AdP(z) L1 ®
TE)P(2) = + ,
(©8(2) = oo + £
wd(z) W_,® W_,®

W(f)@(z) = (5 — 2)3 + (5 _ 2)2 £E—z

We stress that while we have L;® = @’ for Virasoro descendant, W-descendants W_;® and W_,® are
new fields which do not have immediate relation to ®. Consider Ward identity for n—point correlation
function of primary fields

(W(E)P1(21) ... Pul2)) = > ((g“’—’“g«bl(zl) B (z))

k=1 = 2)

! 1
+ m<®1(21> W Ok(2r) D (2)) F r—

In the right hand side it involves 2n + 1 different correlation functions restricted by 5 projective Ward
identities

(@1 (21) ... Woo®p(21) ... @n(zn») .

W(§) ~ 1 = Z(wkl(l _ 1)22_2(<I>1(z1) @ (20)) L@ (1) W Pp(2) - Pr(20))

—l—zL(@l(zl)...W_Q(I)k(zk)...@n(zn))):O for 1=0,1,2,3,4.

e In the case of one-point function it immediately implies that

(W_1®) =0, (W_9®)=0 and w=0.

e For two-point function one has a system of equations

0 0 0 1 1 (D1®,)
0 1 1 AR < >

wy + wsy 221 2z 23 22 (P W_1®5) | =0,
3(wyzy +wazg) 321 322 2 23 ( )
6(wy 2} +wyz2d) 423 423 2} 2 ( )

which has a solution provided that

0 0 0 1 1
0 1 1 21 <2

det wy + woy 221 22 22 2| =0 = (21— 2)°%(wi +wy) =0,
3(wyzy +wazg) 327 322 2 23

6(wy 23 +wy2d) 423 428 2} 2



and hence the two-point function takes the form

OA; AyOuwy.—
q) = q) > ~ 1,827 W1,—W2
(@u(2)a(e)) v T2
e For three-point function one has 7 functions minus 5 constraints which means that everything can
be expressed as a linear combination of

<(I)1(I)2(I)3> and <(I)1(I)2W_1(I)3>. (190)

Here one comes to an important difference compared to Virasoro case. In Virasoro case we had the
statement that correlation functions of descendant field can always be expressed from correlation func-
tions of primary fields by application of certain differential operators. In W case this is no longer true.
For example one has two three-point functions (190) which are not related by kinematics. One can show
more generic statement that any three-point function of W descendant fields can be expressed through
the basic ones®

(D1 D WF D)

Some simplifications appear for degenerate fields. The structure of representation theory of W-
algebra (188) is very similar to the one of Virasoro algebra. The Verma module Va ,, is spanned by the
vectors

W_,L_x|Ajw): Ly|Aw) =W,|Aw)=0forn >0, LyA w)=A|Aw), WolA,w) = w|A, w),

for two independent partitions A and p. A singular vector |x) € Va,, is by definition as state killed by
positive part of W-algebra
L,|x) = Wylx) =0 forn > 0.

Consider the simplest example of a singular vector at level 1
IxX) = (W_1 +EL) |A, w).
We should impose
Lilx) =0 = (Bw+ 2£A)|A,w) =0,

32 1 1
A2+ ZA) - -A A, w) =
5a+%< T3 ) 5 —HEw)|,w> ’

Wil =0 = (

which implies the constraint between quantum numbers A and w

32 1 1
2 _ A2 il Y
dw” = 2A (50—{—22 <A+ 5) 5) (191)

If such a field present in three-point correlation function then one can express correlation function of
any descendant fields from the one of primary fields.
It is convenient to introduce ”Toda” like notations. Let e; and es be the simple roots of sl(3), that

is their Gram matrix is
(ci-e;) = 2 -1
€% = -1 2
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the Weyl vector p

pP=e€1 + €2,
fundamental weights w; and ws
( ) PN 2 . 1 2 n 1
Wi, €;) = 0 w) = —€e1+—-€e Wy = —€y+ —€q,
j j 1= 36+ 36 2= 3621 34

and weights of fundamental representation

3
hy =wi, hy =w; — ey, h3=W1—€1—62:>th=07 (hi'hj):5ij—
k=1

Wl

Then we use parametrization of central charge and quantum numbers A and w

(= 2412(0,Q) = 2424, A= *22=0) _ [ 48

(a_Q> hl)(a_Q’ h2)(a_Q> h3)a

where

1

This wild parametrization provides a solution to (191) if
Q=W Or «a= xws.

We should call such field semi-degenerate. It is clear that n—point correlation function with (n — 2)
semi-degenerate fields, for example

(Pay (21) Py (22) - - - Poy 1y (20-1) Par,, (20)) (192)

can be computed using OPE as

(Pay (21) Lo (22) -+ Doy 100y (20-1) Par,, (20)) =

Z Cgﬁ%fwl Z1 — Z2)<W—;LL—)\(I)a(Z2) s (I)%nflwl (Z”—l)q)an (Zn» -
a,\,

Z 031A%7w1 21— Z2) Z Cg;Z}ng (Z2 - Z3)<W_0'L_V(DB(Z2> e (I)%nflwl (Zn_l)q)an (Z'ﬂ)> =

A, B.w,o

The structure constant at each step is related by lowering the index to the three-point correlation
function

<(W—0L—V(I)al (Zl)) (W—AL—M(I)OQ (22) @0y (23)) )-

Since it contains the semi-degenerate field it can be reduced to differential operator acting on correlation
function of primary fields

C(Oél, Qg, %Wl)

(Do, (21, 21) Doy (22, Z2) Py (23, Z3)) =
: : T I~ 5P
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The correlation function (192) belongs to the class of computable correlation functions, just as in
Virasoro case. In particular, the conformal block

w1 oW1 X _3W1 My _oWq

61 52 6n—3

al cee O[n

is completely determined by kinematics.
Now, we consider another aspect of the theory Ms¢. Namely, consider the field &3, = ®34 with
conformal dimension A = % Its OPE has the form

O3 1P351 = [P11] + [P31] + [P5.4]

It has been noticed by Cardy [9,10] that one can build self-consistent theory assuming that the field
®s 1 enters the theory with multiplicity 2. One can choose a basis of these two fields which admits
holomorphic factorization

U(2)¥(z) and ¥H(2)T(2),

where W(z) and ¥*(2) are the so called Zs parafermionic fields [11]

U(2)¥(w) = Lg (T (w)+...), U ()Pt (w) = ¢ 5 (P(w)+...),
(z —w)3 1 i (z —w)3 (193)
V()W (w):m <1+§T(w)(z—w) —I—)

Here the factor g = % is universal and the structure constant has to be fixed from the associativity
condition of the operator algebra. We note that the form of parafermionic algebra (193) is only consistent
with the fractional statistic for the field ¥(z)

2im

()P (w) =e3 ¥(w)P(z).

In order to find C' we consider N—point correlation functions of ¥(z). We note that the algebra (193)
implies that the correlation function is only non-zero if n is divisible by 3

B (21, 2
o) (191)

[Lic;(zi = 2)3

(U(z1)...U(23,)) =

where P,g?’)(zl, ..., 23,) is the symmetric homogeneous polynomial which satisfies the following three
properties

° P7§3)()\Zlu e AZ3) = )‘gn(n_l)Pn(Zlv -5 Z3n)

° P,gg)(zl, T zf("_l) +...at z; &> o0
. P,§3>(z1, e Z3(n1), T, T, 1) = CP i(znl_l)(zk — x)QP,Eg_)l(zl, e Z3(n—1))
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It can be proven that the polynomial with such properties exist and unique

PP (21,0 z0) = C0Vsym | [ =20 [T =20 [ —2)°],

i<jel i<jell i<jelll
where I, II and II1 are three groups of n points.

We note that for Maiorana fermion {(z) we have the formula similar to (194)

21_nP7(L2)(21, RN Zgn)

<1|)(Zl> - 1l)(z2n)> = Hi<j(zi _ Zj) )

where
PP (2, ..., 29,) = Sym, H (2 — 2j)? H (zi — )|,
i<jel i<jell

This formula is a consequence of the bosonization map

1 1 . .
2) = —=W(2) + p*(2)) = —= () 4 =) 195
W) = 50l +0°() = 5 ) (195)
Generalization of (195) is straightforward
T(2) = o (el 4 ilhael) 4 ilhae))

V3

where ¢(2) = (p1(2), ¢2(2)) is the two-component bosonic field and hy, are proportional to the weights
of fundamental representation of sl(3), that is 3 linearly dependent vectors in R?

3
1
k=1

Probs:

1. Show (188) and (189) by explicit calculations.
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Lecture 15: CFT on the torus

So far, we have discussed CFT’s on the sphere, but for various reasons, especially for the purposes
of string theory, it is worth to consider CFT on arbitrary Riemann surface even with boundary. In this
lecture we consider the simplest case of the torus.

The easiest way to obtain the torus is to cut a piece of a cylinder and identify its ends. One can
obtain the cylinder as a map from the plane (without two points). We use cylinder coordinate frame as
in (68) with new coordinates t and o related to the complex coordinate z by exponential map

z:Re_%, u=o+it = ds?=ek (dt2+da2).

Now in fact there are two options to use the Hamitonian formalism. The one, which we already
used, is known as the radial quantization. We take ¢ € [—00, 0] as a time coordinate and o € [0, 27 R|
a space one. It has to singular points z = 0 and z = co. Then the correlation function of local fields is
related to the Green function as follows

(0|7 [O1(01,t1) ... On(on,tN)]]0)

<01(O'1,t1)...ON(O'N,tN)> = y (196)
(0]0)
where the Hamiltonian H has the form
1 2rR 1 B c
2R wdo =g (ot o= 75 (197)
We note that the momentum operator
1
P=—(Ly—L
(Lo~ o

should have quantized eigenvalues n/R.

But one can also consider the same system in the framework of angular quantization. Namely, we
interpret ¢t as the spatial coordinate which spans the whole real line and o as the time. The angular
nature of o manifests itself in different compared to (196) representation for the correlation functions

Tr [7:7 [O1(01,t1) ... On(oN, ty)] e 2R

Ty [e-arrr]

Hl

)

<01(O'1, tl) e ON(O'N, tN)> =
Hl
where H’ is the angular Hamiltonian

1 o
o= | T,

T o e

and the trace goes over the Hilbert space H' of angular Hamiltonian.
In order to obtain the theory on the torus, one has to compactify ¢t ~ ¢t + 27 R’ with some radius R'.

It can be interpreted as either the system of size R in radial quantization (196) at finite temperature
1/R
Tr [Tr [O1(01,t1) ... On(on, ty)] e 27 H

Ty [e-arrea]

H

Y

<Ol(017 tl) o ON(O'N, tN)>torus =

H

76



or as the system at finite temperature 1/R in angular quantization in finite volume R

Tr 7; [01(01, t1) . ON(UN, tN)] e—ZWRH’]

’}_L/
N

<01(017 tl) cee ON(O'N, tN))torus =
”Ll/
The result should be independent on a way we arrive to it, but puts non-trivial constraints on spectra

and fusion coefficients. This is known under the name of modular bootstrap. We will study it for the
partition function

def

Z(R,R) ¥ 1y [e—%RH’] _ [e_%R,H} — Z(R,R) = Z(RR).

H' H

In fact, it will be more convenient to consider general torus with complex moduli as shown on the
picture

Imw

R

Noticing that the operators H and P commute and that e?7%" translates through the distance a, one
can write in this case

Tr [ o e—ZW(Ime—iRew P)i|

H = (198)

<- .- >t0rus = ]
Tr |:e—27r(lme—2RewP):|
H

where we have used (197)-(197) and defined

Consider general properties of the average (198). First, since the eigenvalues of P are n/R with
n € Z one can shift w by an integer amount of R. That is (... )yus is invariant under 7 transformation

T: 17—=>71+1.

At the same time the replacement (w;,ws) = (R,w) by (w2, w;) describes the same torus and hence
(... )torus should be invariant under S transformation

1
S: 77— —.
T

We note that the same transformations should be applied to 7 since they are complex conjugate of each
other.
These two transformations 7 and S satisfy the relations

(ST =8*=1
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and are known to generate the PSL(2,Z) group or the modular group

at +b a b a b
cr+d abcdez, (c d)N_<c d) (199)

We note that equivalently the torus can be regarded as the quotient of the complex plane by the lattice
generated by two elements

T —

z~ zZ+mwy+nwe, m,n € Z.

From this point of view it is clear that the torus defined by (w,ws) and by

(=€) (&) = @)= D E)

f = f e =

wh c d) \w) Wo —c a W

are equivalent. Then the corresponding modular parameters 7 = w;/we and 7 = w}/w) are related by

(199).
Let us start to consider the partition function

2(r) £ T g
where the trace goes over some Hilbert space. Consider some simplest examples.

Free boson. In this case we take the Hilbert space which consists of all Fock spaces Fp ® Fp. Then

one has )
! 2 1 ! P2
[l ap = — [ 1™ ar. (200)

q_i
Hk(l —q")

where we introduced the so called Dedekind n-function

Z(1) =

o0

n(r) = ¢ [J( - o).

k=1

From the definition of n(7) function we immediately see that
n(7+1) = eFn(7), (201)

and hence the partition function (200), which involves only absolute values squared is ultimately invari-
ant under 7 modular transformation. Under modular transformation S it behaves as follows

0(-3) = v (202

In order to see it, it is convenient to define more general objects known as theta constants

D) 5 g O 8 T g1 ),

nel k=0

def n? (118) "~ 1
O5(r) = g7 = JJA+d"2)1 - ¢,

neZ k=0
def n 72 (118) it 1
0a(r) =D (=1)"q7 = [J(1 - ¢"2)2 1 - ¢,
neZ k=0

78



where we have used the Jacobi triple identity to rewrite the sum in terms of infinite product. Using the

Poisson resumation formula?
D " emmenttin — Z ~Z(n+o2) (203)
\/7

ne”Z neL

one can derive modular properties of theta constants and Dedekind n—function
im 1
Uo(T+1)=eddy(r) s (—;) =V —iT94(7),
1
193(T+1) :’194(7') ’193 (—;) =V —Z"T’l?g(T),

(204)
a4+ 1) = V(1) 9y (—%) — Zirda(7),

1) = V—irn(7)

T

1) =chn(r) g (—

We note that
Yotz

=1.
2n3

and hence we obtain (201) and (202).
We see that if we treat the integral in (200) literally

[es) [ 1
/ |q|P2dP:/ 6—47TImTP2dP: ’
—c0 —0 2vImT

1 1
2T [1(7)|?

then the partition function
Z(7) =

is invariant under S transformation as well.

Free boson on a circle. Consider the situation when our bosonic field ¢ takes values in a circle, that
is we identify
o(z2,2) ~ ¢(z,2) + 277

It can be interpreted as follows. Consider the mode expansion of the field

@(z,é)z—z’cj—z’ﬁlog(%) zplog( )—ZZ( bk 4 ak"’“),

We require that under z — €2z the field ¢ transforms as follows

o(z,2) ~ p(z,2) + 2mnr

91t follows from application of the identity

Z5($ _ k) — Z€2i7rlm

kEZ kezZ

to the function e~ 7o +8z,
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which holds provided that
= —nr.

i

p—
That is our Hilbert space in
H :EBP(.FP®.FP—7LT>

and the partition function takes the form

is invariant under 7 and as a bonus under S. It can be shown by explicit application of the Poisson
formula (203).

Ising model. There are three characters in this case x11(q), x3,1(¢) and x21(¢) (including the factor
¢ 21 = ¢~ 15 which we dropped before)

X11(@) + x3,1(q) = ¢ H(1 +qtte) = %((:)),
_1 " 1 94(7)
1’1( )— 371( ): 18 (1 — k+2) = ,
X1,1\9 X3,1\q q ,}i[l q 77(7')
1 = 92 T
x21(0) = 2H1+q 2?7((7))'

Using the modular properties of the theta constants (204) one can show that the combination

03

2 =5 ([

02

0
+ = g ) = |x11* + Ixaal® + Ix2al?

n

_|_

form modular invariant partition function.

Generic unitary minimal model. We consider M, ,,;1 minimal model with

_ 2 _
B N (mp —n(p+1)" -1
p(p+1) 4p(p+ 1)
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There are p(p — 1)/2 primary fields in Kac table 0 < n < m < p + 1 and the character of each
representation is given by Rocha-Caridi-Feigin-Fuks formula (compare to (170))

1 ((m+2k(p+1))p—n(p+1))2 ((=m~+2k(p+1))p—n(p+1))?
an(f) = E q 4p(p+1) —q 4p(p+1) =
’ T
n(r) &

1
=0 (Opm-n(p+1)06+1) (T) = Cpmanp+1).pp+1) (7)), (205)

where ,

Ors(r) &3 g3,

keZ

and we used the property O_, ((7) = 0, (7).
Using Poisson resumation formula (203) one can find modular transformation properties of O, (1)

@m(w 1) = e%@(f),

ZTFTT, (206)
O, = —iT O,/ (7).
( r’:z—;—l—l \/% 7
First equation is obvious. For the second one we use
- 2 . /
0ns (1) = St o T 5 ()0
kez V25 e
It is convenient to represent
K =—-2sk—r" with k€Z and ' =-s+1,...,s. (207)

Then the last sum in (207) can be rewritten as

S

. kf ZTer _dimrr! inrr!
IO R i S TG

k'eZ r'=—s+1 k€Z r'=—s+1

We note that using the symmetry O, (1) = O_, 5(7) one can rewrite

!

0..(-5) =L (90,5(7) # 3 b )0u() + <—1>’"@s,5<7>>

\/% r'=1
Plugging (206) into the character formula (205), one finds
Xoma(7 + 1) = 7 (Bmn i)y (7)

and

1 1 1 pp+1)= L
Xmn | —— Z 4s1n D — O, 1) (7).

\/ (p+1)
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Now, we use the following lemma which belongs to Cardy [9]. Namely, one can notice that the set
pm' £ (p+1)n' with 0<n' <m' <p+1,

spans all integers 7’ from 1 to p(p + 1) not divisible by p and p + 1 modulo 2p(p + 1) and " — —r'.
Thus we obtain'”

1 ;o7 ’o 4 ) / , 1 /
Xm,n (_—) = Snn; ;Ln Xm/7n/(7_)> Snn; ;L" — 7(_1)77171 +m/n+1 sin Tpmm sin ﬂ-(p 4 )nn
' | | 2p(p+1) p+1 p

We see that the matrix § is symmetric and real. Moreover from its definition it follows that
SS=] = S '=8.

The expression for the partition function is

Z(T) = Z Nm,n,m’,n’Xm,n (T)Xm’,n’ (77-)7 (208)

m,n,m’ n’

where Ny, pm o is an integer number called the multiplicity, that is the number of times the representa-
tion with the highest weights (A, A) = (A, 5, Ay ) is present. The modular of the partition function
Z(7) is equivalent to the set of conditions

TNT ' =8NS =1,
where 7 and S are the matrices of elementary modular transformations. In addition we require

Nllllzlv

syt

that is we assume that the identity operator [ is unique.
One solution to (208) which may always be found is

Nm,n,m’,n’ = 5m,m’ 5n,n’7

which corresponds to the situation where all primary fields are scalar, that is A = A, and all of them
are taken just ones (with multiplicity 1). However, as was noticed by Cardy, there are other solutions.
Necessary condition comes from 7 symmetry, which demands that only the operators with the integer
spin may occur

Am,n — Am’,n’ =secZ.

Inspecting the Kac tables for M3 4 and M, 5 theories ((171) and (182) respectively), one finds that this
does not happen. However for the model Mj ¢ (see (185)) we see that

As1— Ay =3, Aso— A =1,

0For generic M, ¢ model one has

;o fL apmm/’ mgnn'
Syt = (—1)ymntmintlgin P sin 2
2pq q P
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and hence N1 and N591 2 might be non-zero. It can be shown that

Z(1) = Ix1,1(7) + x5, (D + [x12(7) + x52(7) [ + 2|x31(7) * + 2[x3.2(7)|?

is invariant under & transformation. We note that in this non-diagonal solution the fields ®,, are not
present, while the fields ®3, enter with multiplicity 2. This model corresponds to Zs parafermionic
CFT [11]. Two copies of the field ®3; correspond to parafermionic currents (193), while two fields ®j -
with A = = to the ”energy operators” oy and o = o7 from [11].

General classification of modular invariant partition functions has been done in [12].

Probs:

1. By explicit calculations show that there are exactly two solutions to modular bootstrap equations
for M5 ¢ model.
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Lecture 16: Friedan Qiu and Shenker theorem

The theorem [13] states that the Verma module VA does not have vectors of negative norm only in
two cases:

e For A>0andc>1
e For unitary minimal model

6 — )2 -1
c=1———, Amvn:(mp n(p+1)) for 0<n<m<p+1.
p(p+1) 1

The proof substantially uses the Kac determinant formula

det TV~ TT(A = Ay )V (209)

m,n

We remind the meaning of (209). Consider generic state in the Verma module VA at level N

Then its norm is
(plp) =3 (A|LLL_A|AYCAC, = TNCAC,. (210)
Ap

We know that at A = A,,,, there is a singular vector at level mn

|Xmn) = Dmn|Amn,) where Dy, = L™+ cl(b)L_gLTf_2 + cz(b)L_gLTf_2 + ...,

with mn
= (m* =1)b* + (n* = 1)b7%) et
Moreover, for any two partitions A and v the following holds |A| = |v| + mn

(A|LAL_y Dy n|A) ~ (A — Ay ),

which implies that
det Tmntlul) (A=A, n)IV\.

Thus the product in (209) exhausts all the required zeroes with the correct multiplicities. It remains to
show that it gives the correct asymptotic at A — oco. It is clear that the degree of (A|L,L_»|A) in A
is not greater than I(X) and I(p) and that (A|LyL_x|A) ~ A!™_ Tt implies that

det T ~ AZ A=~ A

and hence we expect the combinatorial fact

>IN =D p(N —mn),

IAl=N
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which can be proven by elementary methods. Namely representing

A={1,...,1,{2,...,2},...}
——_—— N —
ni ng
we have
DUAD= > D m
IA=N S kng=N k

Now we come to the first part of the theorem. It follows from three simple facts:

Fact 1:
(A|L1L_1]A) = 2A(A]A) — A >0,

(A|LnL_|A) = <2nA + 1—02(n3 . n)) (A|JA) = ¢ > 0.

Fact 2: The Kac determinant det Gy is positive for A > 0 and ¢ > 1. Indeed, for ¢ > 25 all Kac
values are negative, while for 1 < ¢ < 25 we have A, ,, = A} for m # n and A, ,, < 0.

Fact 3: The Shapovalov form is positive in the limit A — oco. Indeed, consider the generic state |p).
Its norm is given by (210). In the limit A — oo only the states with maximal {(X) will contribute, but

for these states we have .
Fux= AN <§5u,>\ + O(—)) 7
A
for some positive &.

From these three facts we understand that the Gramm matrix I" is positive definite for large A > 0
and for ¢ > 1 its determinant is strictly positive. It means that it can not become negative since in that
case it should cross 0, but this does not happen.

Now we come to the second part of the theorem. The idea is similar, using Kac determinant formula
(209) we will eliminate domains in the semi-strip (A > 0,0 < ¢ < 1) level by level.
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Lecture 17: CFT in curved space and conformal anomaly

One way to define the stress-energy tensor is to place a system into a curved background. Then 7},
is defined as a response to infinitesimal variation g,, — g, + 0g,.

1

05 =~ /59WTW Vod’z, (211)
v

and then computed in flat metric g,, = d,,. We remind that there are many ways to embed original
theory into background metric. This leads to intrinsic ambiguity in the definition of 7},, (see discussions
around (11)). In this lecture we will study CFT in generic curved background.

For coordinate transformation z* — x# + e*(x) we have

5g;w = Vueu + Vue;u vueu = aueu - Fﬁyﬁ)\,

where T'), is the Christoffel connection

1
Ff;u = §g>\a (augua + al/g;w - aag;w) .

Under such variation (according to the definition (211)) we have

0eS = %/VMEVT’W\/gd2w = —% /EVVMTW\/ECZQ:B
and hence on-shell we find that the energy-momentum tensor satisfies the covariant continuity equation
v, = 0. (212)
We note that (212) leads to the conservation law, only if the metric g, admits isometries
V.K, +V,K, =0,
then we have

1
V,(T"EK,) =0 = V,(I"K,) =0,(T"K,) + T3, (T"kK,) = %au (T"™ K,\/7) .

In QFT we take the identity

Z<01(€U1) .. 0e0k(xy) ... On(xN)) = % / Ve (@) (T, (2)O1 (1) ... On(2N))V/ g()d*x, (213)

k=1

which holds for any local fields Oy, as definition of 7},,. Then standard argument shows that (212) holds
up to contact terms. More precisely, in (213) only vicinities of x}’s contribute to the integral over d*x,
which means that one can write a covariant form of local relation (41)

0@) = 5= [ Ve @O0@NVity - 3§ alv) EaT (w)vE) Olw)dy”
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Locally one can choose conformal complex coordinates (z, z)

ds® = e°dzdz, G- =05 =0, ¢.: =05, = %e", gF =2e°.
In these coordinates one has
I'?. =00, T2 =00, R..=-000 = R=—4e¢ 7900 (214)
The conformal transformations are actually the same as in flat space z — w(z)

o(z,2) _ dw 2

~ldz
while the continuity equation (212) takes the form (V,T# = 9,T* 4 T\ T + T, T+)

2 o(w,w)

, or o(z,2z)=oc(w,w)— log’cjl—zg

0=V.T% + V,T% = 9T + OT% + 2T LT + T2, T*,
and similar equation with z <+ z. Using (214), one finds
e 20(e*T#) +e79(e"T%) =0 = OT.. +¢e"9(e"T.z) =0

In flat metric, conformal invariance is equivalent to vanishing of the trace of 7T},,. This condition is
known to generalize in curved background to the so called conformal anomaly condition (in differential
form)

Ty = aR. (215)

In conformal frame (215) reads
T,; = —addo = OT,, — a(—(050)80 + 8250) =0,
but the second term is a total O derivative, which implies

T =0 where T T, — % (—(00)2 + 2820> : (216)

The object T is known as holomorphic stress-energy tensor. However, in view of (216) it is not

actually a tensor, but rather a pseudo-tensor. Indeed the additional term ¢ = —(80)2 +20%0 in (216)
transforms as

dw\ 2
t(z) = (d_q,:) t(w) — 2{w, z} under conformal transformation 2z — w(z).

Since T, is a true tensor, the holomorphic object T'(z) should transform anomalously as well

T(z) = (%)2T(w) +afw, 2}. (217)

It is natural to interpret 7'(z) as a holomorphic stress-energy tensor in flat metric. Then, comparing

(217) to (56), one finds
c c
S — 21
TR T (218)
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Similarly to the stress-energy tensor, other fields in CFT can be dressed by the metric to invert them

into covariant objects. For example, having spinless primary field ®A(z, Z) one can construct a scalar
field
Y (2,2) = e 2P, (2, 2). (219)

Similarly a covariant extension of the descendant field L_;®a(z, 2) is
L1 @a(2,2) = 0 (e8P Pu (2, 7)) .

It is instructive to derive integral form of the conformal (Weyl) anomaly (218). By definition (211)
the trace of T}, describes the response to the variation of the conformal factor of the background metric
G — (1 +60) g,

1 2
55 = E/éaT/’j\/gd z.

For partition function in CFT it gives the variation formula

__° 2
5logZ—487T do R\/gdx. (220)

It will prove convenient to decompose the metric as

()

G (®) = 7 Gy (),

with some reference metric g, () and use the transformation formula for the scalar curvature
VIR = \/§<R—Ag0),

where Aj is the covariant Laplacian in reference metric §,,(x). Then the variation formula (220)

converts to
__c D _ AL 5 A2
dlog Z 18 /50 (R Aga> Vi dx.

This equation can be easily integrated producing the integral form of the conformal anomaly equation

. c (1., . .
Z[e?g] = exp LE;—W / Vi <§g“ 0,00,0 + RO’):| Z[g). (221)

Similar analysis can recover o dependence of correlation functions of covariant fields. In particular
for scalar fields (219) one has

n

(@ (21,21) ... 0L (21, 2))) = [H e—Awwvfw] (@D (21,21) ... 09 (21, 21)) (222)
k=1

Equations (221), (222) and similar equations for descendant fields allow to study CFT in curved back-
ground, since the metric dependence of correlation functions is universal.

Now we are going to derive the Weyl anomaly equation (221) for Gaussian theories. We consider
generalized B — C' system (compare to (105) and (119))

5= [ (BIC+ BOC) 'a. (223)
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The fields B and C' can be either Grassmann numbers or not. This is not important at the moment. We
are working in the conformal gauge: g,,(z,2) = (22 0, and the conformal factor is already cancelled
in (223) due to conformal invariance of the model. But it does not cancel in the measure in the path
integral and this this the reason for o-dependence of the partition function called the conformal anomaly.

We note that the action (223) is invariant under the holomorphic change of coordinates z — w(z),
provided the the fields transform as j- and (1 — j)-differentials

dw\ '™ dw\’ _ do\'™7 - _ dw\’ -
B — <E) B, C— (E) C, B — (E) B, C— <E) C,
ar_ld % for Dirac fermion

B, () should be defined

where j is an arbitrary number. For example, it is 0 for § — 7 system (119)
QFT (119). The measure in the path integral over the fundamental fields (B, C,
according to the invariant distance in the space of fields (here p = e7)

[6B])* = /pfaBaéd%, 16C||* = /pl_j5C(5C_’d2w. (224)

In practice it is more convenient to redefine fundamental fields
B—p?B, B-— B, C—-C, C-picC.

After this redefinition and integration by parts (here we treat our fields as bosons), the action and the
interval will have the form

1
 Ar

53 (B(o78)C — C(p~'0)B) s, ||5B||> = / SBSBdx, ||C]? = / S5CsCd .

In other words, we just moved p dependence from the measure to the action. Then it is clear that the
partition function is equal to the inverse of the detemimant

771 = det(2p770) det(—2p"10) = det A;, A_; = —4p~20p0.

where

Aj déf —4p7_18p_j5.

First of all, we note that under the transformation
z—=w(z), ZzZ—w(2), p— |w'*p (225)
the operator A; transforms as follows
Aj = (W) Aj(w)7,
and hence the eigenfunctions transform as
T (W) TW),
It means that the covariant metric on the eigenspace of the operator A; is (compare to (224))

W) = [P .
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It is easy to show that
(U5, A;97) = (DU}, DyV)  where D; =2p770,

and hence A; has non-negative eigenvalues. In fact, having a zero eigenvalue is a subtlety. Formally,
any holomorphic function €(z) is a zero mode of D;, but we need only those which are normalizable.
Consider for example a sphere with Fubini-Studi metric

dzdz ., 1
TENER |

1427
[t
(1 + [0
For j = 0 only € = const satisfies this bound. It corresponds to the zero mode of the bosonic field. We

can either throw it or compactify on a circle. In another case, which will be interesting to us, j = —1,
any quadratic function

ds® =

Then we must have

€(z) = a+ bz +c2?

is a zero mode of the operator A_;. They correspond to the global conformal transformations.

Our goal is to compute the determinant of the operator A ;. Clearly the spectrum )\E»") is unbounded
and hence the determinant is divergent and requires regularization. It is convenient to use the so called
proper time regularization!!

> dt > dt n
logdet A; = —tr/ n (e_Ajt —e') = —/E N ; (6—/\5- 't e_t> (226)

€

It is hard to compute (226) by it self, but it is relatively easy to compute its variation with respect to
Weyl transformations p — p + dp

dlogdet A; = / tr (5Aje_Ajt) dt = / tr ((] - 1)—ije_Ajt —jp - p]_l—pe_Ajt) dt =
€ € P P
o ) ) _ .
= / tr ((j — 1)—ije_Aft + 4j?pp_J8 cemAdt M‘lﬁ) dt =
€ p
= / tr ((] — 1)5—ij€_Ajt — jd—pAl_je_Aljt) dt,
; p p
where in the second line we have used cyclic property of the trace and in the third an identity

AePYB = ABe*P' with A=2p770, B=2p7'0, AB=A, ;.

The integral can be explicitly taken and we arrive to

dlogdet A = tr [5—p<(j — 1)e i€ —je‘Aljeﬂ . (227)
p

HHere we use integral representation formula for log A

log A = —/ ﬂ (e*)‘t — e*t)
0 t
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It is convenient to study (227) in coordinate representation, i.e. we represent

(@) = [ Kty fo)

Clearly K(t|x,y) satisfies heat equation
(8 + AT) K;(t|lx,y) =0 with K;(0]z,y) = 63 (x — ).
In terms of this heat kernel the variation (227) takes the form

op(x) [, . . 2
5 (6= DE(ele.2) = K1 (elz, ) ) da. (228)

In order to find the variation (228) we have to compute small time expansion of the heat kernel
K;(tlz,y). It is convenient to consider more general operator

D = —¢"(x)0,0, + &"(x)0,
One may try to solve the heat kernel equation
(0, + Dy) K (tlz,y) =0 with K(0|z,y) =@ (x —y).
by the following anzatz'?

s(z,y)

1
K(t|$,y) :E(way)e_T <Z+a0(w>y)+al(w>y)t+) at t—0.

In the leading order one obtains

Os(x,y) 0s(x, y)
Ozt Oz

g"(x) —s(x,y) =0

This equation is equivalent to

0S(x,y) 0S(x,y)

y S?(x,y)
9" (x) oxH oxV

4 Y

=1, where s(x,y)=

which is the Hamilton-Jacobi equation for geodesic length

xr

t/ Gpuw ( E“E”dT

£(0)=y

12We remind that ordinary heat equation
(8, — 400)K (t|x,y) =0 with K(0z,y) =62 (x —y)

has a solution
1 _ \wzy\z
t

Kj(tlx,y) = ol
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Further calculations become even more involved, but for our purposes we need only the expansion
of the diagonal part of the heat kernel K(e|x, ). For given & = (2, Zp) we perform global conformal
transformation

z= M, ad —bc=1
cw+d
such that in w coordinate system the point zy is mapped to 0 and moreover the following holds
p(0,0) =1, 9p(0,0) =0, 9p(0,0) = 0. (229)
Then from (225) we find
1 9p(0,0) 1
b=z2p(0,0)3, c=—-""0" d=p(0,0).
0.0} = B d=p(0.0)

Then we represent ~
A; =—400 + V ;(w,w)

and compute the kernel Kj(e|x,x) by perturbation theory. The key observation is that since we are
interested only in first few terms at € — 0, only few orders are needed. Indeed, one can write

K;j=(0,—400+V;) ' = (K '+ V) ' =(1+KV;)) '"K=K-KV;K + ... (230)
where K is the Green function of 9, — 400
K(t|z,2") = ie“zté/‘2
T At

In coordinate representation (230) can be rewritten as
K;(€|0,0) = K(¢€]0,0) — /E dt'/dQ,z'K(e — 110, 2)V;(2)K(t'|2',0) + ... (231)
0
Since we are interested in small € expansion, it is convenient to rescale all integrals in (231)
t—et, z—eiz = K(t|z,2') — %K(t\z,z/), /dt/d2z—> 62/dt/d2z. (232)

From (232) it is clear that the integral of the k-th order in perturbation theory in (231) is proportional

to
o\number of [dt [d?z
1 — (€%)

Enumber of K

Thus if the operator V; is of order €, as we will show in a moment, the non-vanishing contribution will
be given by zeroth and first order terms in (231). For V;(x) one has

Vi(x) =400 — 49 (2)0p 7 (x)0 = 4(1 — p~(x))00 + 4jp *(x)0p0 =
= —20,0,p 1 (0)z"2" 00 + 4j0,0p(0)2*0 + . ..

where in the last line we retained only the terms which are finite in the limit ¢ — 0 after rescaling
1 .
x — ezx. Thus we can keep only first two terms in (231). We have (remember & = (z, 2))

2
E2]
7t)

1 ! ) 1 _ . = PN EL:

. - - - a0 g _ it
K;(€|0,0) pp +/0 dt/d Zl67r2t(1 — t)e (20,0,p~ 1 (0)z#2"00 — 4j0,0p(0)20) € + O(e)
(233)
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The integral over the angle allows to replace z#x” = %a:Z(S‘“’. Also in

2 H2

a:’\&\(ﬁp)ée_% = (20%p + z00p) Je~ i = i (2°0°p + 2200p) e

the integral of z? drops out and for the integral in (233) we obtain

SN TN
99(0 /dt/167r2t1—t (

/ 4(5 4+ 1)( 1—t)—8(1—t)2>dt:

(3j — 1)00p(0)

o7
In our coordinate system (229) we have
p=e" = 9dp(0) = 8do(0) = —%R
and thus we finally obtain the heat kernel expansion'?
e’ (35— 1DR
Summing up we have
1 2(652 — 65 + 1)
dlogdet A; = ~ e /50\/§d2w — 5. /50R\/§d2m,
which after integration over do gives
det A, = exp © V9 19‘“’0 00,0 + Ro | d*x — 1 e\ gda
! 487 27 THTTY dmre ’
where
—2(65* — 65 + 1) (235)
Probs:
1.

13The coefficients in (234) are known as Seeley-DeWitt coefficients.
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Lecture 18: 2D quantum gravity, Liouville CFT

The defining property of the conformal field theory is its simple response to the Weyl rescaling of
the background metric, a conformal anomaly equation

Z[e%g] = exp {ﬁ / NG, (%g‘“’@ua&ja + Ro—” Zlq]. (236)

Now, let us assume that the metric g, also fluctuates. Then it makes sense to consider entire partition
function

Z= / (Dg) Z[g) exp(~ Sermrl]) = / (Dg)[D®] exp(—S[®. g] — Syenel]). (237)

where Sgrayv[g] is purely gravitational action. There are many gravitational actions one might consider.
We will take Sgrav[g] in the form

Serav]g] = Ac / Vodix + % / R\/gd’z. (238)

The first term corresponds to cosmological constant term, while the second to Einstein-Hilbert action.
In two dimensions this term is a topological invariant

1 2
il -1 _
& [ Rvite =1

where g is the genus of our surface. If we do not sum over the number of handles (as we actually do in
string theory), this term is a constant and can be dropped.

In computing the partition function (237) one faces the problem of over counting of degrees of
freedom. Indeed, the infinitesimal metric transformation

0Gw = Ve, + Ve,
can be compensated by the coordinate transformation
xt — ot + et

It means that each field configuration in (237) is counted infinitely many times. In order to obtain a
finite result, one has to divide by the volume of the diffeomorphism group, that is to define smth like'4

[DQW]
[De| -

[Dg] = (239)

Of course, this strange “ratio” of measures has to be properly defined. It is hard to define the
measure itself, but one can define what we mean by infinitesimal distance in the space of metrics and
vector fields. A natural covariant way to do it is

16gu|? = / VT (70" + €0 6% g bgapd®e,  |le|I? = / JGgmereda,

14We also have to assume that any metric can be obtained from the fixed metric guv by coordinate transformation and
Weyl rescaling. In general this is not the case and there is some finite dimensional space of moduli on which the reference
metric g,,, may depend. We will not discuss this issue here and assume that there are no moduli as in the case of a sphere.
Then one can choose g,,, = 0,,, for simplicity.
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where & > —% is an arbitrary constant. Consider generic variation of the metric
0 = oo + (Vyue, + Ve, — gV - €).

Then do and e variations got separated

116g,u||> = / VI (2014 26)(60)% + GuagusX %) d®x, where R L TH L TH — g e,

and hence we expect that the measure becomes the product'®

(D] = [Do) det(P{")[De],
where P/ is the symmetric traceless differential operator
P = VH + VY6 — g™V,
We see that if we divide by the ”volume” of the diffecomorphism group as in (239), one has
D] = [Do] det(PL").

It is instructive to arrive to the same conclusion by the procedure known as Fadeev-Popov trick.
Namely, let us insert the identity under functional integral

1= Are(g) / Des (™) — g, (240)

where (g")¢ is the metric transformed by diffeomorphism €. Since we can always reduce the metric to
the form ¢ = e~7§" (fix the conformal gauge), the delta function in (240) has the form

5((9"™)° = 9) = 6((g2))0((g") = (5%)) = (V'€ + V2o 2V el — 292¢)

Using the analogy with finite-dimensional integrals for which we have

n . 1
i=1

we have )
o ((¢") = g") = 5(e")(e%) = App(g) = det P,
det P

5 (€ _ [ Vie+ Vi 5(S €\ _ (Ve -V Vie+ Vi
P (62) n <2V161 — 2V262) — P <51 —2) T A\VE + Vi V2l - Vi

15Tn conformal frame ds? = pdzdZ one has

where

69,1 = [ (20014 26)(80)° + 27 A1)

so that PA“V ~A_q.
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Now in the integral (237) one has

Z= / DDA ((6°2))5((g™)° — (%)) Arp(9) Zlg] exD(—Seeav g]).

Since this path integral is still diff invariant, one can replace g — ¢g¢. Then the integral over ¢¢ localizes
to the support of § functions and the volume of diff group factors out

7 - / De] / (Do) Arp(§) Z[6] exp(—Serav[3]),

where g, = €70,,.
The Fadeev-Popov determinant det(P}") can be represented by the Gaussian integral over the an-
ticommuting fields B, and C*, where B, is symmetric and traceless

B 1
dei( ) = [DBIDCN 0, Sy = 1= [ ViBu T 2a1)

The ghost theory (241) is a conformal field theory. Since B*” is symmetric and traceless, we have only
two non-vanishing components B,, and B:: and hence we have

1 . 1 - _
Sahost = g / (B..V:C* + B:;V.C?) d’x = 7 / (BOC + BoC) d’z,

T T

B - BZ,27 B == ng, C - CZ, C’ - Cz.

In the last equality we used the fact that the only non-zero Christofel symbols in conformal gauge are
I'?, and I'Z, and hence they do not contribute to the action. We see that the action does not depend
on a conformal factor ¢ and hence represents a conformal field theory. It’s behavior in the background
metric is controlled by the conformal anomaly equation (236). The covariant infinitesimal distances in

the space of fields B, and C* have the form
|68 :/\/ﬁéBW(SBagg‘w‘g”Bd%:: /p_15353d2a:,
|6C|? :/ﬁéC”éC”ng,dzm:/pzéCéC_Z'de,

and hence, according to (235), this CF'T has the central charge ¢ = —26 which implies that

2 1
Zghost|€7 9] = exp (—487 / V9 (59“”%0@0 + Ra)} Zghost[9]-

In (237) we have two CFT’s with central charges ¢ and —26 which implies that

c— 26

Z = Zcrr|9)Zgnost[9] / [Do] exp {ﬂ

1
/\/ﬁ (59’“/5”031/0 + Ae? + R[g]a) dza:} . (242)
where A is some renormalization of the initial A, in (238) which come from both anomalies for CFT

and ghost theory. We note that the measure [Do] in (242) is ancested from the measure for the metric
9w and corresponds to the interval

[0c||? :/\/560(50)20[21'.
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It is not translationally invariant o — o+ C'(x), but rather invariant under the combined transformation

oc— o+ C(x), G — ¢ @y,

It is hard to work with such a measure and it is desirable to replace it with a linear one, i.e. the one
which is invariant under the shifts o — o + C'(x). Of course, replacing the measure, we have to pay a
price and compute the Jacobian. Here we propose, following David, Distler and Kawai [14,15], that the
Jacobian is an exponent of a local action

1
Jac = exp {_E / N/ <%9W0M08,,0 + Noe? + A;;R[g]a) de} .

In general, one might expect that there will be more general potential term in this “effective” action
and different dilaton coupling, but as we will se below only this form is consistent with the reference
metric independence. If DDK conjecture is true, the Jacobian just renormalizes terms in the action. It
is convenient to change normalization of the field o, such that the kinetic term will have the traditional
form. We will denote this rescaled field ¢. It dynamics is described by the Liouville action

1
Sulp, 9] = e / V3 (QWQM&/QO + QRyp + 47w62b“”) d’x, (243)

where b, () and p are new constants related in an obvious way to the previous ones. For the partition
function one has

7 = Zeprlg) - Zgnostlg] - Zulg] where  Zy[g] & / [Dple 514, (244)

It is important that in (244) the measure [Dy)] is linear one.
The reference metric g, in (244) is just an auxiliary metric, it can be chosen at will. In particular,

if we write
Guv = eﬂ(m)huua (245)

our partition function should be independent of Q(x). First two factors in (244) correspond to CFT’s
and transform in controllable way. It means that Liouville theory should be a conformal field theory
such that the total central charge vanishes

C+ Cghost + 01, =0 or ¢, =26—c (246)

Let us study the question: under what conditions on the parameters b, () and p the Liouville theory is
a conformal one with the desirable central charge. Consider the Weyl rescaling (245). Let us set p =0
for the beginning. We have

Splp, eh,] = i / Vh (B 0,00, + Q(Ry — M) d*x
In the last term we can transform by parts to obtain
Splp, eh,] = i / Vh (W 8,00, + QRup + Qh" 0,00,0) iz
Finally we note that in terms of the shifted field
O =+ %Q (247)
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we have an equality
Q ~ Q2 1 v 2
SL[Qpae hw/] = SL[%Oa h;w] - 8_7T \/ﬁ §hﬂ 8M§28VQ + RpQ ) d°x
Moreover due to Weyl anomaly one has
1 1
[Dglon = [Dpln exp <48—7T / vVh <§h“”8u(28,,§2 + RhQ) d2a;)
Altogether one has
1
Zy[e*h] = Z[h] (408—L7r / Vh <§h’“’8u§28,,9 + R;ﬁ) de) where ¢, = 1+ 6Q°.

From the balance equation (246) one concludes that
25 —c

2 __
Q==

All that has been obtained with the assumption that the cosmological term

m / Vet d . (248)

is absent in the action (243). There are three sources of {2 dependence of this term. First the metric
term /g, second the shift (247) and third an anomalous dimension of the exponential field e**?

o, = e (249)

Combining all this, we find that the cosmological term (248) is background independent provided that

1
= b+ -
Q@ +

We note that in order to have real b one has () > 2 and hence ¢ < 1.

Few comments on (249) are needed. If h,, = d,, and € is a constant, the exponential field e*¢
acquires anomalous dimension due to summing up an infinite series of tadpole diagrams (see (85) and
(88)). Formula (249) is a generalization of this phenomenon in a curved background. It goes as follows.
Consider Liouville action (243) without cosmological term. The path integral diverges because of the
zero mode of the field ¢. We might fix the value of the zero mode ¢y by demanding that

/goR\/Ed2:c = —4/@850’d2w =0.
Equivalently, we define the field

~ def

1
© = —po where ¢g= . /QOR\/ﬁan:
T

The Green function of the field ¢ is not well defined due to zero mode issue, but formally it is the same
as in flat space. Indeed, by definition G(x,y) = (p(x)p(y))

—p (@) AG(z,y) = p (2)0? (z —y) = G(z,y) = —% log [ — y|* + const (250)
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which implies after tuning the constant term in (250) that

(P(@)p(y)) = — log |z — yl? — L los(p(@)n(y)).

Then similarly to (88) one has

6201@(%) — 62a2(¢(w)¢(w)> 620‘95(:”) = [Tgp(w)} o

e2ap () :

which suggests to define primary field
Valw) & [rEp(a)] " 2o,
In Liouville CFT we define total primary field, including the zero mode
V() dof [r%p(w)}a2620‘“"0620‘“‘5(‘”) = 20V ()
We are interested in multipoint correlation functions of primary fields V()

(Vi (21,21) - Va (23, ) € / [Dele 509V, (21, 21) ... Vay (23, Zn). (251)

According to the discussions above (251) depends of the metric in universal way

N

<Va1 (Zl, 21) e VaN(ZNa 2N)>6"5,W = H 6_A(ak)a(zk’2k)<va1 (Zl, 21) e VaN(ZN> 2N)>6HV' (252)
k=1

Now, assume that the measure [Dy] satisfies
[Dy] = dipo[ D2,

then the integral over the zero mode ¢q in (251) can be easily taken, provided that > ay > @

/OO ez(zak_Q)SDO‘“emo fvb‘/gdzmd% = %Z) (/i/%\/gd%c) . where s = W.

Then we have from (251)

L(s) -

<Val(21, 21) R VaN(ZN> 2N)> = 2—b<Val(2’1, 21) R VaN(ZN> EN) (,U/f/b\/gd2w)_s>0, (253)

where in the right hand side we have free-field average. As a simple consequence of (253) we get
Knizhnik-Polyakov-Zamolodchikov formula

1 (Vi (21,21) . Vi (20, 2) / Vi) = (3 0~ Q) (Vo (1. 21) - Vy (2 20),

so that insertion of the field [ V},\/ngw does not change considerably the correlation function.
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We note that the threshold > aj = @Q corresponds to trivial singularity of the T" function, while the
free field correlation function in the r.h.s. of (253) is well defined for s < 0 as well. We will interpret
(253) as (according to (252) we take g,, = 6,,)

Res (Vo (61.6) - Ve (v )| L wrGuler . &n),
where
-1\ 5
Gn(&1,...,EN) = ( n') H & — & /H |2 — &~ H zi — 2|7 APz . d2 2, (254)
Ty k,l i<j

We note here an important point, on which we have not comment so far. In Liouville CFT V, is a
primary field with conformal dimension

Ala) = a(Q — a).

Since this is a quadratic equation, it implies that there two solutions for given conformal dimension. In
our formal study of CF'T we always assume that there is exactly one primary field of a given conformal
dimension. If Liouville CFT is consistent with this requirement, the following relation must hold

Vo—a = R(a)Va,
where R(«a) is some constant called the reflection coefficient, which must obey

R(a)R(Q — ) =1.

Probs:
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Lecture 19: Coulomb integrals I: three-point function

Consider the integral G, (1, ..., &y) given by (254). From its definition it is obvious that it satisfies

a§1+b leN—l-b)
Cfl—f—d’”.’CfN—Fd .

N
Gl €x) = [ e+ dI 500 g, (
k=1

This property allows one to set any three points to 0, 1 and oc.

Basically, up to a factor, one has to compute the integral (here A, = —2bay, g = —b?)
dof 1 n N
e A
an(Alv”'aAN‘gla"'vé-N):m/yank_glF ZH|Zi_Zj‘4gd2zl..,d22n,
=11=1 i<j

N (255)
> Ap=-2-2(n—1l)g.

The last condition is equivalent to screening condition Y ay + nb = Q. In particular it guaranties that
the integrand in non-singular at z; — oo. The integral in (255) converges at least in the domain

N -2

A —1 _
g > —1, 0<g<2(n_1)

(256)

In the following, we will always assume that the parameters Ay and g belong to (256).
Let us start with the basic integral

def

1(AB) ™ | [Pz~ 1P ¢z = lim |g|—20/ 1224z — 12B|z — ) dPx, A+ B+C=—2. (257)
R2 — 00 R2

The integral in (257) converges provided that
A>-1, B>-1, C>-1 (or A+B<-1)
In order to compute (257) we perform a counterclockwise Wick rotation and introduce new variables
y=—ite®, u=zx+t, v=u—t.

Here € is infinitesimal positive number. Then the integral takes the form

I(A,B) = —% / /(u +ie(u — v))A(u — 1 +ie(u — U))B v —ie(u — U))A(U — 1 —ie(u— v))Bdudv

—00 —O0

—~

The € dependence of the integral I(A, B) prescribes proper deformation of the contour. It is convenient
to divide the domain of integration over u into three intervals: (—o00,0), (0,1) and (1,00). Then the
contour of integration C over variable v looks like

u € (—00,0) u e (0,1) u € (1,00)

/N /N . /N . .
_/ _/ N

0 1 0 1 0 1
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We see that for u € (—00,0) and for u € (1,00) the contour C can be shrinked to zero, while for
u € (0,1) it can be transformed to the integral

e ) 1

—227rB /UA v—1 de — (1 o e—2i7rB) /7'_2_A_B(1 . T)Bd’T.

1 0

Altogether one has

1 1
I(A,B) = / u(u — 1)Bdu(1 — 6_2”3)/ T2 ASB( ) Bdr =
0 0

1+A)y(1+B of I
7<7(2+)A<+ 5 ) (1 4+ A1+ B)y(1+ C),  where A(x) “2%.
We computed
e 2A1), ¢ 242 2, (1 + Ar)v(1+ As) ¢ 24241424, 2
J R e e A R . (258)
But we will need also a multidimensional generalization of this relation
n n+l
o Y4+ Aoy (1+ A,
JIIIT - 6P Dute) @, = SEE ) UE Bl T g oo, o

i=1 j=1 1<j

where

Du(z) =[] 2 — 2>

1<j

The identity can be proven by simple change of variables

N VS )
Pj Hl#j(é.] — &), ¥ ]., ..

We note that ) p; = 1. It can be proven by noting that

n+ 1.

nt1 wt T, (=) nt1 p
p; = R(t)dt, where R(t)= =~ & + reg,
Z J 27TZ H +1(t — 5]) e &

and C surrounds all the points {; in the counterclockwise direction. On the other side the contour C can
be closed to infinity where the function R(t) has a residue —1. The Jacobian of this transformation is

Dn(2)
d’py ... d%p, = Jacd?z, ...d*z,, Jac=—" ,
! ! Dn+1(£)
where we used Cauchy determinant formula (113). Hence we have
T 24 2+2A4;+24; 24 2An+1 2
[TTT e Daz) a2 a2 = mi [T 65 H|p]| i1 e don
=1 j=1 1<j
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We note an additional n! factor in the r.h.s. It reflects the fact that the map (z1,...,2,) = (p1,-- ., pn)
is not bijective since p;’s are symmetric functions of z;’s. Thus if (zq,. .., 2,) span C", (p1, ..., p,) do it
n! times. The formula (259) follows by repetitive application of (258).

Now we consider the three-point correlation function integral

01
I.(A, Blg) & / /H\zk\A\z 12T = 5l e o,

1<j
where A = —2bay, B = —2bay and g = —62 We note that according to (259) one can represent

1
(n—l)'Dn(z)W” 1 /H|t 5| TID () PPty AP

Then the integral over (2, ..., z,) can be taken with the help of (259)

-1
/ﬁ |2 24| 2, — 1|2Bi_[ |z — 4| 72T9D, (2)d%2, ... d% 2, =
k=1 =1

mnly(1+ A)y (1+B 2(A+g) 3(B+g) 4g-2
T A2+A+B+(n H‘t‘ ST | e

|2 — 2] " =

1<j
Thus we obtained the recursion

1(g9) Y2+ A+ B+ (n—-1)g)

I,—1(A+g,B+glg) (260)

The reduction is solved by

a0 4 (148 4 6 1)
L(A, Blg) =[] +(9) Y24+ A+ B+ (n+k—2)g)

k=1
We note that our basic integral identity (259) can written in a more symmetric form

n n+2 n+2 n+2
/ III] 12 = &P Du(z) a2 dPey = wnd [ [ (1 + A [Tl — P24, Y Av=—n—1.
i=1 j=1 k=1 1<J k=1
(261)
In fact the condition Z"+2 Ap = —n — 1 is a reminiscent of a screening condition and is equivalent to

the condition that oo is a regular point. The relation (259) follows from (261) in the limit &, 2 — oo,
but it can be shown also explicitly. It is instructive to compute the three-point function using this new
relation. It is in fact equally the same as was done before. We compute

G, (A1, Az, A3l61, &2, &3) = /H 2k — &P 2 — Loz, — &P H |2 — 2| dP2 .. P2y,
i<j
where, as always, A; + Ay + A3 = =2 — 2(n — 1)g. We will use (261) only. First, we choose one point,
say &3, and represent

H‘zk_g‘ —2(n—1)g H‘Zz Z]| 2+4g _ 7(719) >

i (n = Dlrn=ty(g)"

n—1 n
X / I 1t = &7 T 1t — 212D (8) dty - . APty
k=1 j=1
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Then the integral over z’s can be taken (one can check that the conditions of applicability of (261) hold)

n n—1
1
~ / [T 12 — &P 2 = &2 — &PATDD T |ak — 451 72D(2) P21 ... dP2 =
k=1 j=1

= 1"y (14 A)y(1 + Ag)y(1 + Az + (n = 1)g)y" "} (g) ¥
% ‘51 . £2|2+2A1+2A2‘£1 o £3|2+2A1+2A3+2(n—1)g‘£2 . £3|2+2A2+2A3+2(n—1)gx

n—1
% H |tk - £1|2(A1+g)|tk _ 52‘2(A2+g)|tk _ 53‘2(A3+ng) H ‘tz o tj‘—2+4g

i<j

Hence we have

Bn(Ar, As, Aglér, €2, 65) = Wzgf)v(l T A+ Ar(1+ A + (n— 1)g)x

X |& — &y PT2ATRA2| g, §3|2+2A1+2A3+2(n_1)g\fz — 53\2+2A2+2A3+2(n_1)g(’5n—1(A1 +9, A2+ g, As]&1, 62, E3)

The coordinate dependence of three-point correlation function of primary fields is completely fixed
by the conformal symmetry

< aq (517 51) [o %1 (527 52) a3 (53,53» (al’ Qo, 043) H ‘Zi _ Zj‘—QAij7

i<j

where Ajs = Ay + Ay — Ag. For the constant C(aq, as, arg) the recursion relation (260) takes the form

b b _ (=) 7(2ban)y(2bas)
¢ (al * 2" * 2’ ag) B T y(b(ar + as + a3 — Q))v(b(an + as — ) Clos,0z09). (262)

This relation holds only “on-shell” i.e. provided that > oy + nb = @ , but we pretend that it actually
holds “of-shell” as well. It is more convenient to rewrite (262) as

b b

C’(al—l—b,ag,ag)NC(a1+§,a2—§,

b b
Ozg) ~ C (Oél + 5,0&2,043 + —) ~ C(al,ag,ag).

2
Collecting all factors coming from (262), we find

C (a1 + b, g, v3) _ 1 ¥(2ba )y (2ba; + b2)7(b(a3 +as—ay) — 52) (263)
Clay, ag, as) Tub?y(6?) v (b(an + as — a3))y(bar + as — as))v(blon + s + a3z — Q))

Actually, we already saw the relation (263) (see (156)) before when we studied the fusion properties
of the 4-point correlation function with ®; 5, ®5; insertions which correspond to the fields V_ b and V_ 1

in Liouville CFT. Comparing (156) and (263) we note that that they coincide after 1dent1fy1ng

o1+b
C—%@H—% . 1 ’7(260&1 + b2)
C% e T () 7(Zhas — 1)
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We note that conformal invariance dictates also dual relation

C (a1 +b71 g, a3) 1 (20 )y (20 + b2y (b (s + o — ) — b7?)

Clan,ag, o) wab=2y(b72) y (b= (on + ag — ag) )y (b1 + a3 — a2))y (b~ (a1 +as + a3 — Q)
(264)
Now, we are ready to formulate the celebrated DOZZ formula [16, 17]
g2 Y(0) [Thsy T(204)
(o — Q) [Ty—y Yo — 20)

One can easily check that this formula satisfies shift relations (156) and (264) with

C(aq,a9,a3) = [7r,u7(b2)62_2b2] , where a=a;+as+az. (265)

1
Ty (b72) = (mury (0%)) 7 .
In fact, shift relations define (265) up to the product of normalization factors

N(al)/\/(ag)/\/(ag).
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Lecture 20: Coulomb integrals II: four-point function

Let us start with generalization of our integral identities (259) and (261). First of all, we give a
simple intuitive meaning of the integral formula (261). Namely, suppose we have an N —point correlation
function in Liouville CFT

N

(Var (61,60) - Vay (63, 6n)) = [ [ Blan) (Voo (€1.61) - Vomay (€x: En)),

k=1

where we used that V, = R(a)Vg_o. Suppose, that we have two screening conditions which hold
simultaneously

Zak+nb:Q, Z(Q—ak)+mb:Q.

In this case we have N
Gu(6r, - En) = [ Raw) Gm(&rs - - En), (266)
k=1

where

gn(gl, . 7£N) = (_,U;) H |£2 - £j|_4aiaj /H |Zk - £l|_4bal H |ZZ‘ - Zj‘_4b2d221 . d22n,
k,l

1<) 1<)

and R(«) is the reflection coefficient

(mpy ) T 4 (2ba — )
z 2 =2 Ta+b2)

R(a) =

The validity of both conditions requires that
(m+n)b+ (N —2)Q = 0.
One can easily check that (261) corresponds to (266) for m = 0 and!®
1

b=— or c=-2.

V2

Actually (266) predicts the following more general identity generalizing (261)

n n+m+2 n+m+2

ot JTLIL - 6P Da@ o, = [T a1+ Ag [T 16 - 2420
Vo=l =1 k1 i<
1 m n+m-+2 nt+m-+2
—2—2A, 2 2 o
X /H H v — &2 D, (v) dPoy .. dPuy, > Ap=-n—1 (267)
=1 j=1 k=1
16Tn principle, it is not clear why the case of b? = —% is so special and might be more integral identities generalizing

T
r+1°

(261). This is unknown so far. There is interesting case corresponding to unitary minimal models, or b = —
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or in simplified form (with &, 10 — 00)

n n+m+l n+m-+2

1 24, 2 2 o (14 Ag) 2424424,
[T I1 lu— &1 Du(w) dus ... du, = []16 — &P
mn! /1':1 j=1 =4l () d"u ! V(L +n+ 30 A) i<j e "

m n+m+1

1 —_)— .
% wmm! /H H |,Ui - §J| 2 2AJDm(’v) dz'Ul R dz’l}n,
’ i=1 j=1

Let us prove (267). Consider the integral on the left in (267) and introduce
b= [1im (& — wi)
’ Hi;ﬁj (51 - 5@) 7

Among n +m + 2 variables p; there are m + 2 linear relations. They can be found by noticing that the
rational function

=1,....n+m+2.

H@:1(t . Uz) n+m-+2 p; 1
Ut) = =5t = Z behaves as  U(t) = — at t — o0.

This behavior implies that the variables p; obey

ntmt2 n+m-+2
Z ,Ojﬁjl-“:() for k=0,...,m, Z pjgybﬂ:l.
j=1 j=1

The measure has the form

n+m+2 m
D, (u) dur . dPuy =n! [ 16— & <H 62> m&f)) 0D (3ot = 1) dpr o i,
i<j=1 k=0
Then up to a factor
o H ‘gl - é—j‘2+2Ai+2Aj (268)
i<j

the integral in the Lh.s. of (267) has the form

n+m+42 m
[0 e (H 62> ,ojsf)) 6D (3 i = 1) dpr o dPpimis =
j=1 k=0

1 n+m+2 ‘ m—+1 i (pk b pjg‘l;f«}c.c‘) -~ i(pm+1 +I7m+1)
— (27)2(m+2) / H |p;|*Y H e 2 e 2 Ppy .. & pupmp2 dPpo . . PPy
j=1 k=0

Integrals over p; can be taken using
[ 2P = my (14 ) pl

We find

m4n+2 ntm+2 m+1

(257):(27;)2w ]1:[1 7(1+AJ)/ I1 ’Q;Pkfﬁ?

i=1

_2_2Aj _ i(Perl +5m+1)
2

e py. .. d*pmy (269)

108



It is convenient to rescale
Pk — PkPm  for k#m.

Then we find that the integral over d?p,, is just the ¢ function with the support on p,,+1 = 0. It implies

n+m+2 n+m+2 m—1

—2-24;
(269) = ="~ H (1 + Aj)/ H ‘Zpkff + & N
j=1 j=1 k=0
7Tn_m n+m+2 m n+m+2
-— [] w0+ Aj)/H I lvi = &1 D(v) dor ... d*v,, (270)
m: Jj=1 i=1 j=1
where )
™+ Zpkxk = H(:c — ;)
k=0 i=1

Remembering the factor (268) we’ve left on the road, one finds that (270) implies (267).
Now we study the four-point correlation function with one ®; 5 degenerate field

<V b (Zv 2)‘/&1 (O)Va2(oo)Va3(1)>.

2

On-shell this four-point function is proportional to the Coulomb integral

J™ (A, Blz) = /H Itk 24t — 18|t — 2|79 H ti —t;|*9d%t, . .. d*t,,
k=1

1<j
where b
A:—2b041, B:—2b042, a1+a2+a3—§+nb:Q.

As usual, we represent (for simplicity we will skip all factors)
‘tl - tj|4g ~ Dn(t) / H |Ti — tj‘_2+2g,Dn_1(T) d27'1 e dzTn_l.
,J

Compared to the 3-point case, the integral over ¢ can not be taken, but rather gives one-dimensional
integral (we note that the interaction of 7; with z does not appear)

/H 2t — 12t — 220 T It — 71 220 Du(r)tr .t ~
k=1 7

~ ‘Z|2(1+A—g)|z _ 1|2(1+B—g) H |Tj‘2(A+g)|Tj _ 1|2(B+9)D29‘1(7-)><

J

o R e (R T ) | (R A C Ty
J
From (271) we obtain a recursion
(A, Blz) ~ [ A9 a1 OB / €722 =122 |6 —2| 2R (At g, Bgl€)d%. (272)
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Repeating (272) again
:j(n)(A, B|Z) ~ |Z|2(1+A—g)|z . 1|2(1+B—g) %
> / ‘5 - Z‘_2+2g|V|_2_2A_2g‘I/ . 1|_2_2B_29‘y _ 5‘—2+2g3(n—2)(A + 29, B+ 2g|V)d2§d2I/,
and taking the integral over &, we get
3(n) (A, B‘Z) ~ ‘z|2(1+A—g)‘z_1|2(1+B—g) / ‘V‘_2_2A_29|V—1|_2_2B_29‘V—Z‘_2+4g3(n_2)(A—|—2g, B+2g|V)d2V.
Repeating this arbitrary number of times, we get
3(n)(14, B|Z) ~ |Z‘2(1+A—g)|z . 1|2(1+B—g) >
> / |V|—2—2A—2(k—1)g|y _ 1|—2—2B—2(k—1)g|y . Z|—2+2kg3(n—k)(A + kg, B+ k’g|l/)d2l/.
In particular, for k£ = n one has
:j(n)(A, B|Z) ~ |Z|2(1+A—g)|z . 1|2(1+B—g) / |V|_2_2A_2(n_1)g|l/ o 1|—2—2B—2(n—1)g|1/ . Z|_2+2ngd2l/ _

_ / ‘5‘2A+2(n—1)g|£ . 1|2B+2(n—1)g‘£ . Z‘—2ngd2£' (273)

In the last line we used (259). We see that the number of screening fields in this formula is just a
parameter. As usual, we suppose that (273) holds “off-shell”, i.e.

(V_s (2, 2)Vay (0)Vay (00) Vi (1)) = D vr, vz, aug) 2]z — 1[0 / €122 — 112°)¢ — 277’ (274)
with
b b b
a=1b Oég+0&3—0(1-@+§ y B:b 041+042—043—Q+§ y ’)/:b Q+§—041—042—Oé3 .

The constant Q(aq, e, a3) can be easily found by considering the limit z — 0

Q—a—b/2
b

Qar, az,a3) = (—mp) [77#7(52)62_%1 y
x T (—8)T(201) T (202) T (203)
T(Oél +ag+az3—Q— g)T(al + oy —az — %)T(al + s — g — %)T(C\fg F o — oy — g)

The expression (274) has to be compared to the one we’ve obtained before (here A and B are different
from those above)

a—t b a1+t b
(V1 (2, 2)Va, (0) Vg (00) Vi (1)) = c_%;lc(al -5 ag) IF(2)2 + C_;;C(al 5. ag) IF_(2) ]2,
(275)

where
Fi(z) =221 — 2)" F(A, B,Cl2),

F_(2) =@ )1 — )1+ B-C1+A—-C,2—-C|2),
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and
2 2

The function F(A, B,C|z) in (275) is the hypergeometric function. One of possible integral representa-
tions for F(A, B, C|z) involves contour integral from 0 to 1

A:%“‘b(al‘l‘ai),_Q)“‘b(aQ_Q), B=1+b(a1+a3—Q)—b(a2—9),

r(B)i((g)_ B) /0 e O I

In order to relate these two representation, we perform Wick rotation in the integral

F(A,B,Clz) =

Ia, B,]2) = / €2 — 12%)¢ — 2P (276)

and obtain

I(a, B,7]7) %// u+leu—v))(v—ze(u—v)))a((u—1+ie(u—v))(v—1—ie(u—v)))ﬁ-

—00 —0O0

((u =z +ie(u—v))(v— 2 —ie(u — v))) dudv  (277)

Now, suppose for simplicity that z is a real number z € (0,1). We divide the domain of integration over
u into four intervals: (—o0,0), (0, 2), (z,1) and (1, 00). Then the contour of integration C over variable
v looks like

u € (—00,0) u e (0,z)
A N N . N\ A
_/
0 z 1 0 z 1
u € (z,1) u € (1,00)
m L]
—/ o/ —/ —/ —/
0 z 1 0 z 1

We see that only the domains (0, z) and (z,1) contribute.
It is convenient to define

0 1 00
- d I; = d I, = d
/_ el / f(el)dr, Iy / f(xl2)dr, I, / f(]2)dx
= |z —1|%z - 1\6|x—z|7

There are two linear dependences between the functions I;(z), which follow from contractibility of the
contours

111



We have . , .
Il(Z> + e_lﬂaIQ(Z) + €_m(a+ﬁ/)[3(z> + €_Zﬂ(a+ﬁ+7)]4(2> = 0,

Il(Z) —+ €i7ra]2(2) + €i7r(a+ﬁ{)]3(2> + €iw(a+ﬁ+ﬁ/)[4(2) = 0.

It is convenient to take as independent functions (compare to (275))
L(z) =22Q 2P+ B-C,1+4A—-C,2-Cl|z) and I(z2) = F(A,B,C|2).

This functions (conformal blocks) have diagonal monodromy around 0. Then [;(z) and I3(z) are ex-
pressed as

sin 7y sin w3

L(z) = ———1I —
1(2) sin(a + ) 2(2) + sin (o + ) ) (278)
sin o sinm(a+ 8+ 7)
I3(z) = ————ID(2) — — I4(2).
sinm(a + ) sin (o + )
For non-contractible contours in (277) we have
) D A — 6i7r(a+ﬁ+’y) (Il (Z) + eiﬂaIQ(z) + eiﬂ(af’y)jg(z) + eiﬂ(a*’yfﬁ) ]4(2)) ,
0 z 1
\.O/ " rl\ — etm(atp+7) ([1(2) + eiﬂ'a[2<z) + em(aﬂ)[?’(z) + eir(e+r=5) [4(z)) ’
z

where we fixed the phase of the integrand over v to be e™@*#+7) in the interval (—oo,0). The phase
over u should be e~ (@+5+7) in the same interval, since our two-dimensional integral (e, 3,7|z) is real.
Then we have

I(a, B,7]2) = e ™ Iy(2) (I1(2) + €™ [(2) + €TV I3(2) + €™ I (2)) +
4 eimlat) (I1(2) + ™ (2) + MO I(2) + 6i”(°‘+”_5)l4(z)) , (279)
where the phases e~ and e~""(®*) are easily read off (277). Substituting (278) into (279), one finds

sin o sin 7y
sin (o + )

‘2 sinmfsinm(a+ 5+ v
sinm(a + )

I, BA)7) = 1(2) NP

We note that this expression is real and single-valued at z = 0. Equivalently, it can be rewritten in
terms of functions

L(2)=F(A,BJ1+A+B—-C|l—2), I3(z)=(1—-2)"9 2 p(C—~AC-B,1C —A—BJ]1-2)
with diagonal monodromy around z = 1:

sinTasinT(a+ 8+ 2

Y

‘2 sin 73 sin 7y
sinm(a + )

I(e, B,]z) = ) |52) 1(2)

sin (o + )
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and hence this integral is single-valued at z = 1 (and automatically at z = o0).

The fact that the integral I(«, 3, 7|2) is single-valued on a sphere with three punctures was clear from
the beginning, since its form (276) is ultimately single-valued. From the other side, we have obtained
the same result from the “bootstrap” equations

-t
C—g,oq C<a1 - %70470é3> _ fy(A)’y(B)”y(C — A)’}/(C — B)
5 o+ bava) HOMC 1)

2

Thus we confirmed both methods.
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Lecture 21: Coulomb integrals III: screening fields

We have seen that Coulomb integrals for correlation functions can be decomposed into sum of
products of contour integrals. This expansion is similar to the expansion into the sum over the conformal
blocks. Thus if we are interested in holomorphic objects, we can consider holomorphic bosonic field'”

o(2)p(w) = —% log(z — w) + ..

Let us rephrase what we have done in last lectures, but ih holomorphic language. We are interested
in multipoint correlation functions of holomorphic vertex operators V,, =: e2*#(2) .

Var(21) -+ Vg ()] — e [z = 25) >,

> ap=Q Py

<]
Here w is some phase which is related to kinematics. In particular, if |21 < |22] < ... then w = 1. The

balance of the charge can be changed by the screening charges

def 1 1,0,
Vi€ o % 2@ gz, (280)
26+ p(2)

The vertex operators e are special ones, because they have conformal dimension 1 under the

improved stress-energy tensor
T = —(0p)* + Qd*¢.
We have

T(€)62bi190(2) — €2bi1<p(2) _l_ 8621):‘:1@(2) + ce e = g <7e2bilw(Z)
(€& —2)? E—=z 0z \ &€—=z
The meaning of this formula is that the stress-energy tensor does not feel the screening charges. They
role is to change the charge condition.
The problem with the definition (280) is that the contour of integration should be closed. It is not
really trivial task to find such contours. Consider the following example

(Var (21) Vi (20)V4) ewl 7{ H(zi — zy) 72 [ [z — 2) . (281)

S ap+b=Q - 2w

) o= ¢ 2TETE)dz = 0.
Ce

The integrand in (281) is a mutli-valued function. The basis in closed contours consists of Poghammer
contours. Namely, fix two points z; and z;. Then the Poghammer contour P, ; has the form

TNote that here we use different normalization of the bosonic field compared to the one used before.
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Lecture 22: Classical CFT I: correlation functions

Classical regime of CF'T corresponds to the limit ¢ — oo. Though the details of this limit may
depend on a CF'T under consideration, kinematical quantities, like the conformal blocks, admit universal
behavior. We consider ¢ — oo limit of Liouville CFT

1

. 1 = A
Sledul = 1= [ V3 (9" 0up0u0 + Qo+ Amue®™) iz, Q=+ ;.

Since ¢ = 1+6Q?, the limit ¢ — oo can be archived at either b — 0 or b — co. We can rescale ¢ = b~ 1o,
p = m'b"2A. Then in the limit ~ = b*> — 0 the path integral is dominated by the stationary points of
the classical action defined by

~ 1 o ~ 1 ~ ~uv ® o
Sl ] = 35 (Saloy gl + O0%)) ;- Saloy gl = / Vi (g“ 0,00,0 + Ro + 4Ae? ) &a.

The Euler-Lagrange equation for the classical action Sg[o, §,,] has the form
—Azo(x) + %f?(a:) + 4Ae* @ = 0. (282)
Using /gR = V(R — 2A;0), where g,,, = €27§,,, one has
%R(m) +4A = 0. (283)

So, the Liouville equation is just the statement that the metric g,, = €*§,, has a constant curvature.
Let us take g, = 6,,. It can be done at least locally. In complex coordinates (282) reads

00 = Ae*. (284)

This equation, known as Liouville equation, being non-linear, is in fact exactly solvable. First, one
notice that - -
t=—(00)+ 0% and t=—(d0)*+ 0%, (285)

are holomorphic and antiholomorphic functions respectively, i.e. ¢ = t(z), t = #(z) provided that o is
on-shell. In fact, (¢,%) are nothing else but the components of the stress-energy tensor. This fact is a
manifestation of the conformal invariance of Liouville equation
Su(), 2o, oo log %]
z—w(z), zZ—w(z), o—o—=log|—
2 & dz
Important role plays e~ which is the classical counterpart of the degenerate field
satisfies two differential equations

1 ((I)Lg ﬁeld) It

2b

(0 +t(2))e =0,
(& + H(2))e™" = 0.

, a classical version of ®, 3, satisfies

(286)

In a similar way one can show that e=2°

(0° +4t(2)0 + 2t'(z)) e =0,
(0° +4t(2)0 + 2t'(2)) e =0,
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etc.
Equations (285) and (286) can be used to solve Liouville equation. Namely, let ¥(z, Z) be a solution

to the system
(0% +t(2))¥(z,2) =0,
(0% +1(2)¥(z,2) =0,

where t(z) and #(Z) are some holomorphic and antiholomorphic functions complex conjugated to each
other (this is ansested from their definition (285) through the Lioiuville field o). Then, let 1;(z) and
19(z) be two linearly independent solutions to the holomorphic equation (287), normalized by the
condition

(287)

Wt 16s) = 1005 — o001 = 20 (%) 1, (288)
and let 11 (Z), () be their complex conjugates. Then one can check that the combination
0(2,2) = —log (Ayi(2);(2)) (289)
is a solution to Liouville equation (284) provided that
det A = —A. (290)

Indeed, let x; = Aij@j, then we have

90 (= log (V1 Y1 + 1aXa)) = 00 (—log (1 + w—X—)) ~5 L ___ detA
Ui xa 1+ 22 (Y1x1 + ¢2X2)2’

U1 X1

N

where we used

P (@) _ D0y =0 1 5 (&) ~ X19X2 — X20x1  det A
W U v\ xi X

Formally (289) provides a solution, but one has to impose further constraints. First of all o(z, z)
should be real. It can be archived by demanding the A is a Hermitian matrix A = A™. More important
thing is to ensure that o(z, Z) is single valued. As we will see below this is a complicated task to perform.
The basis of solutions (¢1(2),¥2(2)) normalized by the condition (288) is not a distinguished one. It
can be rotated by some SL(2,C) transformation to the basis in which the matrix A takes a canonical
form. In the condition (290) only the sign of A matters'®, the rest can be absorbed by the constant
shift of o(z,z). Since the sign of A corresponds to the sign of the curvature according to (283), one
distinguishes two cases

Positive curvature: A= <(1) (1)) ,
. 1 0
Negative curvature: A= 0 -1

Now, suppose that there is a non-contractible loop C such that the solution acquires a monordomy
around it (again we assume that ¢(z) is a single-valued function)

Wy — M )5, 122 — M:j@j-

8We note that in our case A > 0 as required by the path integral to converge at large (.
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As we demand that the solution (289) is single-valued, we must have
M*AM = A.

Therefore the monodromy matrix M should belong to the real subgroup of SL(2,C): either SU(2) for
positive curvature, or SU(1, 1) for negative one. If there are more non-contractible loops, this condition
should hold for all of them.

Now, let us study elementary solution to Liouville equation corresponding to the case
t=0.
For positive curvature one has a solution

4dzdz

O'(Z, 2) = —lOg(l + |Z‘2) — d82 = €2Ud2d2 = W,

which is the Fubini-Study metric on a round sphere . Namely, we take a sphere 2 + &€ = 1 embedded
in flat space with Euclidean metric ds? = dt? + déd€ and introduce stereographic coordinate z as shown
on the picture

that is

For negative curvature one has

dzdz

0(2,2) = —log(l — |2]*) = ds*=e*dzdz= 1= P2

(291)

which is the metric of Poincare disk (Euclidean AdS,). It can be realized as an embedding of a two-fold
hyperboloid ¢€ = t? — 1 into Minkowski metric ds? = —dt? + d&d¢.
Now, let us turn to the computation of multipoint correlation functions in Liouville QFT

Vo (51, 20) - Vi (2, 50)) = / o= T[ e+ D).
k=1
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We consider the case of all “heavy” operators, i.e.

_ Tk
P

These insertions are of the same order as the action and hence they modify the equations of motion

Qg

Vi (—Aga(w) + %R(w) + 4A620(m)) =4 Z 0@ (2 — z),
k=1

or in terms of the metric g, = €*7§,,

NG (%R(w) + 4A) =47y mkd® (2 — ). (292)

k=1

Equation (292) describes a metric of constant negative curvature —8A with prescribed singularities at
the points (z1,...,2,). Integrating this equation over the sphere and using Gauss-Bonet theorem we

get an equality
4A/\/§d2:c = 4r (Z e — 1) 229 > > 1L (293)
k=1 k=1

This inequality is related with the convergence condition for the path integral at large negative values
of .
Consider the case of flat background metric. One has

00 = Ne*” — WZ nk5(2)(2 — 2),

k=1
or equivalently using 90 log |2|? = 7@ ()
000 = Ae*,
o= —nploglz — %[>+ 0(1) at z— z, (294)

o= —log|z]*+....
The last condition is just the statement that the metric is regular at oo
dzdz
2]
Moreover, we demand that the metric is integrable at the punctures. From

9 dzdz
ds :W at Z = 2k,
Z — Zk

ds® = e*°dzdz = at z — oo.

we have

m < 1. (295)

Picard theorem says that there exist a unique smooth solution to the Liouville equation with prescribed
singularities (294) with additional conditions (293) and (295). It follows from (294) that the holomorphic
function t(z) for this problem has the form

Ck

t(z) = Z ((z szk)2 + ) ,  where 0 = (1 — ). (296)

(z — z1)
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The parameters ¢, called the accessory parameters, are subject to three linear relations following from
the asymptotic condition

1
U:_log|z|2+:>t(z)w—4 at 2z — oo.
z
Namely,
Z L = 07 Z (Ckzk —|— 6k) = 07 Z (Ckzz + Qéka) = 0
k=1 k=1 k=1

Other parameters ¢, are chosen by Picard theorem to be some functions
e = (s 25, 25),

such the monodromy matrices around elementary cycles belong to the real subgroup of SL(2,C)
M, € SU(1,1).

The solution, up to a constant fact, is given in terms of the ratio of two solutions f = /1y to
holomorphic differential equation (287)
Js? |f'|?dzdz _ dfdf ' (297)
A—=1rP)2 (A= I[f]?)?
Formula (297) states what is called uniformization theorem, giving the metric of constant negative
curvature on a sphere with punctures as a pull-back of the standard metric (291) on Poincare disk.
The solution of Liouville equation with conical singularities (294) is equivalent to the problem of
tuning the accessory parameters ¢ in such a way that the monodromy of the corresponding differential
equation around each non-contractible loop belongs to SU(1,1). Since the problem (294) admits a
unique solution, it implies that there is a unique choice of functions ¢, = cx(n, z, 2) which satisfy this
condition. Polyakov made an observation, that these functions are derivatives of the classical action

aScl
=— 2
Cr aZk y ( 98)
where the classical action has to be formally understood as
1 2 - . _
Sy = g ((Qp) + 4Aé? ) d*x — 2 ,;_1 Mo (2k, Zk) (299)

The relation (298) has very simple intuitive meaning from CFT point of view. Consider correlation
function of heavy operators V,,, ax = b~'n; with one degenerate light operator V_ b According to

general quasiclassical arguments it must scale as

U(z,2) © V(2,2 Vi (21, 21) - Vit (20, Z0)) = € 7G50 (14 0(1%))  at b — 0.

2

The field V_
equation

is a degenerate one and hence the correlation function W(z, z) satisfies partial differential

<a§ + b?i ((z _A;)z + - ?ka» U(z,2) =0 (300)

k=1

b
2
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The conformal dimensions scale as A, = b=24;, and hence (300) degenerates in the limit b — 0 to

<a2 + Z ( FErAR f’“zk)) W(z,7) =0, (301)

where ¢ are given by (298).

This fact formally explains Polyakov’s conjecture. We note, however, that the expression (299) is ill-
defined due to logarithmic singularities of the solution (294). Moreover, it diverges not only at z — z,
but also at z — oco. In order to regularize it, we consider the theory on the domain X which is a disk of
large radius L = 1/e without small disks of radii ¢, centered around each singular point z,. We define
the regularized action as

1 2 20 2 1
Scl = E ((aMO') 4+ 4Ae ) d“x + ER(EI% €, U) + K(Eka 6)7
dz dz dz dz
R =2 § z - 2i H(Z -2
(€, €,0) iy j{z_%:% o(z,%) (z i Zk) + z%z:% o(2,2) ( = ) ' (302)

K(ex,€) = — an log €2 — log €
k=1

This is a typical action on a domain with a boundary

S:/ E(ap,@ugo)d%c—i- K,\(go)d:c’\.
D

aD
It’s variation is

oL oL 0K
652/(—6 +786)d2w+/ ( Y )dw”:
» \9p"" " 0(0,0) " on \ O

oL oL oK oL
_ =9 ) d2w+/ < Yt )6 dz’. (303
/D <a¢ “a@m) edat | \op T aa,g ) 0 509

In the last line we used the Green theorem

/ 0, At d’a = 7{ e Alda” = i f (A.dz — Asdz)
D oD oD

From (303) we get the equations of motion

<%—a ac) 0 (8K+ 85)
Op  T00up)) |, oo M a(0.p) .

Applied to our case (302), we find that the Liouville equation in the bulk is supplemented with the

boundary conditions
_ 1 - 1
Z— 2z Z— Z S z ) z

|z—21|=¢x
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which are equivalent to the asymptotic conditions in (294) in the limit ¢, — 0, ¢ — 0. The constant
K (e, €) has been chosen to make the action finite in the limit ¢, — 0 (and similar at € — 0). There are
two sources of divergences. One from the kinetic term

d2

1
—/ 40000d*x = @ — ... = —niloge +
T T J |z —z|?

and another from the boundary term

dz d
_ Uk o(z,2) (_ Z_ __* ) = 2nilog e +
2 |z—2| =€k

Z — Zk Z — Zk

Adding these two together with the counterterm we get a finite result.
It is convenient to specify the subleading terms in the singular expansion

0(z,2) = —niloglz — 2> + 61+ ... at z— z,
0(z,2) = —log|2]*+ 60 +... at z— oo.

Then in the limit ¢, — 0, € — 0 one can write (note the sign change in front of the counterterm)

1

S, = E/X ((8“0)2 + 4Ae20) d*x — 2 ;nké'k + 2600 — K (e, €).

Using this formula it is easy to prove that the following relation, which holds on-shell

aSv:l
ony,

= —26. (304)

Indeed, taking the derivative of the bulk part, one has
1 do 9y [ OO 9 1 do o
= (za o0, (am) T 8Ae (m)) o= [ o, (aﬂg (am)) P —
do
=5 (Zﬁ e (am) (&Idz — 8adz) — 7|{z|=1 (3%) (&Idz — 8adz)> =

" 801 8(700 2
= 2an8—m — 2— — 2 log €.

Combining with the derivative of
-2 an&k + 25’00 — K(Ek, E),
k=1

one finds that first, the divergent terms are canceled, and second that (304) holds.
We note that (304) implies that the form

dSa=~27  Gudn

k=1
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can be integrated giving S, up to a constant term independent on 7.
As an example consider the case of three external points. In this case the accessory parameters in
(296) are completely fixed by the requirement ¢(z) ~ %
o ——25121'+’(51'+'53 —-52)22'+'(51'+’52'—-53)Z3

“a- (21 — 22)(21 — 23)

)

Differential equations (301) in this case can be reduced to the hypergeometric equation. The single-
valued solution to (301) admits the integral representation'®

3 3
W(z,2) = C [ 2 - af / TT 1€ — af2(e — 22Pa%, (305)
k=1 k=1

where
Ay=n—-2np,—-1, B=1-n n=n+mn+ns.

The normalization constant in (305) is obtained from

19We note that formally our classical equation (301) has exactly the same form as the quantum one (78) by with different
meaning of the parameters. For (78) we obtained the integral representation (274). Thus adjusting the parameters we
arrive to (305).
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Lecture 23: Classical CFT II: classical conformal block, Painlevé VI equation

In last lecture we saw that corrlelation functions of heavy fields behaves semi-classically in the limit
b—0 X
(Vimin (21, 21) - Ve, (20, Zn)) = e 2%,

What is less obvious is that holomorphic quantities like conformal blocks , which do not have immediate
path integral representation, still admit WKB behavior. Consider for example 4—point conformal block

Ay A A-nr—AgtAl (o1 (Da|PsL_A[A) (AL, P1[Ay)
3 z) = ZATA= At (D ,
A(Al A4‘ ) IA%:NI (A (A4 ®5]A)  (A]D]A,)
where (ALLL_5|A)
rh = —<Z|A_; , (306)
and take 5 0 bix L)
= -1 = —k = — = — _
A =A(b nk)_b2+..., A A(2+ 5 ) R T (307)
Then we have the following statement
d2 O3 1 62 63|, ) 4.
%ma(?f ; ) _nlif)e (308)
w2\ R

d2 J3
01 04

The statement (308) is rather non-trivial being viewed as a series expansion at z — 0. Clearly, we
have

where f,\< z) is called classical conformal block.

1 (1=x2
ZA—A1—A2 _ eb—z( i —51—52) log z+...

while the rest is a series 1 + Fyz + F52z%2 + ... where

B iy (D P3LA|A) (A|L,®1|A)
Fv= 20 (NN ea) Albiay)

Al=lul=N

(309)

Let us estimate how the coefficient (309) behaves in the limit b — 0 with (307). It is clear that

(Ag|®3L_»|A)
(A4 D3] A)

- P}\(A4> A?n A)a

is a polynomial of degree degPy = [(A) where [(A) is a length of the partition A. This statement

A‘LMCPl‘AQ)

follows immediately from commutation relations (146). The same is true for < NS Now comes

the Shapovalov matrix (306). Consider the matrix element

(AlLuLAIA) = (AlLuLos Loy, ... |A)

3

and drag L_y, to the left. Using commutation relations [Ly,, Ln] = (m — 1)Ly + 15(m° — m)6p, _p,

we see that if it does not meet Ly, on his way then the result will be

> en(AlLyLoy,Loy, ... |A)

n
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with all ¢, finite in the limit b — 0. However if it does meet Ly, the result will be of order b% since
A~ big and ¢ ~ b% So the more such “meetings” occur the more singular behavior at b — 0 we get.

Most singular matrix element is

1
It implies that the inverse of Shapovalov matrix behaves as I'™! ~ 2. Altogether it implies that the
coefficients (309) behave as

1 1 _ _
Fy~ o at b—>0:bz_N(F}VN>+b2F}VN Db FNTY ).

Now (308) is equivalent to the statement that in the expansion

2

F F3
10g(1+F12+F222—|—F323—|—):ZF1+Z2 (Fg—Tl) —|—2’3 <F3—F1F2—|—?1) + ...

)

all singular parts are cancelled all the way down to F' ](Vl . For example it implies that

62 03
01 04

following semiclassical intuition. Consider five-point correlation function

\II(Z, 2) = <V b (Z, Z)Val (Zl, Zl)VOQ (2’2, ZQ)VOCB (2’3, 23)‘/044 (2’4, 24)).

T2

It satisfies the following partial differential equation

2 2 - Ak ak L
(8 +b Z((z—zk)Q + (Z—zk))> U(z,z) = 0.

k=1

One can define classical conformal block f,\< z) purely in classical terms. One can use the

Consider a particular solution to this equation specified by an expansion

\IIA(Z|Zk) = (Zl — 22)A—A1—A2 [¢g))(z|22, z3, 24) + (2’1 — Zg)¢(Al)(Z|22, Z3, 24) 4 .. :| at 21 — Z9.

va (+l2k)

Then for the function s (z]2x) one has

<a2+622((z_AZk)z+ o )+b2(A_A1_A2)>¢A(zlzk)=0-

P (z — z) (z —21)(z — 22)

Expanding at z; — 2, one obtains a semi-infinite system of inhomogeneous differential equations

. A 9
2 2 k k (0) _
0" +b ;<(Z_Zk)2 + Z_Zk) U (2]2k) =0,
- ) i ]
A 0 b (A+A; —Ay)

2 2 k k (1) 1 2 (0) -
-a +b ;((Z—Zk)2 _'_Z—Zk + (2_22)2— ¢A (Z|Zk)+ (2_22)3 A (Z‘Zk>_07
- : i .

A B 20?
O+ bzz< ot oo ) Ty | YR G+ (vl Gla + (R Gl =0
L k=2 d

(310)



where A, = A, A; = A; and A, = A,. Of course the solution to this system is now unique. At each
step one can can a solution of homogeneous equation with shifted A

A=A+ A+2— ..

One can fix this ambiguity by demanding that the solution Wa(z|z;) corresponds to a linear combination
of two five-point conformal blocks

(Ag, 29) (A3, 23)

V5 (2] = o

(A, 21) (Ag, 24)

(A2,17 Z)

that is
Ua(zlzr) = CLWL(2]2) + C_Wx(2|2k)-

It means that
k
VR (2]2) = DEYY (2]24),

with D& bemg some differential polynomial with rational coefficients
(V. (2)VA (22)Viag (23) Vs (24)) = DIV (2) Vi (22) Vi (25) Vi (24))
where VA(k)(z2) is a descendant appearing in holomorphic OPE

Z A—A1—Ao+ky (k)
Val Zl a9 22 s Zl _22) ! 2 VA (22)

In particular, one can check that

(A — A —Ay)
2A

o (22) = 0o0Y) (2|21,)

solves second equation in (310).
One can choose W% (2]z;) to have a diagonal monodromy while z goes around z; and z;

UE(2]2) = (21 — 20)° (wg”’i(zm) 4 (21— )W ) - ) ,

where ¢f)’i(2\zk) are two solutions of first equation in (310) which transform as (A = A(«))

CESANN ( 0 ) U (2l )
0),— 2imb(Q—a 0),—
ONICEY 0 e Rl (el
It is clear that since wf)’i(z\zk) are obtained by application of differential operators with rational

coefficients, it has the same monodromy properties. Taking a = % + % we conclude that trace of the
monodromy matrix in the limit b — 0 is

trMigy = —2cosTA. (311)
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Now we come to the definition of classical conformal block. Consider differential equation with four
singular points

- Ok Ck B
0 +;<(z_zk)2+(Z_Zk))]wz)_o (312)

t(Z)Ni( at  z—o0

According to discussions above, we define classical conformal block as a function which satisfies

)

on (5
8Zk

= ¢, such that trMiy = —2cosmA. (313)

We note that due to the relation ¢(z) ~ 2 there are three linear relations between accessory parameters
k. So, only one of them, say ¢y, is not fixed. If one demands the constraint (311) then ¢4 = c4()) is a
particular function of A. Classical conformal block is related to ¢4(\) by (313).

It is convenient to use projective invariance and set z; = z, 20 = 0, 23 = 1 and 2z = oo. Then
equation (312) reduces to Heun equation

" 51 5_2 53 ZL’(I’ — 1)0 54 — 51 — 52 — 53 .
w+((z—x)2+z2+(z—1)2+z(2—1)(z—x)+ z(z—1) )¢—0 (314)
where 5 5 s 5 5
_ 9 2 03 2 03| \ _
clx,\) = Oxh((ﬁ 54‘1’) = h(él 64‘x> /c(x, A)dx + const. (315)

A constant term in (315) can be easily fixed by matching the asymptotic at x — 0.
So, we have a problem of computing the accessory parameter ¢ in Heun equation (314) as a function
of trace of the monodromy. Consider simpler problem first

(51 52 51"‘52—5 . 1—)\2
7 _ — - =
X'+ t(w)x =0 where t(w)= to5 T ww —1) with ¢ T

Obviously we have
MigM3 =1 = trMy = —2coshrmA.

If one finds w = w(z) such that

(0 (N2 (w5 {w(z),z}: 01 é 03 x(z —1)c 04 — 01 — Oy — 03
1z) = (w'(2) #(w(2) + 5 s A PP N P e S e g

(316)
then the function

20Tt is obtained from

] 4] ] c c ¢
X"+ : 7 T ; 7T 5+ — + S+ : =0
(w—wy) (w —ws) (w —w3) w—w;  wW—wy W— w3

in the limit w; — x, wy — 0 and w3 — oo.

126



will satisfy Heun equation (314). We take

where v(z) = 1 +vi(2)2 + va(2)2 + . ..

so that w(z) = 0 and w(x) = z. If we assume that the series for v(z) converges in some domain, then
¥ (2) has the same monodromy as x(w).
We solve (316) pertubatively at both z — 0 and  — 0. It is convenient to represent

51 (52 C1

t(z) = (z—x)2+;+z—x+%+7—(z) where 7(2) =T7o+ Tz + 72t ...

with ¢; = c and ¢g = (x — 1)c+ 61 + d2 + 03 — 64. We have

) 09 — 0
e, = —%4—(54—51—52)2114—0(1'),
1) 09 — 0
Co = %+(5+5g—51)v1+0(x),

To = (46 + 3)vy — (0 + 3)21% + O(x),

We note that explicit form of the coefficients ¢; and ¢, implies the constraint
(1 — ZL’)Cl + cy = 51 + 52 + 53 — 54. (317)

One can solve (317) for
vi(z) = v%o) + v§l)x + 1)%2)1,2 +...
The rest of equations can be solved perturbatively in x. We have

) 0+ 01 —09)(0 + 03 —
_ 1 2_|_(+1 2)(6 + d3 54)_|_
T 20

C

which implies

:c) :(5_51_52)10gx+(5+51_62;(55+53_54)x+

Sy 0
P (51 o

with complete agreement with semiclassical expansion of (148).
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Lecture 24: Zamolodchikov’s recursion formula

In this lecture we will study the pole structure of the four-point conformal block (147) following [18].
This function, being considered as a function of the intermediate dimension A has poles at Kac values
A — Ay, (see (74)). Clearly, the poles come from the inverse of the Shapovalov matrix (75). At
A = A, , there is a singular vector at level mn

Xmn) = Do Amn)  where Dy, = L™ + ¢ (b)L_oL™ 2 + co(b)L_3 L™ 2 + ...,

with n
o =—((m* =1+ (n*—1)b77) et

6
From the Kac determinant formula (76) we know that for any two partitions A and v the following
holds |A| = |v| +mn
(A|LNL_y Dy n|A) ~ (A — Ay )

We can compute the conformal block (147) in any basis we like. We take the following one
L_xA) if X={ .. 1,... 1}
¥ def N——
L—A|A> = k<mn
L_,D,,,|A) otherwise
In this basis one can write

Ay Ay
A Ay

8a(2 W) = 3D s () (Bal25 L A1A) (AlLu®1|Ag)
7

(Aa|@5[A)  (A[84]A;)

IA[=]pel

where

Tox & (AL L_x|A).
Clearly, only the vectors L_, Dy, ,|A) lead to the singular behavior?!. Moreover, one has
(AID}f Ly LDy | A) = (A —n| Ly L p| A —2 ) (A| D D] A) + O (A = A )?)
Collecting all this one arrives to

Az A?) o -1
Res$a <A1 Ay }Z) }A:Am,n_ (Fmn) ™
+
X Z ZA77L,7n—A1—A2+‘V‘ (ngﬂ n) <A4|2§2L|¥|DA”7’7”|?W7”> <Am<7”A|Dm|,%L|p§)1>‘ A2> ’
T/ vp 41¥3|RAm,n m,n|*1[=2

lvI=lpl

211t follows from the formula for determinant of block matrix (provided that D is non-degenerate)

det <é g) = det(D) det(A — BD™'C) = det(D)det(A) + ...

. . L. (A B A B o
Then any entry of the inverse matrix is of the form (—1)* det o D /det c D where (A, B',C’", D’) were

obtained from (A, B,C, D) by erasing one row and one column. Clearly, only the elements with D’ = D lead to the
singular behavior.
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where

(A[D7 7 Dimn|A)

T'mmn = Ai}g}n,n A _ Amm (318)
Moreover, we have
<A4|(I)3L—VDm,n|Am,n> _ <A4|(I)3L—V|Am,—n> <A4‘®3Dm,n|Am,n>
<A4|(I>3|Am,n> <A4|¢3|Am,—n> <A4|(I>3|Am,n> ’
<Am,n|DrtL,nLPq)1|A2> . <Am,—n‘Lp(I)1‘A2> <Am,n|Dr—ir_L,n(I)1|A2>
<Am,n|q)1|A2> <Am,—n|q)1|A2> <Am,n|q)1|A2> ‘
Collecting altogether one has
AZ A?) Rmn AZ A?)
— 2 1
RGSSA(Al A4‘Z>‘A:Am,n T SAm’”(Al A4‘Z>’ (319)

where

<A4|(I>3Dm,n|Am,n> <Am7n‘D;z,n(I)1 ‘A2>
<A4|(I)3|Am,n> <Am,n|(1>1|A2>

Our next goal is to compute the factors 7, ,, and R,,,. The last one is relatively easy. Consider first
examples

Rm,n -

(A4 ®3Dq 1| A1) _ .. AiAL-A
(Ay|®3]AL ) :

=(A(as) — Aas)),

z=1

and

<A4|(I)3D2,1|A2,1>

= (0% —b* (2710, — Az? R1—A21-As
(02 )

(A ®3] Ag 1) —
= (Ay— Do — A3)(Ay — Aoy — Az — 1) = B> (Ay — Agy — 2A3) =
_ (A(ag) ~ A+ g)) (A(ag) RN g)) ,
and

<A4|¢3D371|A3,1>
(Ay|P3|Az1)

= =(A(as) — Aaw)) (Aaz) — Ao + b)) (Aaz) — Ao — b)), (320)
It suggests the following generic formula

<A4‘®3Dm,n‘Am,n> o . T_b ﬂ
Balegany (A Mot 3+)) (321)

where the product goes over the sets
r={m-1m-3,....3—m,1—m} and s={n—-1,n-3,...,3—n,1—n}. (322)

The explicit formula (320) is a manifestation of the fusion rules for degenerate fields. We have
already seen an example of such fusion (79)

D21 Q0 = [Pon] + [Py, Pro®y =[P, 1] +[P 1]

at 5
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In particular it implies that
(I>2,1(I)m,n = [(I)m-‘rl,n] + [(I)m—l,n]a (bl,Z(I)m,n = [(I)m,n—i-l] + [(I)m,n—l]~

Both these fusion rules can be interpreted as sl(2) fusion rules. Namely, the product of 2-dimensional
and m-dimensional (or n-dimensional) representations of s[(2) is the sum of m + 1-dimensional and
m — 1-dimensional representations (n + 1-dimensional and n — 1-dimensional). Then using associativity
of the OPE, one finds that

(I)m,nq)a - Z |:(I)a+%b+£i| s (323)

2
where the sum goes over the set (322). Now consider the matrix element (321). The state Dy, »|Ay, ) =
|Xm.n) is a singular vector which one can consistently set to zero
<A4|¢3Dm,n|Am,n>
<A4|(I)3|Am,n>

= Dy 27883 = 0, (324)

where D,, ,, is a differential operator read of D,,,, according to the rules (146). Comparing (324) with
(323) and taking into account large Az asymptotic, one arrives to the r.h.s. of (321).
Similarly, one has

(Apn| Dt @1|A) P

which implies
rb sb~! rb sb!
Rmm = l;s[ <A(Oz1) - A(OQ + 5 + T)) (A(Oé?)) - A(Oé4 + 5 + T)) .

The constant r,,, is more painful. From its definition (318) it is clear that r,,, is a polynomial in
b and b~!. Explicit calculations on first levels give

ria =2, ro1 =40 (b+ b)) (b—b""), r31=24b" (204+b7") (26—b"") (b+b7") (b—b71)

(325)
Zamolodchikov computed more terms and conjectured the generic formula [18]
2 /
mn — 7 171 b Ab_l )
Tm, mb + nb~! H (ib+jb7)

l-m<i<m
I-n<j<n

where [[' means that the term with i = j = 0 is absent.
Using (319) we can write

Sy ) = Smaemy e (o ) a3 2l e

where the last function corresponds to the behavior at A — oo. We will compute it later from classical
Liouville theory. It has an explicit expression in terms of elliptic parameter g

2

i (2 30[F) = (1602 %2 H - dmma (g ) Foaig (gt

JAVRVAV

130



where

= i = e T:iiK(l_Z) where x :1 1 dt
O5(q) => ¢, q=¢€"", e here K(z) 2/0 T

keZ

Motivating by this formula we define elliptic conformal block

A2 AB o A_Q_2 Q_Q_Al_AQ Q—Q—Al—Ag 3Q2-43, Ay Ag Ag
50 (32 1) = 00> ¥ sy o s sy (3 41
Then we have elliptic recurrence
AQ Ag . (16q)man7n Ag Ag
m(Al A 7) =1+ (A = Am,n)ﬁA"“"<A1 A, 1) (327)

The formula (327) is very efficient. Taking

Ay Aj

m(AI Ay

Q> =1+ Z gV Hn (D),
N=1
we obtain
(16)m”Rm7n
mn<N Tm,n(A - Am,n)

One can also change the point of view and study analytic structure of the conformal block as a
function of c¢. Namely, equation A = A, ,(c) can also be solved as

¢ = Cmn(A).

fJN(A) = ﬁN—mn(Am,—n)-

Then using (326) one finds

¢ 1
D I o s NG 3 EING B U B)

Ay Ay Tm,n(C—Cm,n) Ay Ay €00 Ay Ay

In the limit ¢ — oo only the states LY, |A) contribute and their effect can be easily summed up

lim SA

c—00

(Ag A3’2> _ f:ZA_Al_A2+N 1 <A4|(I)3L]—V1‘A> <A|L{V®1|A2> _
A A T2 AIVINIA) (Ads/A) (AlEi[As)

_ ZA—A1—A2F (A+A1—A;AA+A3—A4

z) . (328)

AB
where F( c

z) is the hypergeometric function.

Probs:
1. Show that the coefficient r5; is given by (325).

2. Show that the large ¢ limit of the conformal block is given by (328).

131



Lecture 25: WZW models
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Lecture 26: Coset CFT, GKO construction
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